Mapping the Dark Matter: Mass Selected Galaxy Clusters from Weak Lensing

Joseph F. Hennawi
Princeton

Collaborators

David Spergel & Vijay Narayanan
(Princeton)
Tony Tyson, David Wittman, Vera Margoniner
(Lucent)
Jack Hughes & Sandor Molnar
(Rutgers)
Mapping the Dark Matter: Mass Selected Galaxy Clusters from Weak Lensing

Outline

- Galaxy clusters from weak lensing
- Dark clusters?
- Cluster Tomography
- N-body simulations
- Optimal filtering
- Constraining dark energy

Gravitational Lensing

Galaxy Cluster Abell 2218
HST • WFPC2

NASA, A. Fruchter and the ERO Team (STScI, ST-ECF) • STScI-PRC00-08
Mapping the Dark Matter: Mass Selected Galaxy Clusters from Weak Lensing

Weak Lensing by Large Scale Structure

First Mass-Selected Cluster
(Wittman et al. 2001)

- First cluster discovered through its lensing effect rather than radiation!
- $\sigma_{\text{vel}} = 615 \text{ km s}^{-1}$
- $z_{\text{spec}} = 0.28$
- Deep Lens Survey (DLS)
 - 28 deg2
 - could find ~ 200 clusters
- LSST
 - 30,000 deg2
 - up to 300,000 clusters
Mass-Selected Cluster Samples

How can we find clusters of galaxies?
- Optical
- X-ray
- Sunyaev-Zeldovich effect
- Weak lensing survey

Biased?

The first Mass-Selected cluster sample WILL:
- Determine biases in other cluster samples
 - richness and morphology?
 - relaxed or merging?
- Test the “fair sample” hypothesis used to determine Ω_m. Is there a class of high M/L clusters?
- Number counts. Cosmological parameters with little assumption about baryons in clusters

CONSTRAIN DARK ENERGY

Is there a population of DARK CLUSTERS?

The Case For Dark Clusters

(circa 2002)
Exhibit A: WL 1017.3+5931
(Dahle et al. 2002)

- Primary peak is a bright X-ray cluster Abell 1959 at $z = 0.29$
- No significant concentration of early type galaxies at position of secondary peak, $M/L > 500$.
- Secondary peak is at least a factor of two X-ray underluminous if at $z = 0.29$

Exhibit B: Q2345+007 -- Binary QSO or Dark Lens?
(Steidel & Sargent 1991; Green et al. 2002; Tyson et al in prep 2003)

- Most prominent wide-separation quasar pair (WSQP) with $\Delta \theta = 7.7^\prime$
- The masses required for such large image splittings are $M = 10^{14} M_\odot$
- Deep Chandra observations indicate that any cluster would have a baryon fraction a factor of ~ 3 lower than known clusters
- Four other WSQP’s with similar spectra, identical redshifts, and no lens galaxy exist.

Joe Hennawi, Princeton Univ (KITP New Cosmology 11/13/02)
Mapping the Dark Matter: Mass Selected Galaxy Clusters from Weak Lensing

Exhibit C: Abell 781 vs DLS #??

- Mass map
- Chandra
- Abell 781
- Mystery Object

- Mass map
- R band images

Cluster Tomography

- Distant Source Galaxies
- Galaxy Cluster @ z = 0.5
- Foreground Source
- Lens Strength
 \[\frac{\sum_{\text{crit}} \alpha \left| \frac{D_{\text{lens}}}{D_{\text{source}}} \right|}{\sum_{\text{crit}}} \]
- Source Redshift Distribution
 \[P(z) \]
- Lens Strength
 \[z_{\text{lens}} = 0.5 \]

The blue galaxy is sheared more than the red galaxy.
The green galaxy is not sheared.
Mapping the Dark Matter: Mass Selected Galaxy Clusters from Weak Lensing

Cluster Tomography
(Wittman et al. 2001, 2002)

- Assume a mass profile and fit for shear as a function of source photometric redshift
- $z_{\text{spectra}} = 0.28$
- photo z’s + tomography

$z_{\text{lensing}} = 0.30$

How reliable is this technique?

Weak Lensing Simulations

- Tile the light cone with N-body simulation cubes (White & Hu 1999)

- Project the matter distribution to determine the shear field at the observer

- Place mock source galaxies at random positions, consistent with observed number densities and intrinsic ellipticities

- Shear the mock galaxies with the shear field
Weak Lensing Simulations

- Smooth the shear field with an “optimal filter” and search for peaks.
- Apply a group finder to find collapsed halos. Detected clusters are traced back to simulations cubes for cluster statistics.

Advantages of Simulations

- Properly simulate alignments and projections, which can be severe.
- The selection function can be simulated for any cosmology, foregoing the need to acquire a “complete” sample.
- Mock observations allow us to Monte-Carlo simulate parameter estimates, for realistic error forecasts.
- Fast Particle Mesh (PM) algorithm:
 - simulate large areas of sky to accurately represent the statistics of rare events (every cluster is unique)
 - allows rapid exploration of parameter space
Mapping the Dark Matter: Mass Selected Galaxy Clusters from Weak Lensing

Cluster Tomography

- $z_{\text{real}} = 0.63$
- $z_{\text{lensing}} = 0.67$
- $M = 1.0 \times 10^{15} M_{\odot}$

Wrong!

Projections & Alignments

- $z = 0.33$
- $26'$
- 57 Mpc
- (10 Mpc slab)

Joe Hennawi, Princeton Univ (KITP New Cosmology 11/13/02)
Optimal Filtering

- “Noise” in weak lensing searches for clusters requires that shear maps be smoothed
 - white noise from finite sampling and intrinsic ellipticities
 - confusion from large scale structure
 - projection effects
- For white noise a “matched filter” will optimally extract a signal of known shape
- Galaxy clusters are identified as the peaks in smoothed maps that lie above a threshold ν
- For any given threshold ν define the efficiency as the ratio
 $$\text{efficiency} = \frac{n_{\text{clusters}} (> \nu)}{n_{\text{peaks}} (> \nu)}$$

Adaptive Matched Filter

- In the absence of source redshifts, the observable is the mean shear averaged over the source redshift distribution
 $$\bar{\gamma} = \int P(z) \gamma(z) \, dz$$
- Two filters have been widely used on this quantity
 - Gaussian
 - Aperture Mass $M_{ap}(\theta)$
- If photometric redshifts are available for some sources, tomography and matched filtering can be combined.
- *Adaptive Matched Filtering* uses redshift information to optimally weight source galaxies, producing a likelihood and tomographic redshift for each line of sight
Adaptive Matched Filter

- The maximum intrinsic efficiency of weak lensing cluster surveys is ~ 80%.
- Dark clusters cannot be distinguished from the projections, but statistical conclusions can be made.
- For the most significant detections, the dispersion in tomographic redshifts is still $\sigma_z \sim 0.2$
- Photo z’s increase the number of clusters detected by 10-20%.

Adaptive Matched Filter

The Adaptive Matched Filter detects more clusters at high redshift and low mass.
Cluster Counting Basics

- **Goal:** Determine cosmological parameters by comparing the observed distribution of clusters to predictions from theory/N-body simulations
- **However** cluster mass is not an observable. Instead we measure:
 - SZ decrement
 - X-rays (L_X or T_X)
 - Richness
 - Galaxy σ_v
 - Shear γ
- **To interpret the observations we must know**
 - $M(\text{observables},z)$
 - Completeness(observables,z)

Cluster Counting Caveats

- Usually one writes
 \[
 \frac{dN}{d\Omega dz}(w) = \frac{dV}{d\Omega dz} \int_{M_{\text{limit}}(z)}^{\infty} C(M,z) \frac{dn}{dM} (M,z | w) dM
 \]

- **The mass function is steep and exponentially sensitive to errors in $M_{\text{limit}}(z)$ and uncertainty in $M(\text{observables},z)$.** These errors mimic cosmological parameter changes!
- **Until these relationships (and their scatter) can be empirically calibrated, this test relies on uncertain assumptions about baryons in clusters**
- **Solutions:** Either determine $M_{\text{limit}}(z)$ from your cluster survey, or devise a test that is insensitive to the limiting mass.
CMB Degeneracy

Quintessence parameter ‘w’

\[\rho_{DE} = w \rho_{DE} \]

\[w = 0 \rightarrow \text{matter} \]
\[w = -1 \rightarrow \Lambda, \text{cosm const} \]
\[w = 1/3 \rightarrow \text{radiation} \]

\[\rho_{DE} \propto (1+z)^{(1+w)} \]

Parameter combinations that leave the angular diameter distance to the last scattering surface and the physics of acoustic oscillations unchanged produce identical CMB power spectra.

Cosmic Shear Degeneracy

Cosmic Shear Power Spectrum

LCM: [\Omega_m = 0.29, \Lambda = 0.71, h = 0.68, \sigma_8 = 0.84, w = -1]

QCDM: [\Omega_m = 0.40, \Omega_\Lambda = 0.6, h = 0.58, \sigma_8 = 0.73, w = -2/3]

Simulated

Analytical

Linear theory power spectra

Non-linear power spectra

Intrinsic ellipticity shot noise

all sources @ $z_s = 1.0$
Mapping the Dark Matter: Mass Selected Galaxy Clusters from Weak Lensing

Breaking the Degeneracy

![Graph showing growth factor, volume element, and lensing kernel for LCDM and QCDM models.](image)

LCDM: $\Omega_\gamma = 0.29$ $\Lambda = 0.71$

$h = 0.68$ $\sigma_8 = 0.84$ $w = -1$

QCDM: $\Omega_\gamma = 0.40$ $\Omega_\Lambda = 0.6$

$h = 0.58$ $\sigma_8 = 0.73$ $w = -2/3$

Breaking the Degeneracy

![Graph showing comoving and angular number densities of clusters for LCDM and QCDM models.](image)

LCDM: $\Omega_\gamma = 0.29$ $\Lambda = 0.71$

$h = 0.68$ $\sigma_8 = 0.84$ $w = -1$

QCDM: $\Omega_\gamma = 0.40$ $\Omega_{\Omega} = 0.6$

$h = 0.58$ $\sigma_8 = 0.73$ $w = -2/3$
QCDM or LCDM?

- Redshift distributions differ at a high statistical significance
- The lensing efficiency is broader for LCDM than for QCDM, and thus probes a broader range of \(z \) and \(M \)
- Unlike other cluster counting surveys, this test is ROBUST against uncertainties in mass limit.

Conclusions

- Fast numerical simulations of weak lensing are a valuable tool to accurately predict cluster statistics over a large region of parameter space
- Using photo \(z \)'s with an Adaptive Matched Filter detects up to 10-20% more clusters and recovers more clusters at high redshift and low mass.
- Even for the most significant detections, the dispersion in tomographic redshifts is still \(\sigma_z = 0.2 \).
- Weak lensing cluster surveys are plagued by projections --- the maximum intrinsic efficiency is ~ 80%.
- Only statistical statements about a population of dark clusters can be made from weak lensing
- The normalized redshift distribution of mass selected clusters is a powerful probe of dark energy and is insensitive to uncertainties in the mass limit.