Recursive and Combinatorial Signaling in C. elegans Development

Germ Layers and Animal Evolution

- **Ecdysoza** (e.g., nematodes, flies)
- **Lophotrochozoa**
 - **Diploblasts**
 - **Sponges**
 - **Choanoflagellates**
- **Deuterostomes**

Germ Layers in a Vertebrate

- **Ectoderm**: skin, nervous system
- **Mesoderm**: skeleton, muscle, etc.
- **Endoderm**: gut, lungs, etc.

Credit: W. Smith

Dr. Joel Rothman, UCSB (KITP Bio Networks 2/13/03)
Recursive and Combinatorial Signaling in C. elegans development

Quantum cosmology

indeterminate

Nematode development

determinate

Determinacy of C. elegans development

Sir John Sulston
Major cell types made by founder cells

Gene regulatory cascade for mesendoderm
Recursive and Combinatorial Signaling in C. elegans development
Recursive and Combinatorial Signaling in C. elegans development

formation of the C. elegans endoderm

- Specification
- Gastrulation
- Cell division
- Differentiation

MED-1/2 GATAs specify mesendoderm

- SKN-1
- Maternal
- Zygotic

med(-)

- "C"
- (Mesectoderm) "C"
Recursive and Combinatorial Signaling in C. elegans development

Mesendoderm development

END-1/3 GATAs specify endoderm

Dr. Joel Rothman, UCSB (KITP Bio Networks 2/13/03)
Recursive and Combinatorial Signaling in C. elegans development

END-1/3 specify endoderm

SKN-1
MED-1,2
END-1,3

E fate

wild type ubiquitous

Recursive and Combinatorial Signaling in C. elegans development

ELT-2/7 GATAs control gut differentiation

- SKN-1 (maternal)
- MED-1,2
- END-1,3
- ELT-2,7 (differentiation)
- gut structural proteins, enzymes

properties of endoderm regulatory cascade

- zygote
- EMS
- MS
- E

- SKN-1
- MED-1,2
- END-1,3
- ELT-2,7 (E fate)

specification

differentiation
properties of endoderm regulatory cascade

Features
1. Redundancy (GATA)
2. Cell division
3. Dedicated functions

MED-1 defines a novel GATA class

consensus

<table>
<thead>
<tr>
<th>GATA factor</th>
<th>H G A T A R</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED-1</td>
<td>A A G T A T A C</td>
</tr>
</tbody>
</table>
Recursive and Combinatorial Signaling in C. elegans development

fourteen putative MED targets

<table>
<thead>
<tr>
<th>gene</th>
<th>product</th>
<th>MED sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>F58E10.2</td>
<td>end-1</td>
<td>** **</td>
</tr>
<tr>
<td>F58E10.5</td>
<td>end-3</td>
<td>** ** **</td>
</tr>
<tr>
<td>F35H8.7</td>
<td>wee-1.1</td>
<td>** **</td>
</tr>
<tr>
<td>ceh-20/F31E3.2</td>
<td>homeobox</td>
<td>** **</td>
</tr>
<tr>
<td>F58G4.4</td>
<td>LAG-2-like</td>
<td>** **</td>
</tr>
<tr>
<td>C32E12.5</td>
<td>Sox family (HMG)</td>
<td>** **</td>
</tr>
<tr>
<td>ZK849.2</td>
<td>RCC1</td>
<td>** **</td>
</tr>
<tr>
<td>T07D1.2</td>
<td>unknown</td>
<td>** **</td>
</tr>
<tr>
<td>ZK177.10, ZK177.1</td>
<td>T-box/unknown</td>
<td>** ** **</td>
</tr>
<tr>
<td>T11A5.5</td>
<td>oxygen transport</td>
<td>** **</td>
</tr>
<tr>
<td>C17C3.7, C17C3.10</td>
<td>bHLH (2)</td>
<td>** **</td>
</tr>
<tr>
<td>B0303.8, 9</td>
<td>unknown</td>
<td>** ** **</td>
</tr>
</tbody>
</table>

correlation with embryonic transcriptome

5/12 detected

Baugh et al., 2003
Recursive and Combinatorial Signaling in C. elegans development

sox-1::GFP in E, MS descendants

Asymmetric cell division

Dr. Joel Rothman, UCSB (KITP Bio Networks 2/13/03)
P2 induces E fate

EMS

MS fate

E fate

P2 induces E fate

EMS

MEDs

POPs

MEDs

ENDs

MS fate

E fate

Wnt

MAPK

POPs

POPs
Models for POP-1 repression

MS

MED displacement

MED inhibition

in vivo detection of protein-DNA interactions

fusion protein

GFP

transcription factor

target array
MED-1 binds end-3 promoter

specification of E and MS

Dr. Joel Rothman, UCSB (KITP Bio Networks 2/13/03)
Recursive and Combinatorial Signaling in C. elegans development

recursive POP-1 asymmetry

Lin et al. (1998) Cell 92, 229–239

dynamics of POP-1

Dr. Joel Rothman, UCSB (KITP Bio Networks 2/13/03)
Recursive and Combinatorial Signaling in C. elegans development

coalescence of POP-1

identification of PLP-1

- LG VR
- end-1/LG VR
- end-3
- Lef-1 site
- PLP-1 = pur alpha
- POP-1

Dr. Joel Rothman, UCSB (KITP Bio Networks 2/13/03)
asymmetry of nuclear PLP-1

POP-1 and PLP-1 in asymmetry

A ↔ POP-1 → P

POP-1

PLP-1 (initial)
Recursive and Combinatorial Signaling in C. elegans development

1. P$_2$ induces E fate
 - Wnt
 - MAPK

2. MAP kinase pathway and PLP-1
 - mom-4(-)
 - lit-1(-)
 - mom-4(-);lit-1(-)

MOM-4 -> LIT-1 -> Nuclear PLP-1
RNAi screen

dsRNA → “instant gene knockout”

feed bacteria expressing dsRNA

gene-wide screen (~19,000 genes)

RNAi library screen

worms

mutant progeny (+2 days)

E. coli expressing dsRNA
Reduced end expression results in excess gut cells

Wildtype

Normal end-1,3

E

Weak end-1/3, skn-1, med-1/2, plp-1

Reduced end-1,3

20 cells

22~32 cells

Pattern of gut cells in C. elegans
RNAi screen summary

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Lethal</th>
<th>Viable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (248)</td>
<td>%</td>
</tr>
<tr>
<td>I slight excess</td>
<td>13 5%</td>
<td>7 0.3%</td>
</tr>
<tr>
<td>II large excess</td>
<td>9 3%</td>
<td>0 0%</td>
</tr>
<tr>
<td>III subnormal</td>
<td>0 0%</td>
<td>4 0.2%</td>
</tr>
<tr>
<td>IV faint express.</td>
<td>1 0.4%</td>
<td>37 1.7%</td>
</tr>
<tr>
<td>V no expression</td>
<td>12 5%</td>
<td>0 0%</td>
</tr>
<tr>
<td>VI abn. pattern</td>
<td>37 15%</td>
<td>8 0.4%</td>
</tr>
</tbody>
</table>

Research Group

![Image of the research group]
Recursive and Combinatorial Signaling in C. elegans development
Recursive and Combinatorial Signaling in *C. elegans* development

RNAi screen/gut number

Leukena Cheam
Isabella Mengarelli

James Vang

Not pictured: Cricket Wood

Dr. Joel Rothman, UCSB (KITP Bio Networks 2/13/03)