Simulating Black Hole Spacetimes: Successes and Challenges (ITP Colloquium 3/13/02)

Simulating Black Hole Spacetimes
Successes and Challenges

Matthew W. Choptuik
CIAR Cosmology and Gravity Program
Dept. of Physics & Astronomy, UBC

ITP Colloquium
UCSB
March 13, 2002

Research supported by NSERC, CIAR, CFI and NSF

Collaborators

Eric Hirschmann, BYU
Steve Liebling, Long Island U
Scott Noble, UBC
Frans Pretorius, UBC

Robert Marsa, Shadowbane

Dr. Matthew W. Choptuik, Dept. of Physics and Astronomy, UBC
Simulating Black Hole Spacetimes: Successes and Challenges (ITP Colloquium 3/13/02)

Outline

- 20th Century Gravitation: General Relativity
- Black Holes and Gravitational Radiation
- Challenges in Black Hole Simulations
- Critical Phenomena in Gravitational Collapse
- Towards Realistic Black Hole Simulations

General Relativity

- Einstein (1917)
- Gravitational effects consequence of curvature of spacetime; curvature consequence of matter-energy distribution in spacetime
- Spectacular predictions
 - Expanding universe
 - Black holes
 - Worm holes
 - Gravitational waves

Dr. Matthew W. Choptuik, Dept. of Physics and Astronomy, UBC
Newtonian Gravitation

- Gravitational force on object with gravitational mass m_g
 \[\vec{F} = -m_g \nabla \phi \]
 \[\nabla^2 \phi \propto \rho \]
- *Single Newtonian potential* (single field) ϕ describes gravitational interaction
- *Only objects with mass* contribute to mass density ρ
- *Action at a distance*: Changes in gravitational field propagate instantaneously to rest of universe

Newtonian Gravitation

Universality of Free Fall

Assuming that inertial mass and gravitational mass are proportional, with the same proportionality constant for all substances:

\[m_i \ddot{a} = \vec{F} = -m_g \nabla \phi \]
\[\ddot{a} = -\nabla \phi \]
Relativistic Gravitation (GR)

Universality of free-fall elevated to Principle of Equivalence

- Locally, uniform gravitational field indistinguishable from uniform acceleration

- "Real" gravitational effects show up in non-uniformities of gravitational field (curvature of spacetime)

- Gravitational field much more complicated than in Newtonian case, essentially need four potentials plus two "wave fields"

- No action at a distance: disturbances in the gravitational field travel at most at the speed of light, c

- All forms of energy act as sources for gravitational field

The Metric

- The geometrical information about spacetime is completely encoded by the (symmetric) metric tensor

\[g_{\mu\nu}(x^\alpha) = \begin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \\ g_{10} & g_{11} & g_{12} & g_{13} \\ g_{20} & g_{21} & g_{22} & g_{23} \\ g_{30} & g_{31} & g_{32} & g_{33} \end{pmatrix} \]

- Spacetime distance (squared) between nearby events is given by

\[ds^2 = \sum_{\mu=0}^{3} \sum_{\nu=0}^{3} g_{\mu\nu} dx^\mu dx^\nu \]
Causal Structure

- Metric can be used to map out causal structure of the spacetime
- Spacetime metric is non-definite, displacements between events can be
 - Time-like (-)
 - Space-like (+)
 - Null (0)
- Lightcones separate different classes of events

3+1 split

- Slice spacetime into stack of 3-d space-like hypersurfaces
- 4-geometry of spacetime (4-metric) becomes time-evolution of 3-geometry of initial hypersurface (dynamics of 3-metric)
- General covariance: coordinates on spacetime arbitrary, don't effect physics
- 4 degrees of coordinate-freedom ("gauge freedom")
- Coordinates must be fixed: HOW?

Dynamical Variables
\[g_{ij}(t,x^k), K_{ij}(t,x^k) \quad i,j,k = 1,2,3 \]

Dynamical Degrees of Freedom

\[10 - 4 - 4 = 2 \]
\[6 - 4 = 2 \]
Gravitational Collapse and Black Holes

- **BLACK HOLE**: Region of spacetime from which no physical signal can escape.
- During collapse of matter and/or radiation, BH forms when gravitational field becomes strong enough to "trap" light rays.
- Surface of black hole is known as the **event horizon**.
- **Singularities** (infinite, crushing gravitational forces) **inevitable inside black holes**.

(From Wald, General Relativity, 1984)

Gravitational Radiation

- **Gravitational waves**: "ripples" in the curvature of spacetime.
- At least in weak field limit, very much analogous to electromagnetic radiation; propagate at speed of light, transverse, two polarizations, frequency set by dynamics of source.

The Laser Interferometer Gravitational Wave Observatory (LIGO) installation near Hanford WA. Each interferometer arm is 4 km long. A similar instrument is located near Livingston LA (www.ligo.caltech.edu)

Cause periodic, quadrupolar variations in distance between freely falling objects (or induce strains in objects with interactions).
Sources of Gravitational Radiation

- For efficient radiation, need (large) masses confined to regions comparable in size to their Schwarzschild radii, R_s.
- Also need redistribution of significant fraction of mass-energy at close to light speed.

Source Strengths and LIGO Sensitivity

- Compact binary systems (BHs, neutron stars) good candidates.

\[R_s = \frac{2G M}{c^2} \]
\[R_s = \frac{2G M}{c^2} \]
\[\frac{L}{L_{\text{design}}} = 10^{-21} \]
\[\delta L/L = 10^{-15} \]

\[M \geq 1.5 \times 10^{-7} M_{\odot} \]
\[L_{\text{design}} = 3 \times 10^{-44} \text{erg sec}^{-1} \text{Hz}^{-1} \]

\[\text{LIGO strain sensitivity: } (30-1000 \text{ Hz}) \]

\[\text{Phase 1: } \delta L/L = 10^{-21} \]

\[\text{Phase 2: } \delta L/L = 10^{-15} \]

\[c = 3 \times 10^5 \text{ km sec}^{-1} \]

\[G = 6.67 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{sec}^{-2} \]

\[M = \text{mass} \]

\[L = \text{light} \]

\[c = \text{speed of light} \]

\[\odot = \text{Sun} \]

\[\text{kg} = \text{mass in kilograms} \]

\[\text{m} = \text{mass in meters} \]

\[G = \text{Gravitational constant} \]

\[M = \text{mass of object} \]

\[c = \text{speed of light} \]

\[\odot = \text{Sun} \]

\[\text{km} = \text{kilometers} \]

\[\text{kg} = \text{kilograms} \]

\[m = \text{mass in meters} \]

\[G = \text{Gravitational constant} \]

\[M = \text{mass of object} \]

\[c = \text{speed of light} \]

\[\odot = \text{Sun} \]

\[\text{km} = \text{kilometers} \]

\[\text{kg} = \text{kilograms} \]

\[m = \text{mass in meters} \]

\[G = \text{Gravitational constant} \]

\[M = \text{mass of object} \]

\[c = \text{speed of light} \]

\[\odot = \text{Sun} \]

\[\text{km} = \text{kilometers} \]

\[\text{kg} = \text{kilograms} \]

\[m = \text{mass in meters} \]

\[G = \text{Gravitational constant} \]

\[M = \text{mass of object} \]

\[c = \text{speed of light} \]

\[\odot = \text{Sun} \]

\[\text{km} = \text{kilometers} \]

\[\text{kg} = \text{kilograms} \]

\[m = \text{mass in meters} \]

\[G = \text{Gravitational constant} \]

\[M = \text{mass of object} \]

\[c = \text{speed of light} \]

\[\odot = \text{Sun} \]

\[\text{km} = \text{kilometers} \]

\[\text{kg} = \text{kilograms} \]

\[m = \text{mass in meters} \]

\[G = \text{Gravitational constant} \]

\[M = \text{mass of object} \]

\[c = \text{speed of light} \]

\[\odot = \text{Sun} \]

\[\text{km} = \text{kilometers} \]

\[\text{kg} = \text{kilograms} \]

\[m = \text{mass in meters} \]

\[G = \text{Gravitational constant} \]

\[M = \text{mass of object} \]

\[c = \text{speed of light} \]

\[\odot = \text{Sun} \]

\[\text{km} = \text{kilometers} \]

\[\text{kg} = \text{kilograms} \]

\[m = \text{mass in meters} \]

\[G = \text{Gravitational constant} \]

\[M = \text{mass of object} \]

\[c = \text{speed of light} \]

\[\odot = \text{Sun} \]

\[\text{km} = \text{kilometers} \]

\[\text{kg} = \text{kilograms} \]
Black Hole Simulations: Key Challenges

- Formulation and discretization of equations of motion
- Singularity avoidance
- Computational demands
- NUMERICAL STABILITY
- Tie-in to observations (gravitational wave extraction)
- Shortage of personnel

Singularity Avoidance: Black Hole Excision

- To avoid singularity within black hole, exclude interior of hole from computational domain (Unruh)
- Catch 22: event horizon is globally defined, location unknown until complete spacetime geometry is in hand
- Apparent horizon functions as "instantaneous horizon" can be located at any instant of time
- Excise somewhat within apparent horizon
- Crucial for long-time BH evolution
Simulating Black Hole Spacetimes: Successes and Challenges (ITP Colloquium 3/13/02)

Computational Demands

- Finite difference methods dominant
- D spatial dimensions:
 - $O(N^{D+1})$ CPU time
 - $O(N^D)$ Memory
- Minimum N for interesting problems:
 \[N \geq 1000 \]

Computational Demands

- $D \rightarrow D+1$ thus requires of the order of 10 CPU-speed doublings, or about 15 years of hardware evolution
- Estimate is pessimistic in some ways, but optimistic in others (e.g. increase in per-grid point complexity for higher D)

Crude estimates suggest calculations of general BH collisions require many CPU days on a Terahop's, terabyte machine.

(S.R. White, IBM TJW Research Ctr.)

Dr. Matthew W. Choptuik, Dept. of Physics and Astronomy, UBC
Computational Demands

- Simple minded analysis also ignores two key facts about simulation-based science

1. When good solution method is not yet known, need turn-around time on the order of hours (at most) to make effective progress

2. A few simulations generally won’t cut it. Most interesting problems will have considerable parameter space to explore, which introduces additional effective dimensionality into the problem

- Lots of room for gains due to improved algorithms

Model Problems

- Reduce computational demands by imposing symmetry conditions which reduces effective D (spatial dimension)
 - $D = 1$ spherical symmetry (symmetry under all rotations about a point)
 - $D = 2$ axisymmetry (symmetry under rotations about an axis)

- Models can reveal interesting physics which may not depend crucially on symmetry assumptions

- Use for development of techniques for more realistic calculations
Model Problems

- Spherically symmetric calculations were initiated in earnest circa 1990.

- Axisymmetric calculations are on-going; turn-around times are still a few times longer for the 1990 spherically symmetric runs at comparable resolution.

Black Hole Critical Phenomena

- Consider parameterized families of initial data representing gravitational collapse

- Family parameter, \(\eta \), controls strength of gravitational field during time evolution

\[p < p^* \quad \text{No black hole forms} \]
\[p > p^* \quad \text{Black hole forms} \]
\[p = p^* \quad \text{Threshold of BH formation} \]

- What is nature of no-BH to BH transition? (Christodoulou)

- Can one, in principle, make finite with arbitrarily small mass?
Black Hole Critical Phenomena

- BH threshold generically characterized by *exponential sensitivity* to initial conditions
- For any collapse model, find (isolated) *universal solutions* with additional symmetry
 - Type I: static or periodic
 - Type II: continuously or discretely self-similar
- Find *universal scaling laws* for solutions near-criticality, for example, in Type-II collapse, black hole masses satisfy
 \[M_{BH} \propto \left| \bar{p} - p^* \right|^\gamma \]
 where \(\gamma \) is a *universal* (independent of initial data family) exponent

Massless Scalar Collapse
(Spherical Symmetry, G=c=1)

- Matter field: massless scalar field: \(\phi(r,t) \)
- Initial data: \(\phi(r,0), \frac{\partial \phi}{\partial t}(r,0) \)
- Dynamics: Imploding / exploding shells of radiation
- Fundamental non-linearity gives rise to competition
•Simulating Black Hole Spacetimes: Successes and Challenges (ITP Colloquium 3/13/02)

Competition

Where can energy in system end up?

\[KE \rightarrow r = \infty \text{ COMPLETE DISPERSAL} \]

\[PE \rightarrow r < R_{BH} \text{ BLACK HOLE FORMATION} \]

Play two effects off each other to generate critical solutions

Scalar Collapse: Weak Field Regime

• Metric (flat space-time; fixed, no dynamics)

\[ds^2 = -dt^2 + dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2) \]

• Scalar field equation of motion

\[\frac{\partial^2}{\partial t^2}(r\phi) = \frac{\partial^2}{\partial r^2}(r\phi) \]

• General solution: ingoing & outgoing waves

\[r\phi(r,t) \equiv u(r+t) + v(r-t) \]
Scalar Collapse: Weak Field Regime

- Initial data: purely ingoing pulse
 \[r\phi(r,0) = \phi_0 f(r) \]
 \[\frac{\partial}{\partial t} r\phi(r,0) = \phi_0 \frac{df}{dr} \]

End state of evolution is complete dispersal of scalar field

Scalar Field: Strong Field Regime

- Metric
 \[ds^2 = -\alpha^2(r,t)dt^2 + a^2(r,t)dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2) \]

- Auxiliary scalar field variables
 \[\Phi(r,t) = \frac{\partial \phi}{\partial r} \]
 \[\Pi(r,t) = \frac{a}{\alpha} \frac{\partial \phi}{\partial t} \]

- Mass function, conserved “mass-at-infinity”
 \[a^2(r,t) = \left(1 - \frac{2m(r,t)}{r}\right)^{\frac{3}{2}} \]
 \[M = \int_0^\infty \frac{dm}{dr} dr \]
Scalar Collapse: Strong Field Regime

- Equations of motion

\[
\frac{\partial \Phi}{\partial t} = \frac{\partial}{\partial r} \left(\frac{\alpha}{a} \Phi \right)
\]

\[
\frac{\partial \alpha}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\alpha}{a} \Phi \right)
\]

\[
1 \frac{da}{dr} + \frac{a^2 - 1}{r} \frac{da}{dr} = 0
\]

\[
1 \frac{da}{dr} + \frac{a^2 - 1}{r} \frac{da}{dr} - 2\pi r \left(\Pi^+ + \Phi^+ \right) = 0
\]

(Strong-field evolution. Scalar field still completely disperses, but non-linear self-gravitational effects are apparent in trailing edge of waveform.)

Generating a Critical Solution

- Choose *arbitrary* one parameter family of initial data

- Locate initial bracket
 - \(p < p^* \) no black hole
 - \(p > p^* \) black hole

- Refine bracket via bisection search

- Can tune to machine precision, \(10^{-10} \) provided code has enough dynamic range (adaptive mesh refinement)

\[
\phi(r,0) = \phi_0 f(r) = p f(r)
\]
Simulating Black Hole Spacetimes: Successes and Challenges (ITP Colloquium 3/13/02)

Bracketing Solutions

Scalar Collapse: Near-Critical Regime

- Tune control parameter, p, to machine precision
- As $p \to p^*$, unique critical solution emerges (details of initial data "washed away"
- Critical solution is discretely self-similar
- Curvature grows without bound in precisely-critical limit, and no black hole forms: \to naked singularity

Marginal sub-critical evolution: each oscillation represents same strong-field dynamics playing out on a spatio-temporal scale some 30 times smaller than its predecessor.
Logarithmic time, radial coordinates used
Simulating Black Hole Spacetimes: Successes and Challenges (ITP Colloquium 3/13/02)

Self-Similarity of Type II Solutions

- $T \equiv$ central proper time (measured from “accumulation event”)
- $R \equiv$ physical (e.g., “areal” radius)
- Similarity variable: $\zeta = R/T$
- Naked singularity at $(0,0)$

Self-Similarity of Type II Solutions

- Continuously self-similar (CSS)

 \[g^*(\zeta, \tau) = g^*(\zeta, \tau') \quad \tau, \tau' \text{ arbitrary} \]

- Discretely self-similar (DSS)

 \[g^*(\zeta, \tau) = g^*(\zeta, \tau + n\Delta) \quad n = 0, \pm 1, \pm 2, \cdots \]

$\Delta = \text{Model-dependent "echoing" exponent}$
Features of Type II Collapse

- **Arbitrarily small black holes possible** (by definition)

- Critical solution is **self-similar**, possibly discretely

- Precisely critical solution contains a **naked singularity** (but formation clearly not generic)

- **Scaling laws** for dimension-ful physical quantities, such as the black hole mass

- **Universality** Same results independent of specifics of initial data

\[M_{\text{BH}} \propto |p - p^*|^{\frac{1}{2}} \]
BH Critical Phenomena
Perturbation Theory
(Kaiké et al., Evans, Gundlach ...)

- Black hole threshold solutions (critical solutions) are **unstable** by construction
- Turn out to be **minimally unstable**, generally have only **one unstable mode** in perturbation theory
- Scaling-law exponent is just the reciprocal Lyapunov exponent of the unstable mode
- Explains most of phenomenology and universality

Critical Yang-Mills Collapse

- Spherically-symmetric collapse of non-Abelian SU(2) gauge field
- Rich phenomenology observed, Type I *and* Type II transitions, as well as a generalized Type I where the critical solution is a "hairy" or "colored" black hole
- Black hole excision techniques **crucial** in latter case

Simulating Black Hole Spacetimes: Successes and Challenges (ITP Colloquium 3/13/02)
Critical Yang-Mills Collapse

1: Type II behaviour
2: Type I behaviour, no excision
3: Generalized Type I, excision
(Top/bottom: sub/super-critical)

\[\tau \sigma \ln | p - p^* | \]

Critical “Neutron Stars” (Scott Noble)

- Perfect fluid coupled to gravity, spherically symmetry
- Ideal-gas (Synge) equation of state
 \[P = (\Gamma - 1)\rho_{\text{tot}} E \]
 \[1 < \Gamma \leq 2 \]
- Family of static solutions, “stars”, parametrized by central density
- Stars to right of maximum are unstable

\(\Gamma = 2: \text{extremely stiff fluid} \)
Critical “Neutron Stars”

- “Perturb” stable, static, star via imploding pulse of scalar field
- Fluid/scalar interact only through gravitational field.
- By fine-tuning amplitude of scalar pulse, can drive fluid to unstable stellar state (+ perturbations)
- End state is either black hole or perturbed stable star

Beyond Spherical Symmetry

- Currently working on axisymmetric collapse code with Hirschmann, Liebling and Pretoius
- Want to study critical phenomena in more general context, as well as develop infrastructure for more realistic calculations in numerical relativity
- Again, couple a scalar field to gravitational field, but can also study dynamics of vacuum spacetimes (nothing but gravitational waves and black holes).
Near-critical Scalar Field Collapse
Spherically Symmetric Initial Data

Solution is good match to result from spherically-symmetric code

Near-critical Scalar Collapse
Spherically Symmetric Initial Data
(continuous zoom-in)
Simulating Black Hole Spacetimes: Successes and Challenges (ITP Colloquium 3/13/02)

Boosted Merger of Two Scalar Pulses With Black Hole Excision

\[\phi(t, \rho, z) \]

\[t=0.00 \text{ M} \]

Highly Prolate Scalar Collapse With Black Hole Excision

\[\phi(t, \rho, z) \]

\[t=0.0 \text{ M} \]
Realistic Black Hole Collisions

- Event rate of BH-BH, NS-NS, BH-NS mergers highly uncertain, but is expected that for "advanced LIGO", observed rate should be few per year, conservatively
- Requires fully 3-D computations
- Will probably require adaptive mesh refinement techniques and black hole excision
- Computational demands are enormous: Teraflop/s, Terabyte class

State-of-the-Art
"3D" Black hole collision
(Lehner et al, PSU, UT Austin, UBC)

Mesh size of order 100 x 100 x 100; other calculations approaching 400 x 400 x 400 (100 Gbyte!)

Single component of 3-metric on 2-D slice through grid is visualized, black hole excision techniques employed

STABILITY IS KEY ISSUE

Dr. Matthew W. Choptuik, Dept. of Physics and Astronomy, UBC
Simulating Black Hole Spacetimes: Successes and Challenges (ITP Colloquium 3/13/02)

"3D" Black hole collision

Personnel Issues
(or “In case you’re looking for a PhD topic”)

- Field has serious shortage of young researchers
- Funding derivative for numerical relativity is decidedly positive
- Area will become even more attractive to universities (i.e. faculty positions) as instruments such as LIGO start detecting signals

Caltech Gets More from Moore
Caltech’s coffers are $600 million fatter, thanks to semiconductor pioneer Gordon Moore, his wife Betsy, and the foundation the couple created in 2000. Their combined gift—$400 million from the Moore and the same again from the Garden and Betsy Moore Foundation—is the largest-ever donation to a university, eclipsing last year’s record-breaking gifts of $400 million to Stanford University from the William and Flora Hewlett Foundation and an anonymous $300 million to Rensselaer Polytechnic Institute.

Among the specific projects and bread areas that might get some of the Moore money are the design of the California Extremely Large Telescope; a 30-meter ground-based optical and infrared telescope that Caltech is planning jointly with the University of California; measurements to test general relativity; nanomechanics, a subatomic theorem; beam lines; and facilities for cryoelectron microscopy and functional brain imaging.

(Physics Today, January 2002)
Simulating Black Hole Spacetimes: Successes and Challenges (ITP Colloquium 3/13/02)

AND THE MORAL IS...

Near-critical Scalar Collapse z-Antisymmetric Initial Data

\[\phi(t, \rho, z) \]

Dr. Matthew W. Choptuik, Dept. of Physics and Astronomy, UBC