Evidence of Phase Separations in TMTSF2X Compounds and V2O3

The AF insulator-metal transition

Three cases of phase segregation

The TM2X phase diagram
BEDT-TTF2X
and V2O3

Acknowledgements to:
T. Vuletic
M. Hérrier
C. Pasquier
P. Auban
E. Semel
S. Lefebvre

The border between AF (insulating) and SC

Canonical picture, in 1980!
1st order reentrant superconductivity ??
Revisiting the border SDW/SC in TMTSF$_2$PF$_6$.

Canonical picture!

1st order reentrant superconductivity ??

Better quality measurements,

Very good pressure control at low T and

19 runs made with the same sample!!

T. Vuletic (thesis) and
cond-matt 0109031

Coexistence between SDW and SC at the border in (TMTSF)$_2$PF$_6$

T. Vuletic EPJ-B, 25, 319, 2002
cond-matt 0109031

T_{sc} decreasing under pressure in the homogeneous domain

T_{sc} stays constant in the SDW/SC domain
Evidence of Phase Separations in TMTSF2X Compounds and V2O3

Activation plots close to T_{SDW}

Model:
SDW and metallic domains in parallel
\[
\frac{1}{R} = \frac{c}{R_{m}} + \frac{(1-c)}{R_{SDW}}
\]

$c =$ fraction of metallic volume

The SDW/SC coexistence regime

- **High pressure**
 - $I_{c}=45$ mA
 - $J_{c}=200$ A/cm²
 - $R_{n}=1.2$ mΩ
 - Normal state R_{n} is recovered

- **Lower pressure**
 - $I_{c}=7$ mA, only a fraction of the cross section is SC
 - $R_{n}=15$ mΩ
 - \ll extrapolated $R_{SDW}=120$mΩ
 - Sliding SDW ($E/E_T=5$)

Dr. Denis Jérome, University Paris Sud, Orsay (KITP Correlated Electrons 11/07/02)
Evidence of Phase Separations in TMTSF2X Compounds and V2O3

Phase segregation

SDW/Metal segregation gives lower energy than the homogeneous phase in the vicinity of the border.

Coexistence between SDW and M: a simple model

\[E_{\text{SDW}}(u) \quad \text{from (Yamaji and others)} \]

\[E_{\text{SDW}}(u) - \Delta E \]

SDW + M

Homogeneous SDW

\[T = 0 \text{ K} \]

Dr. Denis Jérome, University Paris Sud, Orsay (KITP Correlated Electrons 11/07/02)
Evidence of Phase Separations in TMTSF2X Compounds and V2O3

\[\Delta F_{\text{total}} = \Delta E_{\text{elastic}} + \Delta F_m \]
\[\delta b_2 / \delta b_1 = (1 - c) / c \]

Gain
\[\Delta F_m = (1 - c) \left(\frac{\partial F_m}{\partial t_b'} \right) \left(\frac{\partial t_b'}{\partial b} \right) \delta b_1^2 - cF_m(t_b') \]

Loss
\[\Delta E_{\text{elastic}} = (1 - c) K \left(\delta b_1 \right)^2 + cK \left(\delta b_2 \right)^2 \]
\[= \frac{1 - c}{c} \frac{K}{\delta b_1^2} \]

Minimization / c and \(\delta b_1 \)
\[\Delta F_{\text{total}} = -\frac{1}{4} \left[\frac{1}{4K} \left(\frac{\partial F_m}{\partial t_b} \right)^2 \left(\frac{\partial t_b}{\partial b} \right)^2 - F_m(t_b') \right]^2 < 0 \]

The segregation scenario in TM2X and related compounds

T. Vuletic et-al,
EPJ-B, 25, 319, 2002
cond-matt 0109031

Adding the superconducting condensation energy broadens the coexistence regime

Dr. Denis Jérome, University Paris Sud, Orsay (KITP Correlated Electrons 11/07/02)
Evidence of Phase Separations in TMTSF2X Compounds and V2O3

Universal TM,X phase diagram from TMTTF,PF, under pressure

Divergence of Hc2//c in the coexistence regime

Hc2 //c in TMTTF,PF, from \(\rho_a \) data vs T

No triplet pairing is needed to explain the large critical fields close to the border

H Wilkinson et al
J Phys. Cond. Matt
13, 1, 2001
EPJB 21, 175, 2001
cond-mat/005378

H. Wilhelm et al, unpublished

Dr. Denis Jérome, University Paris Sud, Orsay (KITP Correlated Electrons 11/07/02)
Evidence of Phase Separations in TMTSF2X Compounds and V2O3

Superconductivity in TMTTF2BF4

Critical current in the coexistence regime

P. Auban et al (to be published)

Dr. Denis Jérome, University Paris Sud, Orsay (KITP Correlated Electrons 11/07/02)
Evidence of Phase Separations in TMTSF2X Compounds and V2O3

\[\kappa \text{-(BEDT-TTF)}_2 \text{Cu[N(CN)}_2\text{]}\text{Cl Mott transition and SC/AF coexistence} \]

ET\(_2\)X family
2D superconductor
\(T_c = 12 \text{K} \)

\[\text{S.Lefebvre et al PRL 25,5420, 2000 cond mat 0004455} \]

SC/AF coexistence again!

Epilogue

Bechgaard salts:

« The most interesting materials ever discovered »

Paul Chaikin

all organics are interesting !!

D.J
Evidence of Phase Separations in TMTSF2X Compounds and V2O3

V2O3 series: an old prototype for the Mott transition

V2O3, transport near the critical pressure

P. Auban, E. Semel et al.
Evidence of Phase Separations in TMTSF2X Compounds and V2O3

Entering the AF phase R_0 increases 6 times more than R_A.

--> Thin metallic walls sensitive to impurities

--> Transport is ohmic in the inhomogenous state --> non interrupted metallic paths

$R = R_0 + R_A T^2$
Phase coexistence is clearly evidenced near P_c in TM$_2$X

be careful for the study of the superconducting properties

Stay away from the coexistence regime

Seems to be a general phenomenon

in V$_2$O$_3$

and 2D organics