Probing Quantum Phase Transitions and Domain Dynamics with the Hall Effect

- High-Tc’s: YBCO
- Mott-Hubbard Transition: \(\text{V}_2\text{O}_3 \)
- SDW Order: Cr

Approach to the QCP (Minhyea Lee)
Domain Wall Motion (Rafael Jaramillo)

Hall Effect and YBCO

\[\sigma_{xx} \sim \tau_r \; ; \; \sigma_{xy} \sim \tau_r \; \tau_H \; ; \; \cot \theta_H = (\sigma_{xx} / \sigma_{xy}) \sim 1/\tau_H \]

CHARGE & SPIN: \(\tau_r \sim 1/T \) vs. \(\tau_H \sim 1/T^2 \)

Hall Effect and V_2O_3

More Metallic

$\tau_{tr} \sim 1/T^{3/2}$ (SCR) vs. $\tau_H \sim 1/T^2$
NEAR HALF-FILLING (Mott-Hubbard QCP)

SDW in CHROMIUM

- Cr is a 3d- transition metal with a simple BCC structure.
- The only elemental Antiferromagnet.
- Spin-density wave ground state at 311 K.
- Drive T_N to zero by Doping with V
 (effectively increasing the size of the hole pocket)
or by Applying Pressure.

Fermi surface for Cr:
SDW of wave vector Q produces energy gap
(Fawcett, RMP 60, 209 (1994))
Hall Effect and Cr_{1-x}V_x

- Hall Coefficient jumps by a factor of two at the QCP!

Does the Longitudinal Resistivity see the QCP?
Does \(R_H \) really jump?

Temperature dependence of \(\rho_{xx} \) at various \(P \)

- Temperature dependence of resistivity evolves smoothly through the QCP
- \(\rho (T) \sim T^3 \) due to phonons in the paramagnetic phase.
- No non-Fermi liquid signature.
Temperature Dependence of the Hall Coefficient:

- High T Evolution, viz. YBCO
- Sharp decrease in $1/R_H$ as SDW Gap opens
- $T = 0$ Discontinuity?

Pressure Dependence of Inverse Hall Coefficient

At the $T \to 0$ QCP:

Continuous Evolution of
\[R_H^{-1} \sim (P_c - P)^{0.50 \pm 0.02}, \]

with $P_c = 7.5 \pm 0.1 \text{ kbar}$,

M. Lee et al., PRL 92, 187201 (2004)
Probing Quantum Phase Transitions and Domain Dynamics with the Hall Effect

$\Delta \rho/\rho (T)$ as measure of SDW Order Parameter

$\Delta \rho/\rho (T) \sim (P_c - P)^{0.68 \pm 0.03}$ with $P_c = 7.5 \pm 0.1$ kbar.

Final Exponent: Isothermal Cut of $\Delta \rho (T,P)$

- Pressure dependence of T_N can be determined from the fitting results:
 $T_N \sim (P_c - P)^{\alpha}$ with $P_c = 7.5 \pm 0.1$ kbar

- $\Delta \rho(P)$ at all T fits $(P_c - P)^{0.68 \pm 0.03}$ with inhomogeneity $\Delta x = 0.9\%$.
Domain Structure and Dynamics in Cr

Hall Hysteresis of SDW Domains:

\[T_N = 311 \text{ K}; \quad T_{SF} = 123 \text{ K} \]

R. Jaramillo et al.

X-ray Microscopy:

S and Q Domains

E. Isaacs et al.

Pinning and Fluctuations

Scratching the surface orients the domains: **Collapse hysteresis**

Different scattering modes: **Hysteretic reversal and noise**
Summary

✓ Hall coefficient reveals relationship between spin & charge in cuprates, heavy fermions and at Mott-Hubbard transition in V_2O_3.

✓ Hall coefficient is the most sensitive probe of the QCP in $Cr_{1-x}V_x$:
 ** Factor of two change with $1/R_H \sim (P_c-P)^{0.50\pm0.02}$
 ** Strong temperature dependence above T_N

✓ Hall coefficient remarkably sensitive to microscopic structure and dynamics of SDW domains (cf. CMR materials?).

R_H a POWERFUL and UNDERUSED TOOL

Universal Relation of $T_N (P, x)$ Obtained from Different Experiments on CrV alloy: Disorder Not Dominant

- Arajs et al., 1969; Resistivity
- White et al., 1986; Thermal expansion
- Komura et al., 1967; Neutron Diffraction
- Barnes and Graham. 1965 ; NMR
- Trego and Mackintosh, 1968: Resistivity
- Yeh et al., 2002 ; Resistivity
- Pure Cr by McWhan, 1968 : Resistivity
- V 2.8% by Rice et al., 1969 ; Resistivity
- V 1.2% by Rice et al., 1969 ; Resistivity
- V 3.2% by Lee et al., 2004 ; Resistivity