The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Michael P. Brenner
Division of Engineering and Applied Sciences
Harvard University

Collaborators:

Theoretical:

Peter Mucha (Georgia Tech)

Experiments:

Dave Weitz Harvard
Shang Tee
Suliana Manley
Luca Cipelletti

The Ongoing Saga Surrounding the Velocity Fluctuations in (low Re, dilute) Sedimentation

Michael P. Brenner
Division of Engineering and Applied Sciences
Harvard University

Collaborators:

Theoretical:

Peter Mucha (Georgia Tech)

Experiments:

Dave Weitz Harvard
Shang Tee
Suliana Manley
Luca Cipelletti
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

\[\mathcal{N} a U = F \]
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

\[
\langle U \rangle = U_{\text{stokes}}(1 - \frac{6.55}{f}) \quad \text{Batchelor (1972)}
\]

\[
\text{Kermack (1929)}
\]

Assumptions

- Vanishing Reynolds Number
- Monodisperse
- Dilute
- No Brownian Motion
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

E. Guazzelli et al., Phys Fluids, 1995

\[F \propto a U = F \]
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

\[\Box_x^2 u \Box_x p = F \Box_x(x) \hat{z}, \quad \Box_x u = 0 \]

\[u(x) = \frac{F}{8\pi} \frac{I}{x \cdot x'} + \frac{(x \cdot x')(x \cdot x')}{|x \cdot x'|^3} + O\left(\frac{a^*}{|x \cdot x'|^2}\right) \]

Corrections to satisfy B.C.

\[S(x-x') \]

\[\frac{dx_i}{dt} = U_{stokes} + S(x_j \Box x_i) \quad \text{for} \quad j \neq i \]
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

\[\frac{dx_i}{dt} = U_{\text{stokes}} + \sum_{j \neq i} S(x_j - x_i) \]

\[\sim U_{\text{stokes}}^2 \frac{d^3 r}{a^3} S(r)^2 \]

\[\sim U_{\text{stokes}}^2 \frac{d^3 r}{a^3} \sim U_{\text{stokes}}^2 \frac{r}{a} \]

Physical Mechanism:

\[N \sim \pm \sqrt{N} \sim \sqrt{R^3/a^3} \]

Number Fluctuation

\[U \sim U_{\text{stokes}} \frac{\sqrt{N}}{R} \sim U_{\text{stokes}} \sqrt{R/a} \]

E. J. Hinch

Dr. Michael Brenner, Harvard University (KITP Colloquium 5/07/03)
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Two Views:

(a) **The argument is wrong.** No way the velocity fluctuations depend on system size. Some type of “screening mechanism” exists.

(b) **The arguments are correct.** Diffusion in a sediment qualitatively different than normal diffusion.

Experiments

Lei, Tong & Ackerson PRL 2001
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Experiments:
Velocity Fluctuations independent of system size

(1) Ham and Homsy (1988);
(2) Nicolai and Guazzelli (1994)

(3) **Segre’, Herboltzheimer and Chaikin**, 1997, PIV:
(4) Guazzelli (Phys. Fluids, 2001) (larger cells)

(5) Lei, Tong and Ackerson (Phys. Rev. Lett. 2001)

The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

\[V \sim U_{\text{stokes}}^{1/3} \]
\[\ell \sim a^{1/3} \]

The Fluctuations are universal, independent of cell size.
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Change in Character of Number Fluctuations

X. Lei, B. Ackerson and P. Tong, Phys Rev Lett, 2001

Theories and Simulations

(1) Koch and Shaqfeh, 1991
 special particle distribution

 Renormalization arguments \Rightarrow screening

(2) Koch, 1994: point particle simulations
 No evidence of screening in periodic box

 particle number? \sim 30000
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Outline:

1. The Dilemma

2. Finite Cells: Expectations and Simulations

3. Wide Cell experiments (Weitz)

4. A mystery.

5. A resolution.

If there is time: A short story
 Elastic Instability of a Growing Tissue

All theories and simulations of fluctuations assumed that system is:

(a) infinite
(b) homogeneous.

Experiments are definitely not infinite.

D/a < 100
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

“Universal” Fluctuations, independent of cell size.

D/a ~ 100 (fixed)

(b) $12 \times (V_t - V_{sed})$

(e) $2 \times (V_t - V_{sed})$

Segre et al.
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Wall Effects.

\[
\Box U_{\parallel}^2(x) = \int \frac{d^3 x'}{a^3} u_{\parallel}(x \Box x')^2
\]

Integral is convergent when wall effects are taken into account!

\[
\frac{\Box U_{\parallel}^2}{U_{\text{stokes}}^2} = c(\text{geometry}) \frac{d \Box}{a} \ell \sim \frac{d}{2}
\]

How does it compare to experiments?
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

\[\nabla V_{\parallel} = V_{\text{stokes}} \sqrt{\frac{d}{a}} \]

Perhaps the uniform distribution is destabilized by boundaries?

Developed method for solving

\[\frac{dx_j}{dt} = \nabla S(x_j | \nabla x_i) \]

With bounding walls in O(N log(N)) operations.

N < 4 \times 10^6 particles
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

![Diagram](image)

- Experiments (S. Tee)
- Simulations (P. Mucha)

Diagram: Velocity Fluctuations relax to Poisson Predictions

- 64,000 particles
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

\[V_{||} = V_{stokes} \cdot 0.864 \cdot \sqrt{\frac{d}{a}} \]
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Experiments

Shang Tee, Suliana Manley, Luca Cipelletti
Dave Weitz

Increase the cell depth.

Do the velocity fluctuations increase or not?

Two techniques:

- Particle Imaging Velocimetry (~25 micron particles)
- Light Scattering (~2.5 micron particles)

Cell Sizes: (D/a, W/a, H/a) ~ (1000,5000,15000)
Simulations do not produce decay
There must be an additional physical effect.

Possible Effects:
(1) Polydispersity
(2) Inertia
(3) Boycott Effect (Cell is tilted?)
(4) Thermal Convection?
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Dr. Michael Brenner, Harvard University (KITP Colloquium 5/07/03)
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

\[\frac{U}{U_{\text{stokes}}} < 1 \]

\[\frac{U}{U_{\text{stokes}}} > 1 \]
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

The Mechanism

\[U \sim U_{stokes} \frac{\sqrt{N}}{R} \sim U_{stokes} \sqrt{\frac{R}{a}} \]
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Stratification

\[\theta = \theta_0 (1 \theta z) \]

If

\[R > \frac{\theta}{\theta} \]

Density fluctuations are suppressed

Stratification

\[\theta = \theta_0 (1 \theta z) \]

If

\[R > \frac{\sqrt{a^3}}{R^3} \]

Density fluctuations are suppressed, (Luke, 2002)
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

\[R^* \sim a \left(\frac{d}{a} \right)^{1/5} \left(\frac{d}{a} \right)^{2/5} \]

\[\Box V \sim V_{sed} \left(\frac{d}{a} \right)^{2/5} \left(\frac{d}{a} \right)^{1/5} \]

Critical Stratification! \[R^* \sim d \]

\[\Box_{crit} d \sim \frac{1}{\sqrt{N_d}} = \frac{1}{\sqrt{\Box (d/a)^3}} \]

\[(\Box d) \sim (10^3)^{3/2} 10^{2 \Box 1/2} \sim 3 \Box 10^4 \]
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Simulations Show Critical Stratification

\[\frac{\Delta V_z^2}{\Delta V_{\text{Poisson}}} \]

\[\beta / \beta_{\text{crit}} \]

A theoretical Issue
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

A theoretical Issue

Particle Dynamics

\[
\frac{dx_i}{dt} = U_{\text{stokes}} + \sum_{j \neq i} S(x_j - x_i)
\]

Continuum Model:

\[
\partial_t \phi + \nabla \cdot [u(r, t)\phi] - D \cdot \nabla \phi + \xi(r, t) = 0
\]

- average vel.
- large scale fluctuations
- short wavelength noise
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

A theoretical Issue

Particle Dynamics

Continuum Model:

\[\frac{d x_i}{d t} = U_{stokes} + \sum_{j \neq i} S(x_j \bigotimes x_i) \]

\[
\partial_t \phi + \nabla \cdot [u(r, t) \phi] - D \cdot \nabla \phi + \xi(r, t) = 0
\]

average vel. \hspace{1cm} large scale \hspace{1cm} short wavelength
fluctuations \hspace{1cm} noise

\[
u = \int (x \bigotimes x') \bigotimes (x') \, dx'
\]

\[
D = \bigotimes V \ell
\]

Including \(\bigotimes \) (or not including it) is important:

Without \(\bigotimes \), noise is only from initial condition.

A constant stratification would decay cause fluctuations to decay
continuously in time.

But, no fluctuation dissipation theorem (just self consistency argument).
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Experimental Tests

(0) **Experiments with Constant Stratification**

(1) **Time dependent stratification**

(2) Fluctuation decay rate is cell-height dependent.

(3) Suppression of number density fluctuations (Tong and Ackerson)

(4) \(j^{1/3} \) law

(5) Calculation of structure factor

Impose a salt gradient
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Dr. Michael Brenner, Harvard University (KITP Colloquium 5/07/03)
Experimental Tests

(0) Experiments with Constant Stratification

(1) **Time dependent stratification**

(2) Fluctuation decay rate is cell-height dependent.

(3) Suppression of number density fluctuations (Tong and Ackerson)

(4) $\Box^{1/3}$ law

(5) Calculation of structure factor
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Simulations

![Graph showing simulations](image)

Predict the gradient:
Diffusion Model

\[
\partial_t n + V_{sed} \partial_z n = D \partial_z^2 n
\]

D taken from simulations (cell size dependent!)

Dr. Michael Brenner, Harvard University (KITP Colloquium 5/07/03)
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Experimental Tests

(0) Experiments with Constant Stratification

(1) Time dependent stratification

(2) Fluctuation decay rate is cell-height dependent.

(3) Suppression of number density fluctuations (Tong and Ackerson)

(4) $\Delta^{1/3}$ law

(5) Calculation of structure factor
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Number Fluctuations

![Graph](image)

Data from: X. Lei, B. Ackerson and P. Tong, Phys Rev Lett, 2001

Simulations

![Graph](image)

(Dashed lines: Theoretical Model with no fitting parameters)
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Experimental Tests

(0) Experiments with Constant Stratification

(1) Time dependent stratification

(2) Fluctuation decay rate is cell-height dependent.

(3) Suppression of number density fluctuations (Tong and Ackerson)

(4) $I^{1/3}$ law

(5) Calculation of structure factor

<table>
<thead>
<tr>
<th>φ</th>
<th>Observed $\Delta V_i/V_0$</th>
<th>Poisson (2.1)</th>
<th>h/n</th>
<th>t_{crit}</th>
<th>Obs. ΔV_i/Poisson</th>
<th>$t_{\text{crit}}/t_{\text{exp}}$</th>
<th>I/I_{exp}</th>
</tr>
</thead>
</table>
| Nicolai & Guazzelli (1995):
 5×10^{-2} | 0.67 | 1.15 | 1269 | 363 | 0.58 | 0.43 | 0.48 |
 5×10^{-2} | 0.62 | 1.62 | 1269 | 162 | 0.38 | 0.19 | 0.22 |
 5×10^{-2} | 0.60 | 1.99 | 1269 | 88 | 0.30 | 0.10 | 0.12 |
 5×10^{-2} | 0.73 | 2.29 | 1269 | 55 | 0.32 | 0.065 | 0.072 |

| Segro et al. (1997):
 1×10^{-4} | 0.13 | 0.13 | 39077 | 23708 | 0.94 | 0.91 | 0.93 |
 2×10^{-4} | 0.12 | 0.13 | 12821 | 7725 | 0.87 | 0.90 | 0.93 |
 3×10^{-4} | 0.28 | 0.37 | 12821 | 7410 | 0.75 | 0.86 | 0.89 |
 3×10^{-4} | 0.56 | 0.77 | 6410 | 3616 | 0.72 | 0.85 | 0.92 |
 6×10^{-4} | 0.167 | 0.24 | 12821 | 7387 | 0.70 | 0.86 | 0.89 |
 3×10^{-4} | 0.75 | 1.18 | 12821 | 6411 | 0.64 | 0.72 | 0.76 |
 6×10^{-4} | 0.19 | 0.33 | 39077 | 22097 | 0.56 | 0.85 | 0.87 |
 2×10^{-4} | 0.53 | 0.965 | 12821 | 6390 | 0.55 | 0.75 | 0.79 |
 3×10^{-4} | 0.25 | 0.536 | 12821 | 6698 | 0.47 | 0.78 | 0.82 |
 1×10^{-4} | 0.44 | 0.979 | 12821 | 6601 | 0.45 | 0.70 | 0.74 |
 2×10^{-4} | 0.556 | 1.39 | 12821 | 5523 | 0.40 | 0.65 | 0.69 |
 4×10^{-4} | 0.244 | 0.619 | 12821 | 6547 | 0.39 | 0.77 | 0.80 |
 3×10^{-4} | 0.589 | 1.70 | 12821 | 5220 | 0.35 | 0.61 | 0.65 |
 5.5×10^{-2} | 0.75 | 2.30 | 12821 | 4735 | 0.33 | 0.55 | 0.60 |
 6×10^{-4} | 0.16 | 0.759 | 25641 | 6208 | 0.211 | 0.36 | 0.39 |

| Guazzelli (2001):
 5×10^{-4} | 0.35 | 0.50 | 2703 | 159 | 0.70 | 0.088 | 0.095 |
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Experimental Tests

(1) Time dependent stratification

(2) Fluctuation decay rate is cell-height dependent.

(3) Suppression of number density fluctuations (Tong and Ackerson)

(4) $\Delta^{1/3}$ law

(5) Measure structure factor

(a) Tony Ladd, Phys. Rev. Lett. 2002 (Lattice Boltzman, Re ~1)
(b) Sarah Dance and Martin Maxey, APS FE2
Summary

(1) Velocity fluctuations in sedimentation highly nonuniversal. Depend on container dimension + small inhomogeneities

(2) Fluctuations are sensitive to very small physical effects.

\[U \sim \sqrt{\text{Volume}} \]

Most physical effects \(\sim \) volume

(3) Diffusivity of a sediment:

\[
D \left(\phi, \frac{\partial \phi}{\partial z} \right) = \begin{cases}
CdV_0 \sqrt{\phi d/a} & \text{for } \beta \leq \beta_{\text{crit}} \\
CB^{3/5}aV_0d^4/5 \left| \frac{\partial^2 \phi}{\partial z^2} \right|^{-3/5} & \text{for } \beta \geq \beta_{\text{crit}}
\end{cases}
\]
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

- Higher Volume Fractions
- Nonzero Reynolds Numbers
- Polydispersity
- Etc.

\[\Box r^2 \]

Verifies scalings…

Dr. Michael Brenner, Harvard University (KITP Colloquium 5/07/03)
The Ongoing Saga Surrounding the Velocity Fluctuations in Sedimentation

Issues

- Fourier Transform \parallel to side walls on course mesh
- Explicitly compute flows perpendicular sums
- FFT for summing $\parallel O(N \log N)$
- Clever organizational tricks for perpendicular sums
- Near field corrections…
- Back flow

- Can do 10^6 particles; *c.f. previous 50000 periodic*