THE INITIAL-BOUNDARY VALUE PROBLEM FOR GENERAL RELATIVITY

\[\begin{align*}
\epsilon &= 0 \\
C &= 0
\end{align*} \Rightarrow G_{\mu\nu} = 0
\]

EVOLUTION-CONSTRAINT SYSTEM:

ASSUME CAUCHY IS OK.
WHAT CAN GO WRONG IN \(D_2 \)?

MATHEMATICALLY:
- NOT WELL-POSED
- CONSTRAINTS NOT SATISFIED

NUMERICALLY:
- UNSTABLE

PHYSICALLY:
- BOUNDARY DATA WRONG
- CAN'T EXTRACT WAVEFORM
THE DETAILS DEPEND UPON THE SYSTEM

SIMPLE EXAMPLE: NULL EVOLUTION IN \mathcal{D}_2

INTRODUCE NULL TETRAD ASSOCIATED WITH FOLIATION OF \mathcal{B}

$g_{\mu\nu} = -\ell_{(\mu}n_{\nu)} + m_{(\mu}m_{\nu)}$

ASSUME \mathcal{B} EITHER EXPANDS OR CONTRACTS IN ℓ^μ DIRECTION

EVOLUTION SYSTEM \mathcal{E}: $G_{\mu\nu}\ell^\nu = 0$ $G_{\mu\nu}m^\mu m^\nu = 0$

INTRODUCE PROJECTOR ASSOCIATED WITH UNIT SPATIAL NORMAL N^μ TO \mathcal{B}

$h^\mu_{\nu} = \delta^\mu_{\nu} - N^\mu N_{\nu}$

CONSTRAINTS (3) \mathcal{C}: $h^\rho_{\nu}G_{\rho\sigma}N^\sigma = 0$

CONSTRAINT PROPAGATION

$\mathcal{C} = \frac{1}{r^2} [r^2 C]_{\mathcal{B}}$

WELL-POSED ???

ROBUST ✓

CAUCHY BOUNDARY FOR A SCALAR FIELD ON A CURVED BACKGROUND

(SYMMETRIC) HYPERBOLIC SYSTEM: $g^{\mu\nu}\nabla_\mu \nabla_\nu \Phi = 0$

BOUNDARY FLUX: $\mathcal{F} = N^\mu T_{\mu\nu} = -(\partial_\mu \Phi)N^\mu \partial_\nu \Phi$

WELL-POSED BOUNDARY CONDITIONS: $\mathcal{F} \geq 0$

HOMOGENEOUS DIRICHLET BOUNDARY CONDITION:

$\partial_\nu \Phi = 0$

HOMOGENEOUS SOMMERMED BOUNDARY CONDITION:

$\partial_\nu \Phi + \sqrt{-g_{\mu\nu}} N^\mu \partial_\nu \Phi = 0$

HOMOGENEOUS NEUMANN BOUNDARY CONDITION:

$N^\mu \partial_\mu \Phi = 0$

INHOMOGENEOUS BOUNDARY DATA $q(x^\alpha)$

$\partial_\nu \Phi = q(x^\alpha)$, $\partial_\nu \Phi + \sqrt{-g_{\mu\nu}} N^\mu \partial_\nu \Phi = q(x^\alpha)$, $N^\mu \partial_\mu \Phi = q(x^\alpha)$
WELL-POSED INITIAL-BOUNDARY VALUE PROBLEM FOR THE LINEARIZED EINSTEIN EQUATIONS IN THE HARMONIC GAUGE

\[g_{\mu\nu} = \eta_{\mu\nu} + \delta g_{\mu\nu} \]
\[\gamma^{\mu\nu} = \delta(\sqrt{-g}g^{\mu\nu}) \]

EVOLUTION SYSTEM \mathcal{E}

\[\Box \gamma^{ij} = 0 \]
\[\partial_{\mu} \gamma^{\mu\nu} = \partial_{t} \gamma^{t\nu} + \partial_{\nu} \gamma^{t\nu} = 0 \]

CONSTRAINT SYSTEM \mathcal{C}

\[\Box \gamma^{ij} = 0 \]

THE INITIAL-BOUNDARY VALUE PROBLEM FOR THIS SYSTEM IS WELL POSED FOR FREE DIRICHLET, SOMMERFELD OR NEUMANN BOUNDARY DATA FOR THE COMPONENTS γ^{ij}.

THE CORRESPONDING EVOLUTION CODE IS ROBUST

THE BAD NEWS:

- IT IS NOT KNOWN HOW TO GENERALIZE THIS SYSTEM TO THE NONLINEAR CASE.
- NO KNOWN NONLINEAR METRIC-CONNECTION SYSTEM HAS THIS FLEXIBILITY OF BOUNDARY DATA.

BOUNDARIES IN LINEARIZED APPROXIMATION

- G. Calabrese, L. Lehner, D. Nishida, J. Pullin, O. Reula, O. Sarbach, M. Tiglio, gr-qc
- G. Calabrese, J. Pullin, O. Reula, O. Sarbach, M.1 Tiglio , gr-qc
- S. Frittelli and R. Gómez, gr-qc

BOUNDARIES FOR NONLINEAR EINSTEIN EQUATIONS

EVOLUTION VARIABLES: $\epsilon_{\mu}, \Gamma_{\mu\nu}^{\rho}, C_{\mu\nu\rho}$

THIS IS THE ONLY NONLINEAR SYSTEM WHICH IS KNOWN TO ADMIT PHYSICALLY GENERAL BOUNDARY CONDITIONS: ONLY THE WEYL CURVATURE REQUIRES BOUNDARY CONDITION AND ANALOGUES OF DIRICHLET, NEUMANN AND SOMMERTFELD ARE ALLOWED.

POOR MAN'S VERSION

- B. Szelágyi and J. Winicour gr-qc/0205044

BASED ON

CAUCHY PROBLEM IN HARMONIC COORDINATES:

WELL-POSED INITIAL-BOUNDARY VALUE PROBLEM FOR NONLINEAR SYSTEMS WITH CHARACTERISTIC BOUNDARIES:
HARMONIC INITIAL-BOUNDARY VALUE PROBLEM

REDUCED EVOLUTION SYSTEM: \(\gamma^{\mu\nu} = \sqrt{-g} g^{\mu\nu} \)
\(\gamma^{\alpha\beta} \partial_\alpha \partial_\beta \gamma^{\mu\nu} + S^{\mu\nu}(\gamma, \partial \gamma) = 0 \)

WELL-POSED FOR ANY DISSIPATIVE BOUNDARY CONDITIONS, e.g. DIRICHLET, SOMMERFELD, NEUMANN

CONSTRAINTS: \(H^\mu = \partial_\nu \gamma^{\mu\nu} = \tilde{H}^\mu(x^\rho, \gamma) \)
FOR BREVITY SET \(\tilde{H}^\mu(x^\rho, \gamma) = 0 \)
REDUCED EQUATIONS IMPLY
\(\gamma^{\alpha\beta} \partial_\alpha \partial_\beta H^\mu + C^\mu_{\beta\alpha} \partial_\alpha H^\beta + D^\mu_{\beta} H^\beta = 0 \)

UNIQUENESS IMPLIES \(H^\mu = 0 \) IF IT SATISFIES A DISSIPATIVE HOMOGENEOUS BOUNDARY CONDITION.

THIS IS NOT EASY TO ARRANGE.
EXAMPLE: DIRICHLET CONDITION \(H^\mu|_B = 0 \).
LET BOUNDARY BE AT \(z = 0 \) WITH \(x^\mu = (x^a, z) \). THEN
\(H_z = \partial_a \gamma^{za} + \partial_z \gamma^{zz} = 0 \)
\(H^a = \partial_a \gamma^{ab} + \partial_{\gamma^{az}} = 0 \)

NAIVE BOUNDARY DATA FOR \(\gamma^{\mu\nu} \) IMPROPERLY POSES BOTH DIRICHLET AND NEUMANN CONDITIONS ON \(\gamma^{az} \)

WELL-POSED HOMOGENEOUS BOUNDARY DATA

ONE CHOICE THAT WORKS:
\[
\begin{align*}
\gamma^{za}|_B &= 0 \\
\partial_z \gamma^{zz}|_B &= 0 \\
\partial_z \gamma^{ab}|_B &= 0
\end{align*}
\]
\[\implies \] \[\begin{align*}
H^z|_B &= 0 \\
\partial_z H^a|_B &= 0
\end{align*}\]

\[\implies \text{CONSTRAINTS SATISFIED} \]

INHOMOGENEOUS BOUNDARY DATA \(q(x^a) \)

BOUNDARY HARMONIC GAUGE FREEDOM (SHIFT)
\(\gamma^{za}|_B = q^a(x^b) \gamma^{za}|_B \)

NOTE: BOUNDARY DATA FOR \(\gamma^{za}|_B \) DEPENDS ON DATA FOR \(\gamma^{zz}|_B \) WHICH CAN ONLY BE DETERMINED BY CARRYING OUT THE EVOLUTION

BOUNDARY NORMAL: \(\delta^n = \frac{1}{N^a} N^n \partial_\mu = \partial_z + q^a \partial_a \)
NEUMANN DATA: \(q^{zz} = \partial^n \gamma^{zz}|_B \)

\(H^z|_B = 0 \implies q^{zz} = -\partial_a q^a \gamma^{zz}|_B \)
REMAINING NEUMANN BOUNDARY DATA

\[q^{ab} = \partial^n \gamma^{ab} |_B \]

RELATED TO EXTRINSIC CURVATURE \(K^{ab} \) OF BOUNDARY.

\[\partial^n H_a |_B = 0 \implies \]

\[
\sqrt{-h} D_b (K^b_a - \delta^b_a K) + \sqrt{g^{zz}} K_{ab} H^b - \frac{g^{zz}}{2} H_b \partial_a q^b = 0
\]

HERE \(h_{ab} \) AND \(D_a \) ARE THE METRIC AND CONNECTION INTRINSIC TO \(B \)

This forms a symmetric hyperbolic system which determines the 6 pieces of Neumann data \(q^{ab} \) in terms of 3 free functions, as well as the free (boundary gauge) data \(q^a \) and boundary values of the variables \(\gamma^{zz}, \gamma^{ab} \) and \(\partial_z \gamma^{za} \) which must be determined by the evolution.

ANY SOLUTION OF THE REDUCED EQUATIONS WITH THIS BOUNDARY DATA SATISFIES THE CONSTRAINTS.

IS THE INITIAL-BOUNDARY PROBLEM WELL-POSED???

NUMERICAL IMPLEMENTATION

SOME DIFFICULT CHOICES

- FIRST DIFFERENTIAL ORDER OR SECOND
 SECOND ORDER IN TIME, FIRST ORDER IN SPACE

- CUBIC BOUNDARY OR SPHERICAL
 CUBIC

- GENERAL BOUNDARY GAUGE OR \(\gamma^{za} |_B = 0 \)
 \(\gamma^{za} |_B = q(x^b) \gamma^{zz} |_B \)

- HARMONIC FORCING TERMS OR \(\partial_\mu \gamma^{\mu\nu} = 0 \)
 \(\partial_\mu \gamma^{\mu\nu} = \dot{H}^{\mu}(x^\rho, \gamma) \)

- BOUNDARY ACCURACY
 1ST ORDER IN NORMAL DIRECTION, 2ND ORDER TANGENTIALLY

- NUMERICAL STENCILS, DISSIPATION, ...
 BAG OF "TRICKS"

TESTS OF NAIVE ALGORITHM

- ROBUST STABILITY
- LINEARIZED WAVE CONVERGENCE TESTS
- NONLINEAR GAUGE WAVE CONVERGENCE TESTS
FIG. 2. The L_∞ norm of the finite-difference error, rescaled by a factor of $1/\Delta^2$, for a gauge-wave. The upper two (mostly overlapping) curves demonstrate convergence to the analytic solution for a wave with amplitude $A = 10^{-1}$ evolved for 30 crossing times with gridsizes 80^3 and 120^3. The lower curve represents evolution of the same gauge-wave with $A = 10^{-3}$ for 300 crossing times with gridsize 80^3.

NEUMANN BOUNDARY CONDITIONS FOR THE SCALAR WAVE EQUATION IN SECOND DIFFERENTIAL ORDER FORM

CURVED BOUNDARY AT REST IN A MINKOWSKI METRIC BACKGROUND

MOVING BOUNDARY ON A DYNAMIC BACKGROUND SPACETIME

WHEN THE BOUNDARY MOVES TOWARD THE CAUCHY INTERIOR THE INTERPOLATION STENCIL FOR ϕ_0 INVOLVES FUTURE TIME LEVELS.
The bottom line is to compute waveforms from binary black holes...

But your code has to pass basic tests if the waveforms can be trusted.