A Sunyaev-Zel’dovich Effect Survey with the APEX Telescope

Nils Halverson
U. C. Berkeley

Collaborators

U. C. Berkeley
Sherry Cho
Matt Dobbs
Nils Halverson
Bill Holzapfel
Trevor Lanting
Adrian Lee

MPIfR
Frank Bertoldi
Rolf Guesten
Ernst Kreysa
Karl Menten
Peter Schilke
Science Goals

- Discover and catalog of order 1000 previously unknown galaxy clusters in a mass limited survey
- Observe evolution of structure, and test theories of structure formation
- Constrain mass density of the Universe Ω_m and dark energy equation of state w
- Measure Hubble constant H_0 and acceleration parameter q_0 independent of the distance ladder
- Study CMB secondary anisotropies – weak lensing, Ostriker-Vishniac effect

Sunyaev-Zel’dovich Effect

[Graphs showing the Sunyaev-Zel’dovich effect]

Carlstrom, Holder & Reese, ARAA, 2002
Far Future Observations: APEX

SZ Effect

Differential surface brightness is independent of redshift.

Cosmology with SZ Surveys

Nils Halverson, UC Berkeley (KITP New Cosmology Conference 8/20/02)
APEX SZ Survey Instrument

- 300 element bolometer array
- Single color observations at 2 & 1.4 mm wavelengths
- 0.4 degree field of view
- Survey 250 sq. degrees to $10 \mu K_{\text{CMB}}$ per 0.8’ pixel in two seasons
- Drift scan observing strategy to reduce differential ground pickup
- Horn coupled array → RF and stray light shielding
- TES spider web bolometers, monolithic array
- Individual bolometer SQUID readouts
- Testing pulse-tube cooler to eliminate liquid cryogens

APEX Telescope

- 12 m on-axis ALMA prototype built by Vertex RSI
- Telescope fully funded by MPIfR/ESO/Onsala
- Parts under construction
- 18 μm surface accuracy goal
- 40” resolution @ $\lambda = 2 \text{ mm}$, 6” resolution @ $\lambda = 350 \mu \text{m}$
- 0.5° maximum field of view
- To be sited at 16,500 ft in Chilean Andes
- First light mid 2003
Far Future Observations: APEX

Optimal Horn Diameter

\[S \propto \frac{N\sigma^2}{P_{\text{photon}}} \]
\[\propto \frac{N\sigma^2}{\eta_1 B_{\text{ext}} + (1 - \eta_1) B_{\text{tot}}} \]

Mapping speed

See also Griffin, Bock & Gear, 2002

Mapping Speed, FOV Fixed

See also Griffin, Bock & Gear, 2002
Far Future Observations: APEX

Mapping Speed, N fixed

![Graph showing mapping speed, N fixed](image)

- Detector noise dominated (1.98Ω, max)
- Photon noise dominated, $T_{\text{phot}} = 0$ K (1.78Ω, max)
- Photon noise dominated, $T_{\text{sc}} = 12$ K, $T_{\text{phot}} = 3$ K (1.86Ω, max)

SZ Survey Instrument Optics

- 300 element array
- 2f_λ horn diameter
- 24' (0.4 degree) field of view
- 15 cm max array diameter \Rightarrow $f < 1.75$
- Cold Lyot stop
- Cold lens

Strawman optical design
Far Future Observations: APEX

TES Bolometer Array

300 element mask

Spider web TES bolometer

3.5 mm

SQUID Readout Electronics

Shunt feedback SQUID amplifier

- Low input impedance to maintain constant voltage bias of bolometers
- Large dynamic range to accommodate AC bias up to several hundred kHz
Data Analysis Challenges

- Source confusion
- CMB
- Point sources
- Filamentary SZ
- Completeness
- Y-distortion – mass relation
- Redshift information
- Etc …

Project Status

- Telescope under construction
- APEX-SZ receiver funded and under development
- Tertiary optics: diffraction limited designs achieved
- Cryogenic testing of pulse tube cooler and microphonics in progress
- Single TES bolometer demonstrated, array design and fabrication underway
- SQUID readout prototype fabricated and under test