Wannier Functions: Localization Properties and Explicit Construction

S. Satpathy and Z. Pawlowska, MPI, Stuttgart (1988)

Look-aikes of Ole and Sashi in the spherical cow approximation

Resurrecting the paper from its grave

Minimal local-orbital sets, direct generation of Wannier-like functions, and applications to HTSCs

WF

Good points:
- Nice to think about electron states in terms of localized states Cu(d), O(p), etc.
- Local orbitals natural way to build models for correlated systems, e.g., Hubbard models

Bad points:
- Not uniquely defined - can vary strongly in shape or range as opposed to Bloch functions that are unique (except for an overall phase factor)

How to build them:
- Kohn's variational method
- Superposition of Bloch functions
- NMTO

Implemented by Kane and Kane (1978)
- Too cumbersome

SS+ZP (1988, LMTO), Marzari-Vanderbilt (1997, plane waves)

Choice of phase.

Andersen et al, in progress

Localization Properties of WF

Q. How well do we localize the WF?

- People involved: Kohn (1959), Des Cloizeaux (1964), Nenciu (1990)

1 D: For every band, there exists one and only one WF, which has all three of the properties:

1. It is real.
2. It is either symmetric or AS.
3. It falls off exponentially, $W \sim \exp(\cdot\cdot\cdot)$. Related to the analyticity of the band structure in the complex k space

Decay constant A is related to how far away is the branch point in the complex k plane.

$$A \sim \frac{\text{Gap}}{1/2}$$

If Bloch functions $\psi_k(x)$ are differentiable in k and analytic in a complex neighborhood of k, then the WF falls off exponentially. (Nenciu, RMP, 1991)

Q. Can one construct more localized function by relaxing reality and symmetry conditions?

Answer: NO!

For touching bands, there is no exponential localization!!
Localization of WF in 3D

- Isolated single band

 exponential localization is proved. (Nenciu, Commun. Math.
 Phys., 91, 81 (1983))

- Multiple bands (Des Cloizeaux, PR 135, A698 (1964))

 in “many” cases, it can be proved that:

 If Bloch functions are analytic in the domain of
K = K' + iK'' for |K''| < A, then the
 corresponding WF falls off exponentially.

 Working conjecture: For all cases of isolated groups of
bands, exponentially localized WF exists, but no proof for
 existence has not been found yet!
Minimal local-orbital sets, direct generation of Wannier-like functions, and applications to HTSCs

Calculation Details

- With that conjecture, we proceed to compute WF for a 3D composite bands.
 (valence bands of Si)
- Stick to the established ideas in 1D
 a) Reality of \(\gamma_k \)
 b) Symmetry (maximum symmetry compatible with 3D bands)
 (\(\Gamma \) irrep of \(D_3d \) group)
- Compute \(\gamma_k \) using LMTO in the \(\frac{1}{4} \)th BZ and construct \(\gamma_k \) in full zone
 from symmetry
- Choice of phase factor: \(e^{-i\kappa_r} \)
 \(\langle \gamma_k | \psi \rangle = \sum_{m=1}^{N} U(x) \langle \gamma_m | \psi \rangle e^{-i\kappa_r} \)

Sp\(^3\) Bond orbital (BO)

- Directed bond: \(\frac{1}{2}(s+x+y+z) \)
- \(\text{BO} = \frac{1}{\sqrt{2}} (b_1 + b_2) \)

The four sp\(^3\) Bond orbitals span the same symmetry as the four valence bands at every \(k \) point in the Brillouin zone

WF will have to have the same symmetry as that of the sp\(^3\) bond orbital, viz., the \(\Gamma_1 \) irrep of the \(D_3d \) (tetrahedral) group.

Else, stuff such as degeneracies etc. will not be correct for bands obtained with the WF of wrong symmetry.

"continuity chord" ideas: see J. Zak, PRL 54, 1075 (1985)
Minimal local-orbital sets, direct generation of Wannier-like functions, and applications to HTSCs

sp³ bond orbital character dominates in the valence charge density of Group-IV semiconductors

- Bond orbital 72% for Si, while AB is just 4%.
- “Bond-order” (B-AB) progressively weakens in going from C to a-Sn.
- Quantitative justification for focusing on the sp³ BO part in constructing the WF.

<table>
<thead>
<tr>
<th>crystal</th>
<th>lattice constant (Å)</th>
<th>character (%)</th>
<th>Si-Si 3</th>
<th>Si-Si AB</th>
<th>Si-d</th>
<th>Ex. 2, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.356</td>
<td>77</td>
<td>1</td>
<td>3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>0.540</td>
<td>77</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>0.566</td>
<td>77</td>
<td>5</td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>w-Sn</td>
<td>0.549</td>
<td>71</td>
<td>6</td>
<td>8</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

*Construct WF such that the projection of it to the central BO is maximized.

Test of convergence of log |Ψ(cell)|² as a function of the number of k points
Minimal local-orbital sets, direct generation of Wannier-like functions, and applications to HTSCs

Wannier Function for Silicon

WF constructed with LMTO (SS+ZP, 1988)

Charge-density character of the WF

<table>
<thead>
<tr>
<th>cell location</th>
<th>silicon</th>
<th>empty sphere</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>central</td>
<td>rest</td>
<td>d</td>
</tr>
<tr>
<td>central cell</td>
<td>sp3 bond</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>nearest-neighbor cell</td>
<td>sp3 anti-bond</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>rest</td>
<td>18</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>total</td>
<td>54</td>
<td>0</td>
<td>22</td>
</tr>
</tbody>
</table>

Character of the silicon charge-density for C, Si, Ge, and α-Sn

<table>
<thead>
<tr>
<th>crystal</th>
<th>lattice constant (nm)</th>
<th>character (%)</th>
<th>B</th>
<th>B-Sn AB</th>
<th>BS-d</th>
<th>E-d</th>
<th>E-d, p, d</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.356</td>
<td>77</td>
<td>1</td>
<td>3</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>0.389</td>
<td>54</td>
<td>4</td>
<td>5</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ge</td>
<td>0.386</td>
<td>54</td>
<td>5</td>
<td>3</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α-Sn</td>
<td>0.548</td>
<td>71</td>
<td>5</td>
<td>4</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Minimal local-orbital sets, direct generation of Wannier-like functions, and applications to HTSCs

Exponential localization of the calculated WF

Complex band structure of Chang using empirical TB (PRB, 25, 605 (1982)).
Branch-points of $E(k)$ at $k$$\frac{\pi}{a}$$7$$\pi/a_{k_{111}}$, and $k$$\frac{\pi}{a}$$5$$\pi/a_{k_{100}}$.

If we assume no other branch point in the range $|\text{Im}(K)|<0.5\pi/a$, then that indicates a decay of $W \sim \exp(-d/0.64a)$.

[log $|\Psi_{\text{cell}}|^2$ vs. distance of cell from origin d (units of lattice constant), showing exponential decay. SS and ZP (1988)]
Minimal local-orbital sets, direct generation of Wannier-like functions, and applications to HTSCs

Wannier Function for Silicon

So-called “Maximally projected” WF constructed with LMTO (to maximize BO contribution) (SS+ZP, 1988)

So-called “Maximally localized” WF constructed with plane-wave pseudopotential (Marzari & Vanderbilt, 1997)

Test of convergence of $\log |\Psi_{\text{cell}}|^2$ as a function of the number of k points (SS+ZP)

$N = \# \text{ of k points in } \frac{1}{48} \text{th BZ}$
Integrated charge-density character of the WF, $S(d)$, within a sphere of radius 'd'.

Conclusion

- Bond-centered WF constructed for the Si valence bands, by direct superposition of Bloch functions and a choice of phase to maximize the sp3 BO contribution.
- Exponential fall off of the WF demonstrated: $W \sim \exp(-d/0.8\ a)$
- This is the most localized in the sense that the central sp3 character is maximum; this character will necessarily reduce if we maximize some local operator, such as $\langle W|1/r^2|W\rangle$, instead.
Minimal local-orbital sets, direct generation of Wannier-like functions, and applications to HTSCs

Issues and Questions

- Uniqueness
- How universal is the method for calculating WF?
- NMTO as a method to compute WF
- How to compute parameters (U etc) for model Hamiltonians in some unique manner?
- WF for non-isolated bands - How crucial is the lack of exponential localization?