Design and realization of exotic quantum phases in atomic gases

H.P. Büchler and P. Zoller

Theoretische Physik, Universität Innsbruck, Austria
Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Innsbruck, Austria

M. Hermele and M.P.A. Fisher

KITP, Santa Barbara
Atomic quantum gases

Bose-Einstein condensation
- Gross-Pitaevskii equation
- non-linear dynamics

Quantum degenerate \textit{dilute} atomic gases of fermions and bosons

Rotating condensates
- vortices
- fractional quantum Hall

Molecules
- Feshbach resonances
- BCS-BEC crossover
- dipolar gases

Optical lattices
- quantum information
- Hubbard models
- strong correlations
- exotic phases

control and tunability
Atomic gases in an optical lattice

Preparation
- lattice loading schemes
- controlled single particle manipulations (entanglement)
- decoherence of qubits

Thermodynamics
- Hubbard models
- design of Hamiltonians
- strongly correlated many-body systems

Measurement
- momentum distribution
- structure factor
- pairing gap
- ...

Ring exchange interaction

Exotic phases?
Bose-Hubbard tool box
Optical lattices

- AC Stark shift

\[V(x) = V_0 \sin^2 kx + ... \]

- standing laser configuration

\[E_r = \frac{\hbar^2 k^2}{2m} \sim 10 \text{kHz} \]

\[V_0/E_r \sim 50 \]

- characteristic energies

- high stability of the optical lattice

1D, 2D, and 3D Lattice structures

Internal states

- spin dependent optical lattices

- alkaline earth atoms
Control of interaction

Interaction potential:
- effective range
 \[r_0^3 n \ll 1 \]
- pseudo-potential approximation

Scattering properties
- scattering amplitude:
 \[f(k) = -\frac{1}{1/a_s + ik} \]
- bound state energy \(a_s > 0 \):
 \[E_M = -\frac{\hbar^2}{ma_s^2} \]

Tuning of scattering length
- changing the first “bound state” energy via an external parameter
 - magnetic Feshbach resonance
 - optical Feshbach resonance

\[a_s \sim 10^2 a_0 \]
\[\sim -\frac{c_6}{r^6} \quad \frac{r}{a_0} \]
Bohr radius
Microscopic Hamiltonian

\[H = \int dx \, \psi^+(x) \left(-\frac{\hbar^2}{2m} \Delta + V(x) \right) \psi(x) + \frac{g}{2} \int dx \, \psi^+(x) \psi^+(x) \psi(x) \psi(x) \]

optical lattice

\[g = \frac{4\pi \hbar^2 a_s}{m} \]

 interaction strength

- strong optical lattice \(V > E_r \)
- express the bosonic field operator in terms of Wannier functions
- restriction to lowest Bloch band (Jaksch et al PRL ‘98)

\[\psi(x) = \sum_i w(x - x_i) b_i \]
Bose-Hubbard Model

Bose-Hubbard model (Fisher et al PRB '81)

\[H_{BH} = -J \sum_{\langle i,j \rangle} b_i^+ b_j + U/2 \sum_i b_i^+ b_i^+ b_i b_i \]

- hopping energy
- interaction energy

Phase diagram

- Mott insulator
 - fixed particle number
 - incompressible
 - excitation gap
- superfluid
 - long-range order
 - finite superfluid stiffness
 - linear excitation spectrum

\[U \sim E_r a_s / \lambda \]
\[J \sim E_r e^{-2 \sqrt{V/E_r}} \]
Experiments

Long-range order:

Disappearance of coherence for strong optical lattices (Greiner et al. '02)

$\frac{V}{E_r} > 13$

Structure factor

Appearance of well defined two particle excitations

(Esslinger et al., 04)
Ring exchange interaction
Ring exchange

- bosons on a lattice

\[H_{R-E} = K \left[b_1^+ b_2 b_3^+ b_4 + b_1 b_2^+ b_3 b_4^+ \right] \]

Applications:

Dimer models

- spin liquids, VBS - phases
- topological protected quantum memory

2D spin systems

- Neel order versus VBS
- deconfined quantum critical points

Lattice gauge theories

- U(1) lattice gauge fields
- a model QED
Ring exchange

Toy model:
- bosons on a lattice
- resonant coupling to a molecular state via a Raman transition
 - molecule is trapped by a different optical lattice

Effective coupling Hamilton

\[
H = \nu m^+ m + g \sum_{i \neq j} c_{ij} \left[m^+ b_i b_j + m b_i^+ b_j^+ \right]
\]
Ring exchange

First internal state

- Bosonic atoms in the corners of the square
- Bose-Hubbard model

Second internal state

- Trapped in the center of the square
- Quenched hopping
- Angular momentum $l = 0, \pm 1, 2$
- Interaction allows for a molecular state
Symmetries

- Hamilton is invariant under operations of the C_{4v}
- symmetries of single particle states a_l

<table>
<thead>
<tr>
<th></th>
<th>E</th>
<th>C_2</th>
<th>$2C_4$</th>
<th>$2\sigma_l$</th>
<th>$2\sigma_i$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1 ($l = 0$)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>z</td>
<td>$b_1b_3 + b_2b_4$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$b_1b_2 + b_2b_3 + b_3b_4 + b_4b_1$</td>
</tr>
<tr>
<td>A_2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>l_1</td>
</tr>
<tr>
<td>B_1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>$x^2 - y^2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$b_1b_2 - b_2b_3 + b_3b_4 - b_4b_1$</td>
</tr>
<tr>
<td>B_2 ($l = 2$)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>xy</td>
</tr>
<tr>
<td>E ($l = 1$)</td>
<td>2</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(x, y)</td>
</tr>
</tbody>
</table>

Energy levels

- design of optical lattice
- tune with the Raman transtition close to a s-wave molecule in the d-wave vibrational state
- d-wave symmetry for molecular state

$$m^+ = ca_2^+a_0^+ + d [a_1^+a_1^+ + a_{-1}^+a_{-1}^+] \ldots$$

- integrate out single-particle states a_l
Ring exchange

Toy model:
- bosons on a lattice
- resonant coupling to a molecular state via a Raman transition
 - molecule is trapped by a different optical lattice

Effective coupling Hamilton

\[H = \nu m^+ m + g \sum_{i \neq j} c_{ij} \left[m^+ b_i b_j + m b_i^+ b_j^+ \right] \]

\[m^+ [b_1 b_3 - b_2 b_4] + c.c. \]
Ring exchange

Effective low energy Hamiltonian

$$H = \nu m^+ m + gm^+ [b_1 b_3 - b_2 b_4] + gm [b_1^+ b_3^+ - b_2^+ b_4^+]$$

Relation to Ring exchange

- integrating out the molecule

$$H = K \left[b_1^+ b_2 b_3^+ b_4 + b_1 b_2^+ b_3 b_4^+ - n_1 n_3 - n_2 n_4 \right]$$

- perturbation theory

$$K = \frac{g^2}{\nu}$$
Hamiltonian on a lattice

- add hopping for the atoms
- half-filling for the bosons

\[
H = -J \sum_{\langle ij \rangle} b_i^+ b_j + \nu \sum_i m_i^+ m_i + g \sum_i m_i^+ [b_1 b_3 - b_2 b_4] + m_\square [b_1^+ b_3^+ - b_2^+ b_4^+]
\]

Superfluid

\[J \gg K\]
- superfluid of bosonic atoms
- long-ranger order

Molecules

\[J \ll K\]
- formation of molecules
- non-trivial structure due to d-wave symmetry

- intermediate regime
- quantum phase transition?
- exotic phases?
Lattice gauge theory

2D lattice gauge theory

- atoms on links with ring exchange and quenched hopping
- gauge transformation
 \[b_{\langle nm \rangle} \rightarrow b_{\langle nm \rangle} e^{i[\chi(n) - \chi(m)]} \]
- represents a 2D dimer model

3D lattice gauge theory

- adding an additional dimension
- atoms on the links of the lattice
- molecules in the center of the faces
- pure U(1) lattice gauge theory exhibits a phase transition from the Coulomb phase to a confining phase
- presence of a Coulomb phase in the present model? (M. Hermele et al, PRB 2004)