Nanoscale Self-organized Hexamers and Octamers in spinels

S.-W. Cheong: Rutgers U.

Hexamers in ZnCr₂O₄: Nature, Aug. 2002
W. Ratcliff
S. H. Lee
C. Broholm
Rutgers U.
NIST
Johns Hopkins U.

Octamers in CuIr₂S₄: Nature, March 2002
Y. S. Hor
H. Ishibashi
T. Y. Koo
V. Kiryukhin
R. G. Radaelli
M. J. Gutmann
R. M. Ibberson
Rutgers, U.
ISIS

Y. Horibe
C. H. Chen
Bell Labs

* Partially supported by Rutgers/Maryland MRSEC
3 Kagome- + 2 Hexagonal layers

History of Spinels

[1] Fe$_2$O$_4$: Magnetite: Natural magnet: Discovered in Magnesia (a part of ancient Greece, now Turkey)

[3] Spinel MgAl$_2$O$_4$

[5] Verwey transition in Fe$_2$O$_4$:
 - E. J. Verwey and P. W. Haaymann, Physica 8, 979 (1941).

[7] 1st oxide superconductor: LiTi$_2$O$_4$ ($T_c=13.7$ K):
1st oxide heavy fermion: LiV$_2$O$_4$:

[8] Geometric Frustration Problem
B-lattice of spinel AB_2O_4:

identical with B-lattice of pyrochlore $A_2B_2O_7$

[3] Completely tiled by

Hexamers (with 6 B ions) or Octamers (with 8 B ions)

* they are decoupled,
i.e., no (corner, edge, or face) sharing

$\text{ZnCr}^{3+}_2\text{O}_4$: insulator
($T_N \approx 12$ K and $\theta_{CW} \approx 390$ K)

Cr^{3+}: $3d^3$: $S=3/2$

$\text{Cu}^{1+}\text{Ir}^{3.5+}_2\text{S}_4$: metal-insulator transition at ~ 220 K.

Ir^{3+}: $5d^6$: $S=0$
Ir^{4+}: $5d^5$: $S=1/2$
Spinel \(\text{CuIr}_2\text{S}_4 \) crystal

\(F_{3dm} \): normal spinel
\(A \approx 9 \text{Å} \)

Y. S. Hor, W. Ratcliff, N. J. Hur, and S-W. Cheong
Spin dimerization within a Ir\(^{4+}\)(S=1/2; 5d\(^5\))-octamer

\(~3.4\ \text{Å}\) separation between Ir\(^{4+}\) pairs becomes
\(~3\text{Å}\) (for dimerized pairs) and
\(~3.5\ \text{Å}\) (for non-dimerized pairs)

Bragg peak profiles of CuIr\(_2\)S\(_4\) in the vicinity of the 400 cubic spinel peak.
Superlattice reflections of Cul$_2$S$_4$ and Cul$_{1.95}$Cr$_{0.05}$S$_4$.

X-ray-induced transition in Cul$_2$S$_4$.
X-ray-induced reduction of (001) superlattice peak intensity and resistivity in CuI_2S_4 at 10 K

Electron-beam-induced transition in CuI_2S_4

- Forbidden peaks become diffusive at low T, in e-beam.
Enhanced symmetry of average structure of CuIr$_2$S$_4$ with cooling: *possibly due to x-ray-induced nematic-like phase?*

\[i.e., \text{octamers are disordered, but the orientation of octamers as well as the dimerization directions are maintained.} \]

\[i.e., \text{short-range translational ordering and long-range orientation ordering of octamers.} \]
Magnetic neutron scattering
near $Q=1.5$ Å$^{-1}$ in ZnCr$_2$O$_4$

ZnCr$_2$O$_4$

(a) Energy of inelastic magnetic scattering near $Q=1.5$ Å$^{-1}$ vs. Temp.

(b) Magnetic (elastic) Bragg scattering and lattice constants vs. Temp.
Magnetic neutron scattering near $Q = 1.5 \text{ Å}^{-1}$

The magnetic feature:
changes from inelastic to elastic as well as quasi-elastic (depending on temp. and disorder), but occurs always near $Q=1.5 \text{ Å}^{-1}$

\Rightarrow Similar shape or configuration in real space
Hexamer: antiferromagnetic hexagonal spin loop

Hexamers with four different orientations

Hexamer form factor:

\[F_6(Q) \propto \left\{ \sin \frac{\pi}{2} h \cdot \left(\cos \frac{\pi}{2} k - \cos \frac{\pi}{2} l \right) \right\}^2 + \left\{ \sin \frac{\pi}{2} k \cdot \left(\cos \frac{\pi}{2} l - \cos \frac{\pi}{2} h \right) \right\}^2 + \left\{ \sin \frac{\pi}{2} l \cdot \left(\cos \frac{\pi}{2} h - \cos \frac{\pi}{2} k \right) \right\}^2 \]

Magnetic neutron scattering intensity:

\[I(Q) = |F_6(Q)|^2 |f(Q)|^2, \]

where \(f(Q) \) is the \(\text{Cr}^{3+} \) magnetic form factor.
Collinear 6 spins in a hexamer can freely change the overall spin direction!
CONCLUSION

[1] Hexamers or octamers can tile the entire spinel or pyrochlore B-lattice.

[2] Hexamers in ZnCr$_2$O$_4$:
Fundamental unit for low-energy spin excitations
 * Nature, accepted.

[3] Octamers in CuIr$_2$S$_4$:
Charge ordering induces isomorphic Ir$^{3+}$- and Ir$^{4+}$- octamers.
Spin dimerization within Ir$^{4+}$(S=1/2)-octamers.