Into Thin Air

climbing a smooth route
to null infinity
people

AEI:

- SH, Christiane Lechner
- Carsten Schnemann, Anil Zenginoglu

Ian Hinder from U. Southampton collaborates on automatized code generation
questions

answered:

• why compactification? why hyperboloidal?

• why spherical boundaries?

• why is our code called Scriwalker?

• are 92 constraints too many? can we evolve Minkowski space?

raised:

• spherical boundaries – but how? how should we solve the constraints?

• can we get rid of first order symmetric hyperbolic?
isolated systems as models of sources of gravitational radiation

Key physics concepts to describe “astrophysical” processes in GR: essential independence of the large-scale structure of the universe, ’radiation leaves system’.
isolated systems as models of sources of gravitational radiation

Key physics concepts to describe “astrophysical” processes in GR: essential independence of the large-scale structure of the universe, ’radiation leaves system’.

→ physical idealization: isolated system – geometry “flattens at large distances”
isolated systems as models of sources of gravitational radiation

Key physics concepts to describe “astrophysical” processes in GR: essential independence of the large-scale structure of the universe, ’radiation leaves system’.

→ physical idealization: isolated system – geometry “flattens at large distances”

GR: mass, (angular) momentum, emitted gravitational radiation can not be defined unambiguously in local/quasilocal way – only make sense in asymptotic limits
isolated systems as models of sources of gravitational radiation

Key physics concepts to describe “astrophysical” processes in GR: essential independence of the large-scale structure of the universe, ’radiation leaves system’.

→ physical idealization: **isolated system** – geometry “flattens at large distances”

GR: mass, (angular) momentum, emitted gravitational radiation can not be defined unambiguously in local/quasilocal way – only make sense in asymptotic limits

→ mathematical formalization within GR: **asymptotically flat spacetimes** – can be used to model sources of gravitational radiation
isolated systems as models of sources of gravitational radiation

Key physics concepts to describe “astrophysical” processes in GR: essential independence of the large-scale structure of the universe, 'radiation leaves system'.

→ physical idealization: isolated system – geometry “flattens at large distances”

GR: mass, (angular) momentum, emitted gravitational radiation can not be defined unambiguously in local/quasilocal way – only make sense in asymptotic limits

→ mathematical formalization within GR: asymptotically flat spacetimes – can be used to model sources of gravitational radiation

There are three very different directions toward infinity: timelike / spacelike / null!
isolated systems as models of sources of gravitational radiation

Key physics concepts to describe “astrophysical” processes in GR: essential independence of the large-scale structure of the universe, ’radiation leaves system’.

→ physical idealization: isolated system – geometry “flattens at large distances”

GR: mass, (angular) momentum, emitted gravitational radiation can not be defined unambiguously in local/quasilocal way – only make sense in asymptotic limits

→ mathematical formalization within GR: asymptotically flat spacetimes – can be used to model sources of gravitational radiation

There are three very different directions toward infinity: timelike / spacelike / null!

Observers situated at ”astronomical” distances (e.g. gravitational wave detectors) – ”looking inside along light rays” – are modeled by geometric objects at null infinity (≈ “in phase” with radiation source!).

– Typeset by FoilTEX –
Computers are not particularly well suited to treat infinities!

Inf and NaN don’t make this better!
Computers are not particularly well suited to treat infinities!

Inf and NaN don’t make this better!

Two complementary dreams in numerical relativity:
Computers are not particularly well suited to treat infinities!

Inf and NaN don’t make this better!

Two complementary dreams in numerical relativity:

• we might invent an efficient numerical scheme for systems with boundaries for which we can choose the boundaries sufficiently far outside to get correct results.
Computers are not particularly well suited to treat infinities!

Inf and NaN don’t make this better!

Two complementary dreams in numerical relativity:

• we might invent an efficient numerical scheme for systems with boundaries for which we can choose the boundaries sufficiently far outside to get correct results.

Problem: need to control 2 convergence parameters, moving the cutoff surface toward null infinity is very difficult, moving it toward spatial infinity makes limited sense.
Computers are not particularly well suited to treat infinities!

Inf and NaN don’t make this better!

Two complementary dreams in numerical relativity:

- we might invent an efficient numerical scheme for systems with boundaries for which we can choose the boundaries sufficiently far outside to get correct results.

 Problem: need to control 2 convergence parameters, moving the cutoff surface toward null infinity is very difficult, moving it toward spatial infinity makes limited sense.

- Using conformal compactification techniques, we solve the asymptotics problem on the level of the field equations, and we might succeed in treating the resulting system of equations with higher efficiency and reliability than what the “cut-off” philosophy allows (hyperboloidal problem, CCM)
Computers are not particularly well suited to treat infinities!

\(\text{Inf} \) and \(\text{NaN} \) don’t make this better!

Two complementary dreams in numerical relativity:

- we might invent an efficient numerical scheme for systems with boundaries for which we can choose the boundaries sufficiently far outside to get correct results.

 Problem: need to control 2 convergence parameters, moving the cutoff surface toward null infinity is very difficult, moving it toward spatial infinity makes limited sense.

- Using conformal compactification techniques, we solve the asymptotics problem on the level of the field equations, and we might succeed in treating the resulting system of equations with higher efficiency and reliability than what the “cut-off” philosophy allows (hyperboloidal problem, CCM)

 Problem: the threshold to get “running” is higher,
Computers are not particularly well suited to treat infinities!

Inf and NaN don’t make this better!

Two complementary dreams in numerical relativity:

• we might invent an efficient numerical scheme for systems with boundaries for which we can choose the boundaries sufficiently far outside to get correct results.

 Problem: need to control 2 convergence parameters, moving the cutoff surface toward null infinity is very difficult, moving it toward spatial infinity makes limited sense.

• Using conformal compactification techniques, we solve the asymptotics problem on the level of the field equations, and we might succeed in treating the resulting system of equations with higher efficiency and reliability than what the “cut-off” philosophy allows (hyperboloidal problem, CCM)

 Problem: the threshold to get “running” is higher, attracts less people.
Using conformal compactification to an unphysical spacetime, we can discuss AF spacetimes in terms of local differential geometry (Penrose!).

\[\tilde{\mathcal{M}} = \{ p \in \mathcal{M} \mid \Omega(p) > 0 \}. \]

“infinity” \(\rightarrow \Omega = 0 \): 3-dimensional boundary of a 4-dimensional region in \(\mathcal{M} \).
Remark on compactifying Einstein Equations

Can obviously not be straightforward:

Einstein’s vacuum equations in terms of Ω & g_{ab}:

$$\tilde{G}_{ab}[\Omega^{-2}g] = G_{ab}[g] - \frac{2}{\Omega} (\nabla_a \nabla_b \Omega - g_{ab} \nabla_c \nabla^c \Omega)$$

$$- \frac{3}{\Omega^2} g_{ab} (\nabla_c \Omega) \nabla^c \Omega.$$

singular for $\Omega = 0$, multiplication by Ω^2 also does not help here \rightarrow the principal part of PDEs encoded in G_{ab} would degenerate at $\Omega = 0$.
Remark on compactifying Einstein Equations

Can obviously not be straightforward:

Einstein’s vacuum equations in terms of Ω & g_{ab}:

\[
\tilde{G}_{ab}[\Omega^{-2}g] = G_{ab}[g] - \frac{2}{\Omega} (\nabla_a \nabla_b \Omega - g_{ab} \nabla_c \nabla^c \Omega) - \frac{3}{\Omega^2} g_{ab} (\nabla_c \Omega) \nabla^c \Omega.
\]

singular for $\Omega = 0$, multiplication by Ω^2 also does not help here → the principal part of PDEs encoded in G_{ab} would degenerate at $\Omega = 0$.

Conformal compactification has been carried to the level of the field equations by Friedrich, who has developed a judicious reformulation of the equations – the conformal field equations are regular equations for g_{ab} and certain additional independent variables.
Remark on compactifying Einstein Equations

Can obviously not be straightforward:

Einstein’s vacuum equations in terms of Ω & g_{ab}:

$$\tilde{G}_{ab}[\Omega^{-2}g] = G_{ab}[g] - \frac{2}{\Omega} (\nabla_a \nabla_b \Omega - g_{ab} \nabla_c \nabla^c \Omega)$$

$$- \frac{3}{\Omega^2} g_{ab} (\nabla_c \Omega) \nabla^c \Omega.$$

singular for $\Omega = 0$, multiplication by Ω^2 also does not help here \rightarrow the principal part of PDEs encoded in G_{ab} would degenerate at $\Omega = 0$.

Conformal compactification has been carried to the level of the field equations by Friedrich, who has developed a judicious reformulation of the equations – the conformal field equations are regular equations for g_{ab} and certain additional independent variables.

Multiply by Ω^2:

for a vacuum spacetime $(\nabla_c \Omega) \nabla^c \Omega = 0 \in \mathcal{I} \Rightarrow$ must consist of null surfaces!
More about Scri . . .

1. \(J \) is a piecewise smooth null hypersurface in \(M \), generated by null geodesics.
More about Scri . . .

1. \mathcal{I} is a piecewise smooth null hypersurface in \mathcal{M}, generated by null geodesics.

2. The congruence of null geodesic generators of \mathcal{I} is shear free.
More about Scri . . .

1. \mathcal{I} is a piecewise smooth null hypersurface in \mathcal{M}, generated by null geodesics.

2. The congruence of null geodesic generators of \mathcal{I} is shear free.

3. \mathcal{I} has two connected components, each with topology $S^2 \times R$.
More about Scri . . .

1. \(\mathcal{I}\) is a piecewise smooth null hypersurface in \(\mathcal{M}\), generated by null geodesics.

2. The congruence of null geodesic generators of \(\mathcal{I}\) is shear free.

3. \(\mathcal{I}\) has two connected components, each with topology \(S^2 \times R\).

Taking appropriate limit in \(\mathcal{M}\), worldlines of increasingly distant geodesic observers converge to null geodesic generators of \(\mathcal{I}^+\) (proper time \(\rightarrow\) Bondi time)!
More about Scri . . .

1. \(\mathcal{I} \) is a piecewise smooth null hypersurface in \(\mathcal{M} \), generated by null geodesics.

2. The congruence of null geodesic generators of \(\mathcal{I} \) is shear free.

3. \(\mathcal{I} \) has two connected components, each with topology \(S^2 \times \mathbb{R} \).

Taking appropriate limit in \(\mathcal{M} \), worldlines of increasingly distant geodesic observers converge to null geodesic generators of \(\mathcal{I}^+ \) (proper time \(\rightarrow \) Bondi time)!

Compactification at \(i^0 \) leads to “piling up” of waves, at \(\mathcal{I}^+ \) this effect does not appear – waves leave the physical spacetime through the boundary \(\mathcal{I}^+ \).
More about Scri . . .

1. \mathcal{I} is a piecewise smooth null hypersurface in \mathcal{M}, generated by null geodesics.

2. The congruence of null geodesic generators of \mathcal{I} is shear free.

3. \mathcal{I} has two connected components, each with topology $S^2 \times \mathbb{R}$.

Taking appropriate limit in \mathcal{M}, worldlines of increasingly distant geodesic observers converge to null geodesic generators of \mathcal{I}^+ (proper time \rightarrow Bondi time)!

Compactification at i^0 leads to “piling up” of waves, at \mathcal{I}^+ this effect does not appear – waves leave the physical spacetime through the boundary \mathcal{I}^+.

Under practical circumstances, e.g. computing the signal at a GW detector, \mathcal{I} more realistically corresponds to an observer that is sufficiently far way from the source to treat the radiation linearly, but not so far away that cosmological effects have to be taken into account.
conformal field equations in 30 seconds

Start with splitting Riemann into trace-free (Weyl) and trace (Ricci and scalar) parts, define tracefree Ricci $\hat{R}_{ab} = R_{ab} - \frac{1}{4} g_{ab} R$ and rescaled Weyl $C_{abc}{}^d = \Omega^d d_{abc}{}^d$.

$\tilde{R} = 0$ and $\tilde{R}_{ab} = 0$ imply

\[
6 \Omega \nabla^a \nabla_a \Omega = 12 (\nabla^a \Omega) (\nabla_a \Omega) - \Omega^2 R, \\
\nabla_a \nabla_b \Omega = \frac{1}{4} g_{ab} \nabla^c \nabla_c \Omega - \frac{1}{2} \hat{R}_{ab} \Omega.
\]

(1)

Commuting $\nabla_c \nabla_b$ in $g^{bc} \nabla_c \nabla_b \nabla_a \Omega$ and (1):

\[
\frac{1}{4} \nabla_a (\nabla^b \nabla_b \Omega) = -\frac{1}{2} \hat{R}_{ab} \nabla^b \Omega - \frac{1}{24} \Omega \nabla_a R - \frac{1}{12} \nabla_a \Omega R,
\]
No equations for g_{ab} yet! – use identity defining Weyl

\[
R_{abc}^\ d = \Omega d_{abc}^\ d + \left(g_{ca} g_b^\ d - g_{cb} g_a^\ d \right) \frac{R}{12} \\
+ \left(g_{ca} \hat{R}_b^\ d - g_{cb} \hat{R}_a^\ d - g^a_d \hat{R}_{bc} + g^b_d \hat{R}_{ac} \right) / 2.
\]

Equations for $d_{abc}^\ d$ and \hat{R}_{ab}? – Bianchi identities $\nabla_{[a} R_{bc]}^\ e = 0$ imply

\[
\nabla_b \hat{R}_a^\ b = \frac{1}{4} \nabla_a R \quad \text{and} \quad \nabla_d C_{abc}^\ d = 0,
\]

Equations for $d_{abc}^\ d$ and \hat{R}_{ab}? – Bianchi identities $\nabla_{[a} R_{bc]}^\ e = 0$ imply

Weyl is conformally invariant,

\[
\tilde{C}_{abc}^\ d = C_{abc}^\ d \quad \rightarrow \quad \tilde{\nabla}_d \tilde{C}_{abc}^\ d = \Omega \nabla_d \left(d_{abc}^\ d \right),
\]

thus

\[
\nabla_d d_{abc}^\ d = 0.
\]
Bianchi identity combined with the definition of Weyl implies

\[\nabla_a \hat{R}_{bc} - \nabla_b \hat{R}_{ac} = -\frac{1}{12} ((\nabla_a R) g_{bc} - (\nabla_b R) g_{ac}) \]

\[-2 (\nabla_d \Omega) d_{abc}^d. \]

For any solution \((g_{ab}, \hat{R}_{ab}, d_{abc}^d, \Omega)\), \(R\) is the Ricci scalar, \(\hat{R}_{ab}\) the tracefree Ricci tensor, and \(\Omega d_{abc}^d\) the Weyl tensor of \(g_{ab}\).

3+1 split \(\rightarrow\) 57 Variables:
\(h_{ab}, k_{ab},\)
\(\gamma^a_{\ bc},\)
\((0,1)\hat{R}_a, (1,1)\hat{R}_{ab},\)
\(E_{ab}, B_{ab},\)
\(\Omega, \Omega_0, \Omega_a, \nabla^a \nabla_a \Omega\)

BUT: there is a lot of freedom, as long as \(\Omega\) and \(E_{ab}, B_{ab}\) remain evolution variables!
3+1 – business as usual

signature \((-, +, +, +)\):

\[g_{ab} = h_{ab} - n_a n_b = \Omega^2 (\tilde{h}_{ab} - \tilde{n}_a \tilde{n}_b), \]

\[\tilde{n}_a = \Omega n_a \]

extrinsic curvature:

\[\tilde{k}_{ab} = \frac{1}{2} \mathcal{L}_{\tilde{n}} \tilde{h}_{ab}, \quad k_{ab} = \frac{1}{2} \mathcal{L}_n h_{ab} \]

\[k_{ab} = \Omega (\tilde{k}_{ab} + \Omega_0 \tilde{h}_{ab}), \text{ where } \Omega_0 = n^a \nabla_a \Omega. \]

\(\hat{R}_{ab} \) and \(d_{abc}^d \) are decomposed as

\[(0,1) \hat{R}_a = n^b h_a^c \hat{R}_{bc}, \quad (1,1) \hat{R}_{ab} = h_a^c h_b^d \hat{R}_{cd}, \]

\[E_{ab} = d_{efcd} h_e^a n^f h_c^d n^b, \quad B_{ab} = d_{efcd}^* h_e^a n^f h_c^d n^b. \]
hyperboloidal hypersurfaces

Components of \tilde{h}_{ab} and \tilde{k}_{ab} diverge in compactified coordinates – coordinate independent trace \tilde{k} can be assumed regular everywhere,

$$\Omega k = (\tilde{k} + 3 \Omega_0), \quad \tilde{k}|_{\mathcal{J}^+} = -3 \Omega_0$$

\mathcal{J}^+ ingoing null surface: $\Omega_0 < 0$ at $\mathcal{J}^+ \Rightarrow \tilde{k} > 0$.

Regular spacelike hypersurfaces in \mathcal{M}: hyperboloidal hypersurfaces \equiv spacelike surfaces in \mathcal{M} with $\lim_{r \to \infty} \tilde{k} > 0$

These surfaces are asymptotically null with respect to \tilde{g}_{ab}!

In $\tilde{\mathcal{M}}$ they are analogous to standard hyperboloids $t^2 - r^2 = \tilde{k}^2$ in Minkowski.
hyperboloidal hypersurfaces

Components of \tilde{h}_{ab} and \tilde{k}_{ab} diverge in compactified coordinates – coordinate independent trace \tilde{k} can be assumed regular everywhere,

$$\Omega k = (\tilde{k} + 3 \Omega_0), \quad \tilde{k}|\mathcal{I} = -3 \Omega_0$$

\mathcal{I}^+ ingoing null surface: $\Omega_0 < 0$ at $\mathcal{I}^+ \Rightarrow \tilde{k} > 0$.

Regular spacelike hypersurfaces in \mathcal{M}: hyperboloidal hypersurfaces \equiv spacelike surfaces in \mathcal{M} with $\lim_{r \to \infty} \tilde{k} > 0$

These surfaces are asymptotically null with respect to \tilde{g}_{ab}!

In $\tilde{\mathcal{M}}$ they are analogous to standard hyperboloids $t^2 - r^2 = \tilde{k}^2$ in Minkowski.
If you go further out in space, you also have to go to later times to follow the radiation!
\[C_{h\,abc} = (3)\nabla_a h_{bc} \]
\[C_{k\,abc} = - (3)\nabla_a k_{bc} + (3)\nabla_b k_{ac} + \frac{1}{2} h_{ca} (0,1) \hat{R}_b - \frac{1}{2} h_{cb} (0,1) \hat{R}_a - (3)\epsilon_{ab}^d \Omega B_{dc} \]
\[C_{\gamma\,abc}^d = - (3)\nabla_a \gamma_{bc}^d + (3)\nabla_b \gamma_{ac}^d + \gamma_{ac}^e \gamma_{bc}^e - \gamma_{be}^e \gamma_{ac}^b \]
\[- k_a^d k_{bc} + k_{ac} k_b^d + \frac{1}{12} h_a^d h_{bc} R - \frac{1}{12} h_{ac} h_b^d R \]
\[- \frac{1}{2} h_{bc}^d (1,1) \hat{R}_{ac} + \frac{1}{2} h_{ca}^d (1,1) \hat{R}_{bc} - \frac{1}{2} h_{ac}^d (1,1) \hat{R}_b^d + \frac{1}{2} h_{a}^d (1,1) \hat{R}_{bc} \]
\[- h_{ac} \Omega E_{b}^d + h_{bc} \Omega E_{a}^d + h_{b}^d \Omega E_{ac} - h_{a}^d \Omega E_{bc} \]
\[C_{E\,a} = - (3)\nabla_b E_{a}^b - (3)\epsilon_{abc}^d k_{bd} B_{d}^c \]
\[C_{B\,a} = - (3)\nabla_b B_{a}^b + (3)\epsilon_{abc}^d k_{bd} E_{d}^c \]
\[C_{(0,1)R\,ab} = (3)\nabla_a (0,1) \hat{R}_b - (3)\nabla_b (0,1) \hat{R}_a + k_b^c (1,1) \hat{R}_{ca} - k_a^c (1,1) \hat{R}_{cb} + 2 (3)\epsilon_{ab}^c \Omega_d B_{dc}^d \]
\[C_{(1,1)R\,abc} = (3)\nabla_a (1,1) \hat{R}_{bc} - (3)\nabla_b (1,1) \hat{R}_{ac} - \frac{1}{12} h_{ac} (3)\nabla_b R + \frac{1}{12} h_{bc} (3)\nabla_a R + (0,1) \hat{R}_a k_{bc} \]
\[- (0,1) \hat{R}_b k_{ac} + 2 (3)\epsilon_{ab}^d \Omega_0 B_{dc} - 2 \Omega_a E_{bc} + 2 \Omega_b E_{ac} + 2 h_{ca} \Omega_d E_{b}^d - 2 h_{cb} \Omega_d E_{a}^d \]
\[C_{\Omega\,a} = - (3)\nabla_a \Omega + \Omega_a, \quad C_{\Omega_0\,a} = - (3)\nabla_a \Omega_0 + k_a^b \Omega_b - \frac{1}{2} \Omega (0,1) \hat{R}_a \]
\[C_{\Omega\,a\,ab} = - (3)\nabla_a \Omega_b + h_{ab} \omega + k_{ab} \Omega_0 - \frac{1}{2} \Omega (1,1) \hat{R}_{ab} \]
\[- \text{Typeset by FoilTeX} = \quad (3)\nabla_a \omega - \frac{1}{24} \Omega (3)\nabla_a R - \frac{1}{12} \Omega_a R + \frac{1}{2} \Omega_0 (0,1) \hat{R}_a - \frac{1}{2} \Omega_b (1,1) \hat{R}_{ba} \]
are we trapped by too many equations?
analyze the situation . . .
first steps toward simplification

constraints:
• split into independent components – has only been done recently!

evolution equations:
• look for potential feedback terms

general:

• look at the case \(\Omega = 1 \) – this already leads to interesting new features as compared to standard GR formulations for NR – the inclusion of curvature variables!

• look at cases with symmetry
\[\mathcal{L}_n h_{ab} = 2k_{ab}, \quad \mathcal{L}_n k_{ab} = (3)\nabla_c \gamma^c_{ab} + \gamma^d_{bc} \gamma^c_{ad} + a_a a_b + k_c k_{ab} - \gamma^c_{ab} a_c\]

\[+ h_a c h_b d / \partial_d / \partial_c q - \frac{R}{12} h_{ab} - (1,1) \hat{R}_c h_{ab} - 2\Omega E_{ab}\]

\[h_{ad} \mathcal{L}_n \gamma^d_{bc} = + (3) \nabla_a k_{bc} - a_a k_{bc} + a_c k_{ab} + a_b k_{ac} + h_{da} h_b c h_c \frac{1}{N} \partial_f \partial_e N^d + \ldots\]

\[\mathcal{L}_n E_{ab} = + \frac{1}{2} (3) \epsilon_a c d (3) \nabla_d B_{cb} + \frac{1}{2} (3) \epsilon_b c d (3) \nabla_d B_{ca} + a^c (3) \epsilon_{cb} d B_{da} + a^c (3) \epsilon_{ca} d B_{db}\]

\[- h_{ab} k^c d E_{cd} + \frac{5}{2} k_b c E_{cb} + \frac{5}{2} k_a c E_{cb} - 2 k_c c E_{ab}\]

\[\mathcal{L}_n B_{ab} = - \frac{1}{2} (3) \epsilon_a c d (3) \nabla_d E_{cb} - \frac{1}{2} (3) \epsilon_b c d (3) \nabla_d E_{ca} + a^c (3) \epsilon_{bc} d E_{da} + a^c (3) \epsilon_{ac} d E_{db}\]

\[- h_{ab} k^c d B_{cd} + \frac{5}{2} k_b c B_{cb} + \frac{5}{2} k_a c B_{cb} - 2 k_c c B_{ab}\]

\[\mathcal{L}_n (0,1) \hat{R}_a = (3) \nabla_b (1,1) \hat{R}_a b - \frac{1}{4} (3) \nabla_a R - k^b (0,1) \hat{R}_a + a_b (0,1) \hat{R}_a b + a_a (1,1) \hat{R}_b b\]

\[h_{bc} \mathcal{L}_n (1,1) \hat{R}_a c = (3) \nabla_a (0,1) \hat{R}_b - \frac{1}{12} h_{ab} \mathcal{L}_n R + \ldots\]

\[\mathcal{L}_n \Omega = \Omega_0, \quad \mathcal{L}_n \Omega_0 - \omega + a^a \Omega_a - \frac{\Omega}{2} (1,1) \hat{R}_a a\]

\[\mathcal{L}_n \Omega_a = a_a \Omega_0 + k_a b \Omega_b - \frac{\Omega}{2} (0,1) \hat{R}_a, \quad \mathcal{L}_n \omega = - \frac{\Omega}{24} \mathcal{L}_n R - \frac{R}{12} \Omega_0 - \frac{\Omega a}{2} (0,1) \hat{R}_a + \frac{\Omega_0}{2} (1,1) \hat{R}_a a\]
The task

Create an approach to numerical relativity which is at least as flexible as the traditional Cauchy approach, yet as free from ambiguities arising from approximating the global nature of the problem as the characteristic approach.

Apart from a general computational framework, detailed algorithms and software modules are needed for the

1. construction of initial data on hyperboloidal hypersurfaces,

2. treatment of grid boundaries,

3. time evolution, including choice and implementation of gauge conditions,

4. computation of gravitational wave information and additional analysis of physical properties of numerically constructed spacetimes.

– Typeset by FoilTEX –
get organized - 3 phases

1. look at what has been done before and learn from it
get organized - 3 phases

1. look at what has been done before and learn from it

2. redesign overall approach, build up group & computational framework
get organized - 3 phases

1. look at what has been done before and learn from it

2. redesign overall approach, build up group & computational framework

3. systematically work out details of the most urgent open issues: (i) find suitable gauges, (ii) work out a boundary treatment, (iii) obtain suitable initial data
get organized - 3 phases

1. look at what has been done before and learn from it

2. redesign overall approach, build up group & computational framework

3. systematically work out details of the most urgent open issues: (i) find suitable gauges, (ii) work out a boundary treatment, (iii) obtain suitable initial data
Phase I: before we start our ascent, look back on history and experiment with existing codes. . .
Phase I: before we start our ascent, look back on history and experiment with existing codes. . .

~ 1.5 yrs. have been spent studying earlier work of Hübner, Frauendiener, Weaver, Siebel (→ SH, gr-qc/0204057 [LNP 617], gr-qc/0204043 [LNP 604])
To infinity and beyond . . .

Focusing of null generators of \mathcal{I}
To infinity and beyond . . .

Weak data evolve into regular i^+ – resolved as one grid cell!
Weak data evolve into regular i^+ – resolved as one grid cell!
BUT: $\Delta t = 1$ can be a very long time, especially near the end . . .
The complete future of (the physical part of) the initial slice can thus be reconstructed in a finite number of computational time steps!

Figure 1: $\tilde{I} = \Omega^6 I$.
already nontrivial: Minkowski evolutions

3 standard ways of compactifying Minkowski:

1. Pseudostatic A (Minkowski → Minkowski)

\[ds^2 = -dt^2 + d\Sigma^2_{R^3} = \Omega^2(-dT^2 + dR^2 + R^2(d\theta^2 + \sin^2 \theta d\phi^2)), \]

\[\Omega = \left(R^2 - T^2 \right)^{-1} = (r^2 - t^2), \tag{3} \]

where

\[r = \frac{R}{R^2 - T^2}, \quad t = \frac{T}{R^2 - T^2}. \]

2. Pseudostatic B (textbook) map into part of Einstein static universe \((R_g = 6)\),

\[ds^2 = -dt^2 + d\Sigma^2_{S^3} = \Omega^2 \left(-dT^2 + dR^2 + R^2(d\theta^2 + \sin^2 \theta d\phi^2) \right), \tag{4} \]
\[\Omega^2 = 4 \left(1 + (T - R)^2 \right)^{-1} \left(1 + (T + R)^2 \right)^{-1} = 4 \cos^2 \frac{t - \rho}{2} \cos^2 \frac{t + \rho}{2}. \]

Here the coordinate transformations are

\[\rho = \arctan(T + R) - \arctan(T - R), \]
\[t = \arctan(T + R) + \arctan(T - R). \quad (5) \]

3. **Static**

\[ds^2 = -\Omega^2 dt^2 - 2rdrdt + dr^2 + r^2 d\Omega^2 \]

\[\Omega = \frac{1 - r^2}{2}, \quad R = 12 \frac{(1 - r^2)(3 + r^2)}{(1 + r^2)^3}, \quad trK = 3. \]

stable?
Figure 2: gridpoint at center, grid point at $x = 0.996$ (dashed).
Figure 2: gridpoint at center, grid point at $x = 0.996$ (dashed).

Figure 3: h_{xx} for $x \geq 0$ vs. t with linear and logarithmic scaling.
Figure 4: \(h_{xx} \) (unbroken) and constraints \((3)\nabla_x h_{xx} \) \& \((3)\nabla_x \Omega = \Omega_x \).
lessons learned

• constraint violating instability appears on continuum level – all EE must be solved everywhere in the grid! – will require modification of boundary treatment and equations or gauge or both!
lessons learned

• constraint violating instability appears on continuum level – all EE must be solved everywhere in the grid! – will require modification of boundary treatment and equations or gauge or both!

• “plain” densitized lapse is dangerous – eventually we will need live gauges . . .
lessons learned

• constraint violating instability appears on continuum level – **all EE** must be solved everywhere in the grid! – will require modification of boundary treatment and equations or gauge or both!

• “plain” densitized lapse is dangerous – eventually we will need live gauges . . .

• we lack a fully working implementation of a constraint solver
lessons learned

• constraint violating instability appears on continuum level – all EE must be solved everywhere in the grid! – will require modification of boundary treatment and equations or gauge or both!

• “plain” densitized lapse is dangerous – eventually we will need live gauges . . .

• we lack a fully working implementation of a constraint solver

• typical for compactified approaches: things happen faster, less room for cheating by factoring out asymptotic falloff, boundaries are applied in strong field region!
lessons learned

• constraint violating instability appears on continuum level – all EE must be solved everywhere in the grid! – will require modification of boundary treatment and equations or gauge or both!

• “plain” densitized lapse is dangerous – eventually we will need live gauges . . .

• we lack a fully working implementation of a constraint solver

• typical for compactified approaches: things happen faster, less room for cheating by factoring out asymptotic falloff, boundaries are applied in strong field region!

• don’t touch these equations with bare hands → Computer Algebra
lessons learned

• constraint violating instability appears on continuum level – all EE must be solved everywhere in the grid! – will require modification of boundary treatment and equations or gauge or both!

• “plain” densitized lapse is dangerous – eventually we will need live gauges . . .

• we lack a fully working implementation of a constraint solver

• typical for compactified approaches: things happen faster, less room for cheating by factoring out asymptotic falloff, boundaries are applied in strong field region!

• don’t touch these equations with bare hands → Computer Algebra

• we need a cheap, clean and flexible code → Cactus

– Typeset by FoilTEx –
interlude: gear talk . . .
computer algebra as a crucial tool

The quest for stable evolutions requires analysis and coding of different systems of equations → perfect problems for CA:

- 3+1 decompositions (using abstract indices throughout)
computer algebra as a crucial tool

The quest for stable evolutions requires analysis and coding of different systems of equations → perfect problems for CA:

- 3+1 decompositions (using abstract indices throughout)
- modify evolution systems
computer algebra as a crucial tool

The quest for stable evolutions requires analysis and coding of different systems of equations → perfect problems for CA:

- 3+1 decompositions (using abstract indices throughout)
- modify evolution systems
- analysis: find principal part, . . .
computer algebra as a crucial tool

The quest for stable evolutions requires analysis and coding of different systems of equations → perfect problems for CA:

- 3+1 decompositions (using abstract indices throughout)
- modify evolution systems
- analysis: find principal part, . . .
- derive and analyze propagation system of constraints
computer algebra as a crucial tool

The quest for stable evolutions requires analysis and coding of different systems of equations → perfect problems for CA:

• 3+1 decompositions (using abstract indices throughout)
• modify evolution systems
• analysis: find principal part, . . .
• derive and analyze propagation system of constraints
• linearize equations around exact solutions
The quest for stable evolutions requires analysis and coding of different systems of equations → perfect problems for computer algebra (CA):

- 3+1 decompositions (using abstract indices throughout)
- modify evolution systems
- analysis: find principal part, . . .
- derive and analyze propagation system of constraints
- linearize equations around exact solutions
- generate code automatically
computer algebra as a crucial tool

The question for stable evolutions requires analysis and coding of different systems of equations → perfect problems for CA:

• 3+1 decompositions (using abstract indices throughout)

• modify evolution systems

• analysis: find principal part, . . .

• derive and analyze propagation system of constraints

• linearize equations around exact solutions

• generate code automatically

stress abstract point of view – focus on algorithms!
Mathematica / MathTensor – based tools currently in use

- package to aid 3+1 splits

- templates for 3+1 splits – define spatial objects, declare names of metric etc., and corresponding rules (EM, ADM, CFE, wave eq., . . .)
Mathematica / MathTensor – based tools currently in use

- package to aid 3+1 splits
- templates for 3+1 splits – define spatial objects, declare names of metric etc., and corresponding rules (EM, ADM, CFE, wave eq., . . .)
- Gauss–Codazzi identities for chosen 3+1 variables
Mathematica / MathTensor – based tools currently in use

- package to aid 3+1 splits
- templates for 3+1 splits – define spatial objects, declare names of metric etc., and corresponding rules (EM, ADM, CFE, wave eq., . . .)
- Gauss–Codazzi identities for chosen 3+1 variables
- tools for processing components, extends capability of SetTensor
Mathematica / MathTensor – based tools currently in use

- package to aid 3+1 splits
- templates for 3+1 splits – define spatial objects, declare names of metric etc., and corresponding rules (EM, ADM, CFE, wave eq., . . .)
- Gauss–Codazzi identities for chosen 3+1 variables
- tools for processing components, extends capability of SetTensor
- example scripts to evaluate all variables, gauge quantities etc. for a given 4-metric
Mathematica / MathTensor – based tools currently in use

- package to aid 3+1 splits
- templates for 3+1 splits – define spatial objects, declare names of metric etc., and corresponding rules (EM, ADM, CFE, wave eq., . . .)
- Gauss–Codazzi identities for chosen 3+1 variables
- tools for processing components, extends capability of SetTensor
- example scripts to evaluate all variables, gauge quantities etc. for a given 4-metric
- example scripts to derive, analyse and manipulate component form of a given system of evolution (and constraint) equations, call thorn generator functions
Mathematica / MathTensor – based tools currently in use

• package to aid 3+1 splits

• templates for 3+1 splits – define spatial objects, declare names of metric etc., and corresponding rules (EM, ADM, CFE, wave eq., . . .)

• Gauss–Codazzi identities for chosen 3+1 variables

• tools for processing components, extends capability of SetTensor

• example scripts to evaluate all variables, gauge quantities etc. for a given 4-metric

• example scripts to derive, analyse and manipulate component form of a given system of evolution (and constraint) equations, call thorn generator functions
• Derivation of the constraint propagation system for (a version of) the conformal field equations.
• Derivation of the constraint propagation system for (a version of) the conformal field equations.

• generate a MoL–based evolution thorn
• Derivation of the constraint propagation system for (a version of) the conformal field equations.

• generate a MoL–based evolution thorn

• generate thorn to evaluate quantities (e.g. constraints)
• Derivation of the constraint propagation system for (a version of) the conformal field equations.

• generate a MoL–based evolution thorn

• generate thorn to evaluate quantities (e.g. constraints)

• generate thorn to set quantities
• Derivation of the constraint propagation system for (a version of) the conformal field equations.

• generate a MoL–based evolution thorn

• generate thorn to evaluate quantities (e.g. constraints)

• generate thorn to set quantities

• generate thorn to translate between different representations (e.g. ADM, BSSN)
• Derivation of the constraint propagation system for (a version of) the conformal field equations.

• generate a MoL–based evolution thorn

• generate thorn to evaluate quantities (e.g. constraints)

• generate thorn to set quantities

• generate thorn to translate between different representations (e.g. ADM, BSSN)

• generic package to aid in generation of Cactus Thorns (I. Hinder)
a few details . . .

• the hardest part: find out how you would do the calculations by hand! – then translate to Mathtensor syntax.
a few details . . .

- the hardest part: find out how you would do the calculations by hand! – then translate to Mathtensor syntax.

- with precomputation of derivatives: speed comes close to hand coded ADM and BSSN codes
a few details . . .

• the hardest part: find out how you would do the calculations by hand! – then translate to Mathtensor syntax.

• with precomputation of derivatives: speed comes close to hand coded ADM and BSSN codes

• code generation scripts do not assume a particular system of equations, set of variables!

• code generation from lists of variables and equations does not require Mathtensor!
a few details . . .

- the hardest part: find out how you would do the calculations by hand! – then translate to Mathtensor syntax.

- with precomputation of derivatives: speed comes close to hand coded ADM and BSSN codes

- code generation scripts do not assume a particular system of equations, set of variables!

- code generation from lists of variables and equations does not require Mathtensor!

- pattern matching for mathematical expressions is a powerful tool!
current projects

• improve documentation and user-friendliness
current projects

- improve documentation and user-friendliness
- include boundary treatment
current projects

• improve documentation and user-friendliness

• include boundary treatment

• runtime/memory optimization of RHS's
current projects

• improve documentation and user-friendliness

• include boundary treatment

• runtime/memory optimization of RHS's

• get rid of mathtensor, port everything to freely available platform
current projects

• improve documentation and user-friendliness
• include boundary treatment
• runtime/memory optimization of RHS’s
• get rid of mathtensor, port everything to freely available platform
• allow for frame formalism?
a little bit on coding philosophy . . .

• produce readable code at all levels
 so far avoided e.g. Maple or Mathematica (Optimize.m) code optimizers
a little bit on coding philosophy . . .

• produce readable code at all levels
 so far avoided e.g. Maple or Mathematica (Optimize.m) code optimizers

• method of lines as a software strategy
 use Ian Hawke’s MoL thorn
a little bit on coding philosophy . . .

• produce readable code at all levels
 so far avoided e.g. Maple or Mathematica (Optimize.m) code optimizers

• method of lines as a software strategy
 use Ian Hawke’s MoL thorn

• “generic” finite differencing
 collect all FD formulas in one header file, simple switching from 2nd order centered to 4th order centered, all derivatives = 0, or any other method implemented
a little bit on coding philosophy . . .

• produce readable code at all levels
 so far avoided e.g. Maple or Mathematica (Optimize.m) code optimizers

• method of lines as a software strategy
 use Ian Hawke’s MoL thorn

• “generic” finite differencing
 collect all FD formulas in one header file, simple switching from 2nd order centered to 4th order centered, all derivatives $= 0$, or any other method implemented

• monitor all constraints
back to our project . . .
The “traditional” paradigm

Based on extended hyperboloidal initial value problem + compactification in time. \mathcal{I}^+ moves, typically contracts.
Constraints are violated outside \mathcal{I}^+, “spillover” hoped to converge away.
Aim at global structure, no excision.
The “new” paradigm

Focus on “astrophysical scenarios” – do not compactify in time.

Avoid spacetime regions of uncontrollable constraint violation: J is the limit – requires spherical boundary!

J-fixing shift must be made compatible with well–posedness.

Can we come close to a Bondi-gauge?

Coordinate gauges might mimic uncompactified case – how can we handle conformal gauge?
Where are we now in the conformal approach?

We have seen some of the upcoming problems, we have chosen a route (roughly), we have our gear in place → We have built up base-camp!
Where are we now in the conformal approach?

We have seen some of the upcoming problems, we have chosen a route (roughly), we have our gear in place → We have built up base-camp!
acclimatisation hikes

• Practice trade of 3D codewriting: CFE, \(\Omega = 1 \), ADM, Wave Eq., BSSN, E&M
acclimatisation hikes

• Practice trade of 3D codewriting: CFE, $\Omega = 1$, ADM, Wave Eq., BSSN, E&M
• Practice trade of creating simple toy problems: E&M on flat background:
$$\mathcal{L}_n(\text{div} E) = -tr K \text{div} E,$$
acclimatisation hikes

- Practice trade of 3D codewriting: CFE, $\Omega = 1$, ADM, Wave Eq., BSSN, E&M
- Practice trade of creating simple toy problems: E&M on flat background:
 \[\mathcal{L}_n(\text{div} E) = -tr K \text{div} E, \quad \mathcal{L}_n E = -tr K E + \ldots \]
acclimatisation hikes

- Practice trade of 3D codewriting: CFE, $\Omega = 1$, ADM, Wave Eq., BSSN, E&M
- Practice trade of creating simple toy problems: E&M on flat background:
 $$\mathcal{L}_n(\text{div}E) = -trK\text{div}E, \quad \mathcal{L}_nE = -trK E + \ldots$$
There is a regime between perturbative and full nonlinear: coordinate changes (constant coeff. \rightarrow nonconstant and new coefficients)!
acclimatisation hikes

- Practice trade of 3D codewriting: CFE, $\Omega = 1$, ADM, Wave Eq., BSSN, E&M
- Practice trade of creating simple toy problems: E&M on flat background:
 $\mathcal{L}_n(div E) = -\text{tr} K \, div E, \quad \mathcal{L}_n E = -\text{tr} K \, E + \ldots$

There is a regime between perturbative and full nonlinear: coordinate changes
(constant coeff. \rightarrow nonconstant and new coefficients)!
organized in camps, according to standard big mountain climbing strategy, we go back and forth between camps regularly...
Camp I – periodic boundary conditions in 3D

For the moment: Focus on periodic boundary conditions to get a clean problem.
Camp I – periodic boundary conditions in 3D

For the moment: Focus on periodic boundary conditions to get a clean problem. One might hope to get rid of constraint violating “junk” through good boundary conditions, but in the fully nonlinear case, that seems a big hope!
Camp I – periodic boundary conditions in 3D

For the moment: Focus on periodic boundary conditions to get a clean problem. One might hope to get rid of constraint violating “junk” through good boundary conditions, but in the fully nonlinear case, that seems a big hope!

- compare different formulations

- get a feeling for $\Omega \equiv 1$–case

- experiment with gauge conditions

- Mexico tests as essential health checks

There are number of interesting tests to be performed with periodic boundaries beyond Mexico I!
Camp II – 1D with boundary

• Test gauges and formulations!

• Schwarzschild? – Static representation of Minkowski?

• Can instabilities be understood mathematically?

• Understand solution of the constraints at least in this simple case!

• Aim: stable evolution of Schwarzschild!
Camp III – 2D

- Obtain a large class of initial data!
 Assume $\tilde{k}_{ab} = \frac{1}{3} \tilde{k} \tilde{h}_{ab}$

 $$\tilde{h}_{ab} = \phi^4 (\bar{\Omega}^{-2} h_{ab}) \quad \Rightarrow \quad \tilde{R}(\tilde{h}) = \tilde{k}_{ab} \tilde{k}^{ab} - \tilde{k}^2,$$

 ⇒ “elliptic” equation – principal part vanishes @ S
 ⇒ boundary values fixed!

 $$\Omega^2 \Delta \phi + \cdots = 0.$$

- Experiment with evolution inside spherical boundary?
Camp III – toy models in 3D with boundary

Proceed the natural way: Wave equation, Maxwell, linearized Einstein

2 Elements to be tested:

1. spherical boundary

2. boundary at future null infinity
Camp III – toy models in 3D with boundary

Proceed the natural way: Wave equation, Maxwell, linearized Einstein

2 Elements to be tested:

1. spherical boundary

2. boundary at future null infinity

no boundary conditions needed/allowed except potentially for gauge, but gauge is tricky & probably need to feed in info from constraint propagation along boundary?
Implement a generic initial data solver that works for hyperboloidal slices.

Which issues will arise from combining the machinery needed to deal with spherical boundaries with the full nonlinear theory?
Camp V – improve stability

The standard tricks apply, in addition there is extra gauge freedom, e.g. $\text{tr}K$ is completely free!
Camps ???

physics extraction, efficiency & expect the unexpected . . .
Camps ???

physics extraction, efficiency & expect the unexpected . . .

“astrophysical” initial data?
and then there are new topics: very unequal mass black holes, matter . . .
physics extraction, efficiency & expect the unexpected . . .

“astrophysical” initial data?
and then there are new topics: very unequal mass black holes, matter . . .
Conclusions
Conclusions

1. there is a long way to go
Conclusions

1. there is a long way to go

2. but it could be worth it