Disordered systems, ground states and combinatorial optimization

Disordered Systems, Ground States and Combinatorial Optimization in Statistical Physics

H. Rieger

Santa Barbara, 5/23/03

Collaborators

J.-D. Noh, F.O. Pfeiffer, R. Schorr
Universität des Saarlandes

V. Petäjä, M. Alava
Helsinki University of Technology

A. Hartmann
Universität Göttingen

J. Kisker, U. Blasum
Universität zu Köln
A simple combinatorial optimization problem: The (directed) polymer model:

Lattice graph Non-directed directed

Random bond energies: \(e_i \in [0,1] \)

Total energy:
\[
E = \sum_{\text{path}} e_i
\]

Find ground state – i.e. optimal path
From top node to a bottom nodes:
Collection of optimal directed polymers

Dijkstra's algorithm for shortest paths in general graphs

Start node: s
Minimal distance (energy) from s to j: d(j)
Predecessor of j: pred(j)

algorithm Dijkstra
begin
S := \{s\}, S' := N \setminus \{s\};
d(s) := 0, pred(s) := 0;
while |S| < |N| do
begin
choose (i,j);
d(j) := \min_{k,m} \{d(k) + c_{km} | k \in S, m \in S'\};
S' := S' \setminus \{j\}; S := S + \{j\};
pred(j) := i;
end
end

Performance \(O(N^2) \), with heap reshuffling \(O(N \log(N)) \)
Optimal paths with correlated disorder

Isotropically correlated disorder: \(\langle e_i e_{i+r} \rangle \sim r^{2\beta-1} \)

Universal geometrical properties:

Roughness:
\[D(L) = \langle x^2 \rangle - \langle x \rangle^2 \sim L^\nu \]

Energy fluctuations:
\[\delta E(L) = \langle E^2 \rangle - \langle E \rangle^2 \sim L^\sigma \]

Optimal paths with correlated disorder (2)

2d: Roughness exponent \(\nu \)
Energy fluctuation exp. \(\sigma \)

\[\langle e_i e_{i+r} \rangle \sim r^{2\beta-1} \]

Optimal paths with \(E < E_0 \)

- \(\beta < 0 \)
- 2d
- \(\beta = 0.4 \)

3d
Disordered systems, ground states and combinatorial optimization

From one line to many lines

Continuum model for N interacting elastic lines in a random potential

$$H = \sum_{i=1}^{N} \int_{\mathbf{y}} \int_{\mathbf{z}} \left(\frac{1}{2} \frac{dr}{dz} \right)^2 + V_{\text{rand}}(r(z), z) + \sum_{j=1}^{\infty} V_{\text{int}}(r_j(z), r_{j+1}(z))$$

Strong disorder: $V_{\text{rand}} >> V_{\text{int}}$ short ranged, hard core

$$H = \sum_{(\text{bond})} e_i n_i \quad n_i = 0, 1$$

Ground state of N-line problem: Minimum Cost Flow problem

Find successively shortest paths from s to t in the residual network $G_r(n)$:

- Use node potentials $p(i)$
- Reduced energies $e_p^{ij}(n) = e_{ij} + p(i) - p(j)$
- All positive

Use Dijkstra’s algorithm

Example conf. for 9 lines:

begin
\$n:=0; p(0)=0; G_r(0)=G;$
for line-counter = 1 to N do
\$e_p^{ij}(n)=e_{ij}+p(i)-p(j);$
\$d(i)\$ from s to all other nodes i in the residual network $G_r(n)$ w.r. to the reduced energies $e_p^{ij}(n)$;
\$d(i)\$ from s to t by one unit;
\$p(i)\$ from $d(i)$;
end

Heiko Rieger, Universitie des Saarlandes (KITP Glassy States Conf 5/23/03)
Disordered systems, ground states and combinatorial optimization

Successive shortest path algorithm (2)

Entanglement of elastic lines in a disordered environment

Magnetic flux lines in type II superconductors:

- **Pure case:** Abrikosov-FL lattice
- **Weak disorder:** Bragg glass phase
- **Strong disorder:** Topological defects
 - FL entanglement

Definition of two-line-entanglement

Check winding angle of line A and B:

- if $>2\pi$: A and B are entangled.

Definition of entangled clusters:

Entangled lines form clusters or bundles:

- $A \otimes B$ and $B \otimes C$
- $A \& B \& C$ in one bundle
Entanglement transition of elastic lines

Conventional 2d percolation transition

Entanglement transition of elastic lines (2)

Thick samples (H>H_c): Entanglement transition;

Thin samples (H<H_c): Disentangled lines – rods.

Magnetic field (B) driven Bragg glass (BG) to vortex glass (VG) transition in disordered high-T_c superconductors; n.b.: line density \[\rho \] B
Loop percolation of magnetic flux lines in HTC (1)

Vortex-Glass Model

\[H = \frac{1}{2} \sum_{i,j} (n_i \square b_j)G_D(i \square j)(n_j \square b_i) \]

- \(n_i = \ldots |2,1,0,1,2,\ldots | \), \(n_j = 0 \)
- \(b_j = \sum_{\text{plaqs}} A_j, A_y \in [0,2\pi] \)

\[G_D(i \square j) \sim \exp(r_y / r_g) / r_g \]

Strong screening limit: \(\square 0 \)

\[H = \sum_i (n_i \square b_i)^2 \]

Ground state: Minimum cost flow problem
Successive shortest path algorithm

Note: \(\square = \) strength of disorder

Loop percolation of magnetic flux lines in HTC (2)

2d

3d
Disordered systems, ground states and combinatorial optimization

Loop percolation of magnetic flux lines in HTC (3)

- \(P_{\text{perc}} \)
- \(P_{\text{pc}} \)
- \(P(n) \)

2d:
- \(n = 3.3 \)
- \(b = 1.8 \)
- \(t = 2.45 \)

3d:
- \(n = 1.05 \)
- \(b = 1.4 \)
- \(t = 2.85 \)

Another combinatorial optimization problem: Interfaces in random bond Ising ferromagnets

\[
H = \sum_i J_{ij} S_i S_j \quad J_{ij} \geq 0, \quad S_i = \pm 1
\]

Find for given random bonds \(J_{ij} \) the ground state configuration \(\{S_i\} \) with fixed +/- b.c.

Find interface (cut) with minimum energy

Heiko Rieger, Universitie des Saarlandes (KITP Glassy States Conf 5/23/03)
Min-Cut-Max-Flow Problem

A network \(G(V,A) \), arcs (Bonds) \((i,j) \) have capacity \(u_{ij} \geq 0 \), flow \(0 \leq n_{ij} \leq u_{ij} \) fulfills mass balance constraint:

\[
\begin{array}{c}
n_j - n_i = v_i & \text{for } i = s \\
-n_j + n_i = v_i & \text{for } i = t \\
0 & \text{else}
\end{array}
\]

Find the maximum flow \(n^* \) with value \(v \) from \(s \) to \(t \)

residual network \(G(n) \) with residual capacities:

\[
r_{ij} = u_{ij} - n_{ij} + n_{ji}
\]

\(n^* \) maximum flow \(v \) no directed path \(s \to t \) in \(G(n^*) \)

s-t cut \([S,S']\) is a partition of \(V \) in two disjoint sets with \(s \in S, t \in S', S \cup S' = V \), \((S,S') = \{(i,j) \in A | i \in S, j \in S'\} \); capacity of the s-t-cut \[
|\{(i,j) \in A | i \in S, j \in S'\}|
\]

Min-Cut-Max-Flow-Theorem: \(\max_{n \in \mathbb{N}} v = \min_{S,S'} |\{(i,j) \in A | i \in S, j \in S'\}| \) and \(r_{ij}^* = 0 \) along \((S,S') \)

Preflow-Push Algorithm

Strategy:
1) flood the network from source
2) propagate the flooding toward the target
3) push excess flow back towards source

excess flow \(e(i) = \sum_{j} n_{ij} - \sum_{j} n_{ji} \)

distance function \(d(i) \) (w.r.t. target)

begin
\[d(i) = \text{exact distance from target, } d(s)=|V| \]
for all \((i,j) \) \(A: n_{ij} = u_{ij} \)
choose \(i \in V \setminus \{s,t\} \) with \(e(i) > 0 \)
if there is \((i,j) \) \(A \) with \(d(i)=d(j)+1 \):
\[\begin{cases}
\text{push } |\{e(i),r_{ij}^*\} \text{ flow units from } i \to j \\
\text{else} \\
\text{relabel } d(i) \max \{d(i)+1,(i,j) \in A, r_{ij}^*>0\}
\end{cases} \]
end
Preflow-Push-Algorithm (2)

Interprete distance function (or labels) as height of the nodes.

Problems that can be mapped on min-cut / max-flow

• Interfaces / wetting in random media
• Random field Ising model (in any dimension)
• Periodic media (flux lines, CDW, etc.) in disordered environments
• Elastic manifolds with periodic potential and disorder
Example: Elastic manifolds / Elastic media

Expansion of potential energy around equilibrium positions:

\[
H_{\text{elast}} = \sum_{r} [u(r)]^2 \sum_{(ij)} [u(r_i) - u(r_j)]^2
\]

Effects of impurities, i.e. disorder: lattice distortions:

\[
H_{\text{rand}} = \sum_{r} V[r, u(r)] \sum_{(ij)} V[r_i, u(r_i)]
\]

Manifolds: D=1 KPZ, in any D interface in D+1 RBIFM

\[
\mathbb{w}^2 = \sum_{i} (u_i - \langle u \rangle)^2 L^D
\]

\(D=2/3, 0.41, 0.22\) in D=2,3,4

Periodic elastic media

Symmetry: \(H(u)=H(u+a \cdot n)\), e.g.: flux lines

Random pinning potential: first harmonics

\[
V[r, u(r)] = \cos(2\pi u(r)/a \cdot \langle r \rangle)
\]

\(\mathbb{a} \in [0,2\pi], \) random

\[
H = \sum_{r} [u(r)]^2 + \sum_{ij} \cos(u(r) \cdot \langle r \rangle) \sum_{(ij)} [u_i - u_j]^2 + \sum_{i} \cos(u_i \cdot \langle i \rangle)
\]

Flory argument: **Roughness** \(\langle u^2 \rangle \sim \ln \frac{L}{\mathbb{a}}\)

in 2d **RG**: \(\langle u^2 \rangle \sim (\ln \frac{L}{\mathbb{a}})^2\)
Disordered systems, ground states and combinatorial optimization

Periodic elastic media + periodic potential

\[H = \sum_{r} (u(r))^2 v \cos(p \cdot u(r)) + \sum_{r} \cos(u(r) \cdot \mathcal{D}(r)) \]

\[
\langle \mathcal{D}(r) \rangle = 0 \quad \langle \mathcal{D}(r)' \rangle = \mathcal{D}(r' \mathcal{D}(r)) \\
\langle \mathcal{D}(r) \rangle = 0 \quad \langle \mathcal{D}(r)' \rangle = \mathcal{D}(r' \mathcal{D}(r))
\]

2 periodicities with ratio \(p \) \quad T=0 roughening transition via \(\mathcal{D} \)

Charge density wave system \quad Flux line system

Periodic elastic medium + periodic potential (2)

Mapping to an RBIFM interface problem

Discrete interface hamiltonian:

\[H = \sum_{i,j} (h_i \delta_{i,j})^2 \sum_{i} \cos(2 \delta_{i,j} / p \delta_{i,j}) \]

Ising model:

\[H = \sum_{i,j} J_{ij} S_i S_j \]

\[J_{h\text{direction}} = \langle \mathcal{D}(r) \rangle \cos(2 \sum_{i} h / p \mathcal{D}(r)) \]

\[J_{r\text{direction}} = \text{const.} \langle \mathcal{D}(r) \rangle \]

Heiko Rieger, Universite des Saarlandes (KITP Glassy States Conf 5/23/03)
Disordered systems, ground states and combinatorial optimization

Periodic elastic medium + periodic potential (3)

The roughening transition in 3d:

Order parameter: $m_{p,q}(L,T) = |e^{2q/L^q}|$

<table>
<thead>
<tr>
<th>p</th>
<th>D_k</th>
<th>$D_{q,2}$</th>
<th>$D_{q,3}$</th>
<th>$D_{q,4}$</th>
<th>D_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.20</td>
<td>0.046</td>
<td>0.034</td>
<td>0.022</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>2.48</td>
<td>0.049</td>
<td>0.037</td>
<td>0.024</td>
<td>1.29</td>
</tr>
<tr>
<td>4</td>
<td>2.95</td>
<td>0.044</td>
<td>0.033</td>
<td>0.022</td>
<td>1.28</td>
</tr>
</tbody>
</table>

Further applications of combinatorial optimization methods in Stat-Phys.

- Flux lines with hard core interactions
- Vortex glass with strong screening
- Interfaces, elastic manifolds, periodic media
- Wetting phenomena in random systems
- Random field Ising systems
- Spin glasses (2d polynomial, d>2 NP complete)
- Statistical physics of complexity (K-Sat, vertex cover)
- Random bond Potts model at T_c in the limit $q \to \infty$
- ...

Heiko Rieger, Universite des Saarlandes (KITP Glassy States Conf 5/23/03)
Further reading:

H. Rieger:
Ground state properties of frustrated systems,
Advances in computer simulations, Lecture Notes in Physics 501
(ed. J. Kertesz, I. Kondor), Springer Verlag, 1998

M. Alava, P. Duxbury, C. Moukarzel and H. Rieger:
Combinatorial optimization and disordered systems,
Phase Transitions and Critical phenomena, Vol. 18

Book:
A. Hartmann and H. Rieger,
Optimization in Physics,
(Wiley VCH, Berlin, 2002)