Theory of phonon anharmonicity in MgB$_2$ and related compounds

Lilia Boeri, Emmanuele Cappelluti, Luciano Pietronero, and GBB

INFM Center for Statistical mechanics and Complexity and
Dipartimento di Fisica, Università La Sapienza, 00185 Roma, Italy

MIUR Grant COFIN2001

Outline

- MgB$_2$ geometry, electronic bands, Fermi surface
- Phonons, e-ph interaction and the E$_{2g}$ mode
- Strong E$_{2g}$ anharmonicity
- Simple model: strong e-ph + small E$_F$
- Conclusions
The Theory of Phonon Anharmonicity in MgB$_2$ and Related Compounds

MgB$_2$ geometry

- Boron layers (light blue)
 - Graphite-like (stacking)
 - $a = 3.1\,\text{Å}$, $c = 3.5\,\text{Å}$
- Magnesium planes (yellow)
 - Each Mg atom fills a nearly spherical pore
 - Doubly ionized, donates 2 electrons to the B network

“primitive” graphite bands

- σ bands
 - Covalent
 - Essentially 2D
 - Carbon sp_2 (s and $p_{x,y}$)
- π bands
 - 3D dispersion
 - Carbon p_z

J.M. An, W.E. Pickett, Phys. Rev. Lett. 86, 4366 (2001);
K.D. Belashchenko, M. van Schilfgaarde, and V.P. Andropov, Phys. Rev. B 64, 092503 (2001);

MgB$_2$ vs. graphite: isoelectronic, but some of the positive charge is now available in the form of positive Mg$^{++}$ ions between the sp_2 planes.
Theory of Phonon Anharmonicity in MgB$_2$ and Related Compounds (Aug 21, 2002)

MgB$_2$ bands

- **σ** bands
 - Covalent
 - Strongly 2D
 - Boron sp$_2$ (s and p$_{x,y}$)

- **π** bands
 - 3D dispersion
 - Boron p$_z$-Mg
 - Pulled down w.r.t. σ

\[J.M. \text{ An, W.E. Pickett, Phys. Rev. Lett. 86, 4366 (2001);} \]
\[K.D. \text{ Belashchenko, M. van Schilfgaarde, and V.P. Andropov, Phys. Rev. B 64, 092503 (2001);} \]
\[Y. \text{ Kong, O.V. Dolgov, O. Jepsen, and O.K. Andersen, Phys. Rev. B 64, 020501 (2001);} \]
\[G. \text{ Satta, G. Profeta, F. Bernardini, A. Continenza, S. Massidda, Phys. Rev. B 64, 104507 (2001).} \]

MgB$_2$ Fermi surface

- Green and blue cylinders, hole like, bonding p$_{x,y}$
- Blue tubular network, hole like, bonding p$_z$
- Red tubular network, electron like, antibonding p$_z$

\[J. \text{ Kortus, I.I. Mazin, K.D. Belashchenko, V.P. Antropov, L.L. Boyer} \]
\[\text{Phys. Rev. Lett. 86, 4656 (2001)} \]
Phonons: the important one is E_{2g}

Kong, Dolgov, Jepsen & Andersen
Phys. Rev. B 64, 020501
DFT + FP-LMTO + LR
- Electronic structure
- Phonon spectrum
- e-ph interaction

E_{2g} mode at $k=0$

E\(_{2g}\): strong e-ph *and* anharmonicity

Giant Anharmonicity and Nonlinear Electron-Phonon Coupling in MgB\(_2\): A Combined First-Principles Calculation and Neutron Scattering Study

- In-plane motion of the B atoms
- Change of the B-B orbital overlap
- Large e-ph for the planar, B-derived, \(\sigma\) conduction bands at \(E_F\)
- Band structure with and without a lattice distortion of a zone-center \(E_{2g}\) phonon
- Anharmonicity effectively increases the phonon frequency (~70meV ~80meV)
- Anharmonicity exclusive of \(E_{2g}\)
- Anharmonicity helps superconductivity

Understanding the \(E_{2g}\) anharmonicity: comparison of MgB\(_2\), AlB\(_2\), and graphite

- AlB\(_2\)
 - much higher frequency (~120meV), NO anharmonicity: expt & theo, K.-P. Bohnen et al. PRL 86, 5771 (2001)
 - Yet the AlB\(_2\) \(\sigma\) bands are very similar (An &. Pickett, PRL 86) to MgB\(_2\); their deformation potential must also be large
- What about graphite? (bands & bonds also very similar)

- Guess: for the \(\sigma\) bands, besides a large \(\partial\varepsilon/\partial u\), the small hole Fermi energy (\(E_{\sigma}^{\text{top}} - E_F\)) is crucial
- Plan:
 - LDA\(^*\) bands, \(E_{2g}\) frozen-phonon total energies for MgB\(_2\), AlB\(_2\), graphite, and virtual graphite++
 - Check deformation potential
 - Check anharmonicity
 - Make a simple model

\(^*\) Based on the ABINIT code, a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors (URL http://www.abinit.org)
The shift and splitting is almost the same, but in MgB$_2$, the hole Fermi energy is small and, upon distortion, one of the two σ bands completely sinks below the E_F (horiz. line).

In AlB$_2$ instead, both σ bands are always below E_F.

By artificially charging (+,++) graphite (not shown) we may sweep E_F through the σ bands.

L. Boeri et al., PRB 65, 214501 (2002)

E$_{2g}$ phonon: effects on the Fermi surface

- Blue σ cylinders expand
- Green σ cylinders shrinks and eventually disappears

(numerical k-space integration must be careful)
Frozen E_{2g} phonon energies in MgB$_2$, AlB$_2$, and graphite

Perfectly harmonic phonons all collapse on the $y=x$ straight line in this plot. The symbols correspond to LDA calculations [L. Boeri et al., PRB 65, 214501 (2002)]

Simple model for anharmonicity
Perfect lattice ($u=0$)

Particle No.

\[N(u=0) = 2 \int_{-W_\sigma}^{\mu=0} N_\sigma d\varepsilon + \int_{-W_\pi}^{\mu=0} N_\pi d\varepsilon = 2N_\sigma W_\sigma + N_\pi W_\pi \]

Energy

\[E(u=0) = 2 \int_{-W_\sigma}^{\mu=0} N_\sigma \varepsilon d\varepsilon + \int_{-W_\pi}^{\mu=0} N_\pi \varepsilon d\varepsilon = N_\sigma W_\sigma^2 + \frac{1}{2} N_\pi W_\pi^2 \]
Model bands upon lattice distortion

\[\varepsilon_1(k, u) = \varepsilon_1(k) - gu \]
\[\varepsilon_2(k, u) = \varepsilon_2(k) + gu \]
\[\varepsilon_\pi(k, u) = \varepsilon_\pi(k) \]

\(\sigma \) bands: rigid shift
\(\pi \) band: left unchanged

Model total energy upon lattice distortion

\[E(u) = 2 \sum_{k,i} \varepsilon_i(k) n_i(k, u) + 2 \sum_k \varepsilon_\pi(k) n_\pi(k, u) + 2gu \sum_k [n_2(k, u) - n_1(k, u)] + \frac{1}{2}M \omega_{2u}^2 u^2 \]
Theory of Phonon Anharmonicity in MgB\(_2\) and Related Compounds

Two regimes

\[\Delta E(u) = \frac{1}{2} M \omega^2 |g| u^2 - 2 N_\sigma g^2 u^2 \]

For \(g|u| > \varepsilon_{\text{top}} \) the \(\sigma \) band #1 is completely full; it no longer compensates the loss of electrons from the \(\sigma \) band #2. Since the number of electrons must be conserved throughout the distortion, \(\mu \) shifts. This produces anharmonicity.

\[\mu(u) = \frac{N_\sigma}{N_\sigma + N_\pi} (g|u| - \varepsilon_{\text{top}}) \]

\[\Delta E(u) = \frac{1}{2} M \omega^2 |g| u^2 - 2 N_\sigma g^2 u^2 + \frac{N_\sigma(2N_\sigma + N_\pi)}{N_\sigma + N_\pi} (g|u| - \varepsilon_{\text{top}})^2 \]

Model anharmonicity

Parameters: from LDA

- Hole Fermi energy \(\varepsilon_{\text{top}} \)
- Deformation potential \(g \)
- Harmonic spring constant
- \(N_\sigma, N_\pi \)

L. Boeri et al., PRB 65, 214501 (2002)
Conclusions

- LDA: common features of hexa. systems
- Model: large deformation pots + small E_F
- Frequency renormalization \textit{and} anharm.
- Strong renormalization only close to $k=0$
- Way to predict phonon hardening (OKA)
- Anharmonicity; nonadiabaticity ($\omega \sim E_F$)?
- Real materials like graphite++?
Theory of Phonon Anharmonicity in MgB$_2$ and Related Compounds (Aug 21, 2002)

LDA data fit

Parameters extracted from LDA data.

<table>
<thead>
<tr>
<th></th>
<th>g</th>
<th>ϵ_0^{top}</th>
<th>a_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgB$_2$</td>
<td>12.02</td>
<td>0.45</td>
<td>12</td>
</tr>
<tr>
<td>AlB$_2$</td>
<td>11.74</td>
<td>-1.63</td>
<td>44</td>
</tr>
<tr>
<td>gr.</td>
<td>28.29</td>
<td>-2.89</td>
<td>104</td>
</tr>
<tr>
<td>gr.++</td>
<td>30.86</td>
<td>1.17</td>
<td>53</td>
</tr>
</tbody>
</table>

Parameters

For those who don’t trust me...

AlB$_2$ and graphite:

$\Delta F(u) = \frac{1}{2} M \omega_g^2 u^2 = a_2 u^2$

From a_2 we obtain ω_{2g}.

MgB$_2$ and graphite++:

$\Delta F(u) = \frac{1}{2} M \omega_g^2 u^2 - 2 N_{\text{eff}} u^2 = a_2 u^2 \quad |u| < u_c$

$\Delta F(u) = \frac{1}{2} M \omega_g^2 u^2 - 2 N_{\text{eff}}^2 u^2 + \frac{N_{\text{eff}}^3 + N_{\text{eф}}}{N_{\text{eф}} + N_{\text{ф}}} (|u| - \epsilon_0^{\text{top}})^2$

$N_{\text{eф}}, N_{\text{ф}}$ adjusted to fit LDA E vs. u data

- MgB$_2$: 0.11, 0.39
- graphite++: 0.07, 0.30