Higgs coupling measurements at LHC: challenges for QCD

D. Zeppenfeld
UW-Madison

Intro: LHC goals in Higgs physics
Overview of channels
Accuracy of coupling extraction
Requirements for signal and background predictions

Introduction
Higgs search = search for SU(2) x U(1) breaking
dynamics of Higgs boson
measure Higgs couplings
How to identify H as remnant of $SU(2) \times U(1)$ breaking

$$\phi \rightarrow \left(\frac{\chi^+}{\sqrt{2}(\nu + H + i \chi^0)} \right)$$

A tree level HWW or HZZ coupling is the smoking gun: requires vev.

$$(D^a \phi)^+ (D^a \phi) \rightarrow \frac{y^2}{2} \frac{(\nu + H)^2}{2} W^+_\mu W^\mu$$

$$(\frac{g}{\sqrt{2}})^2 W^+_\mu W^\mu \leftrightarrow W \text{ mass}$$

$$\frac{g^2}{2} H W^+_\mu W^\mu \leftrightarrow HWW \text{ coupling}$$

Gauge interactions of non-vev scalar

$\sim \phi^+ \phi W, \, \phi^+ \phi WW$

are bilinear in ϕ

- Probe fermion mass generation

$$\lambda \bar{L} \phi \tau_R \rightarrow \frac{m_F}{\nu} (\nu + H) \bar{\tau}_L \tau_R$$

measures relation between

fermion mass \leftrightarrow Hff coupling

\Rightarrow measure Higgs' Yukawa coupl.

$H\tau \tau$

Hbb

Htt etc.

measure couplings to gauge bosons

HWW

HZZ

$H\gamma \gamma$

Hgg
Principal production modes at hadron colliders

- Gluon fusion
 - Tevatron LHC

- WH/ZH production
 - Tevatron

- Weak boson fusion
 - LHC

- t\bar{t}H production
 - LHC

LHC cross sections

Dominant production processes

- Gluon fusion
 - 10-30 pb

- Weak boson fusion
 - 3-5 pb

- t\bar{t}H production
 - 0.2-2 pb
Intermediate Mass Higgs

- $H \rightarrow ZZ \rightarrow \ell^+\ell^- \ell^+\ell^- \ (\ell = e, \mu)$
 - Very clean
 - Resolution: better than 1 GeV
 - Valid for the mass range $130 < M_H < 500$ GeV/c^2

$H \rightarrow ZZ^* \rightarrow 4\ell^\pm$
Important for $m_H \leq 120-130$ GeV

$gq \rightarrow t\bar{t}H$, $H \rightarrow b\bar{b}$

CMS

$L_{\text{int}} = 30$ fb$^{-1}$

- $k = 1.5$
- gen. m_H: 115 GeV/c2
- const.: 13.63 ± 3.76
- mean: 110.3 ± 4.14
- sigma: 14.32 ± 3.70

Background and signal have similar shape

\Rightarrow must know b-tag normalization precisely
Weak boson fusion (WBF) has emerged as a powerful tool for

- Higgs search
- Higgs analysis

\[\begin{array}{c}
\text{H} \\
\text{jet} \\
\text{jet}
\end{array} \]

- sizable rate (\(\frac{1}{5}\) of gluon fusion)
- 2 forward tagging jets for efficient background rejection
- color singlet exchange: no central jets
- well known SM cross section: small NLO correction of order 10\%.

WBF is crucial for Higgs coupling measurements: \(H\gamma\gamma\) & \(HWW/HZZ\)
Results from VBF Cut Analyses

J. Asai et al. SN-ATLAS-2003-024

Bruce Mellado, Les Houches 2003, 29/05/03
Summary of main SM Higgs channels:

- $gg \to H \to \gamma\gamma$:
 - $m_H \lesssim 150$ GeV
 - $\sim \frac{\Gamma_H}{\Gamma} \approx \gamma_{\gamma}$

- $gg \to H \to ZZ \to 4\ell$:
 - $m_H \gtrsim 120$ GeV
 - $\sim \frac{\Gamma_H}{\Gamma} \approx \gamma_{Z}$

- $gg \to H \to WW \to \ell^{+}\ell^{-}j_{T}$:
 - $m_H \gtrsim 130$ GeV
 - $\sim \frac{\Gamma_H}{\Gamma} \approx X_{W}$

- $qq \to qq H, H \to \gamma\gamma$:
 - $m_H \lesssim 150$ GeV
 - $\sim \frac{\Gamma_W}{\Gamma} \approx X_{\gamma}$

- $qq \to qq H, H \to \tau\tau$:
 - 100 GeV $\leq m_H < 150$ GeV
 - $\sim \frac{\Gamma_W}{\Gamma} \approx X_{\tau}$

- $qq \to qq H, H \to WW \to \ell^{+}\ell^{-}j_{T}$:
 - $m_H \gtrsim 115$ GeV
 - $\sim \frac{\Gamma_W}{\Gamma} = X_{W}$

Statistical errors with 200 fb$^{-1}$:

- $gg \to H$
- $WW \to H + WW$
- WBF

Systematic errors:
- QCD/pdf uncertainties: $\pm 5\%$, for WBF
- $\pm 20\%$, for gluon fusion
- Luminosity/acceptance error $\pm 5\%$

Largely cancel in cross section ratios:

$$\frac{\Gamma_W}{\Gamma}, \frac{\gamma_{\gamma}}{\Gamma}, \frac{\gamma_{Z}}{\Gamma}, \frac{\gamma_{\tau}}{\Gamma}, \frac{\gamma_{W}}{\Gamma}$$
Generic problem for model-independent analysis at LHC:

\[
\text{observed} \equiv \hat{\gamma} = \frac{\Gamma_p \Gamma_d}{\Gamma} = \frac{x \Gamma_p \Gamma_d}{x^2 \Gamma}
\]

Limits on rescaling factor \(x \):

a) total width = sum of partial widths

\[
x^2 \Gamma = \sum_i x \Gamma_i \geq \sum_{i \in \{p,d,\text{obser.}\}} \Gamma_i
\]

\(\Rightarrow \ x \geq \frac{\sum \Gamma_i}{\Gamma} \) = order 1

observation of production puts lower bound on \(x \Gamma_p \).

b) total width < experimental resolution (or is measured directly!)

see \(H \to \gamma\gamma \) or \(H \to 4\ell \)

\(\Rightarrow \ x \leq \sqrt{\frac{1 \text{ GeV}}{\Gamma}} \)

Fit LHC data within constrained models:

- \(\frac{g_{Hxx}}{g_{Hbb}} = \text{SM value} \)
- \(\frac{g_{HWW}}{g_{HZZ}} = \text{SM value} \)
- no exotic channels

Assume 100 fb\(^{-1}\) of data in each of two detectors

Coupling ratios may differ from SM values in generic models.
Example: Large bottom squark corrections to the hbb vertex in SUSY models

Assume Higgs doublets/singlets only

$$g_{HWW}^2 = (g_{HWW}^2)^{SM} \sin^2(\alpha - \beta) < (g_{HWW}^2)^{SM}$$

Perform global fit to couplings for expected LHC data

QCD requirements

Signal: would like to have theory errors on production cross section at 5-10% level

<table>
<thead>
<tr>
<th>Process</th>
<th>Theory Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma(gg \rightarrow H)$</td>
<td>$\pm 10-20%$ @NNLL \rightarrow Harlander</td>
</tr>
<tr>
<td>$\sigma(WBF)$</td>
<td>$\pm 4%$ @NLO \rightarrow Grazzini</td>
</tr>
<tr>
<td>$\sigma(t\bar{t}H)$</td>
<td>$\pm 10-15%$ @NLO \rightarrow Reina</td>
</tr>
</tbody>
</table>

QCD corrections are available for all relevant production processes

- Would like to have NLO MC for $t\bar{t}H$ including $t \rightarrow bW$ in narrow width approx.
- Interface with parton shower MC
- Separation of Hjj events: $gg \rightarrow Hgg$ vs. WBF
Backgrounds

1. **Narrow resonances:** $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ \rightarrow 4\ell$

 Obtain background experimentally from sideband analysis.

2. **$H \rightarrow \tau \tau$ in WBF**

 Dominant backgrounds: $(Z \rightarrow \tau \tau) + 2$ jets

 NLO MC's are available

 Measure bkgd in $Z \rightarrow \mu \mu$ events

3. **$H \rightarrow b \bar{b}$ in $t\bar{t}H$ production**

 Dominant background: $t\bar{t}b\bar{b}$

 Need background shape at 10% level

 \rightarrow sideband analysis with LO MC

 NLO calculation ???

(4) **$H \rightarrow WW \rightarrow e^+e^-\nu\bar{\nu}$**

 Dominant background: $t\bar{t} \rightarrow W^+W^-b\bar{b}$

(a) **inclusive search (Grazzini)**

 $\sigma(t\bar{t}) < \sigma(tbW)$ after severe jet veto

(b) **WBF: $H+jj \rightarrow WWjj$**

 Need $t\bar{t}j$ at NLO

 Off-shell effects give $\sim 15\%$ correction at LO
Other areas where improvement is needed

- Use of central jet veto for
 - WBF
 - $t\bar{t} \rightarrow WWbb$ suppression

- Disentangling WBF and $gg \rightarrow Hgg$

Conclusion:

Higgs discovery is "easy"

Higgs measurements are the true challenge