DNA unlinking in bacteria

Valentin V. Rybenkov
University of Oklahoma
Nicholas R. Cozzarelli
University of California, Berkeley
Alex Vologodskii
New York University
DNA in chromosomes is organized into several levels of compaction

- Total length of human DNA – 1 meter
- Diameter of a human cell nucleus – 10 μm

(Random coil ~ 150 μm)

How does the cell package DNA into its tiny confines?
Chromatin is organized into several levels of compaction

1. Wrapping around nucleosomes
 packing ratio ~7: ~160bp/6nm
2. Nucleosome compaction into 30 nm structure
 packing ratio ~40: ~1.2kb/11nm
3. Radial loops ~100 kb
4. Association of anchoring elements (or chromosome scaffold) into chromosome axis

In bacteria: nucleosomes – No; supercoiling & looping - Yes
Chromatin structure is highly dynamic

Chromosome condensation during cell division ensures faithful segregation of genetic material
Histone depleted metaphase chromosomes retain their shape.
Bacterial chromosome is organized into ~100 supercoiled loops.
Lk – Linking Number - cannot be changed unless DNA is broken

\[\Delta Lk = Lk = Lk_0 \] – Linking Number Deficit – a measure of supercoiling

\[\sigma = \Delta Lk / Lk_0 \] – Degree of Supercoiling

Inside the cell, \(\sigma = -0.04 \) to \(-0.08 \)
Gel mobility of supercoiled DNA
Topological challenges to DNA replication

Topological links must be removed:

- **Fast**
 - to support replication
 - to maintain supercoiling elsewhere

- **Completely**
 - Catenation between daughter chromosomes results in ds breaks
Topoisomerases untangle DNA

Chris Ullsperger
Measure of DNA compactness: number of links between sister chromosomes
Computer modeling can be used to estimate length dependence of catenation and catenation between two supercoiled DNAs

\[P_{\text{cat}} = B \cdot c \]

DNA length dependence:
\[B \sim L^{1.7} \]

Alex Vologodskii, unpublished
Topoisomerases simplify topological equilibrium in DNA
Topo IV is an efficient decatenase
Topo-2s simplify all aspects of topological equilibrium.
Correlation between preferential decatenation, unknotting and relaxation
Maxwell’s Demon model for topology recognition

Typical (frequent) DNA conformations

Atypical (rare) DNA conformations

Work
Topo-2s hydrolyze two ATPs per strand transport

First ATP is hydrolyzed fast; the second ATP hydrolysis is slow.

Non-hydrolyzable ATP analogs promote equilibrium catenation

Does Topo IV hydrolyze only 2 ATPs per strand transport?
Single turnover kinetics: vanadate, phosphate analog, traps Topo IV in ADP-bound form

Burst phase kinetics: first enzyme turnover is faster than the rest

Open clamp (active) Closed clamp (inactive)

\[
\begin{align*}
E & \rightarrow E \cdot ATP \\
E \cdot ATP & \rightarrow E^* \cdot ADP \cdot P_i \\
E \cdot ADP & \rightarrow E \cdot ADP \cdot V_i
\end{align*}
\]
ATP, but not AMP-PNP supports selective transport

Two roles of ATP hydrolysis:
- topology recognition (before strand transport)
- reactivation enzyme (after strand transport)
Length dependence of Topo IV efficiency supports “local” models of topology recognition.
Expected number of links between sister *E. coli* chromosomes

<table>
<thead>
<tr>
<th>Relaxed random coil</th>
<th>Relaxed loops</th>
<th>Supercoiled; equilibrium</th>
<th>Supercoiled; steady state</th>
<th>Chromosome missegregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^6</td>
<td>10^4</td>
<td>10^1</td>
<td>10^0</td>
<td>10^{-5}</td>
</tr>
</tbody>
</table>

Diagram showing the process involving gyrase, topo IV, and condensins.
SMC (Structural Maintenance of Chromosome) proteins:

- Are found in all kingdoms of life
- Have distinctive structure
- Are required for diverse global chromatin functions
- Act in complex with non-SMC subunits
- Alter DNA shape in vitro and in situ
- Require ATP for function and activity

Kimura et al, 1997
Several kinds of SMC complexes

- Chromosome condensation (Condensins): intramolecular DNA condensation
- Chromosome cohesion (cohesins): intermolecular DNA condensation
- Recombinational repair (e.g. Rad50, SbcC): DNA end binding
- Dosage compensation (compensins): intramolecular DNA condensation?

How do SMCs recognize DNA substrates? What determines specificity of reaction?
DNA reshaping by bacterial condensin MukBEF

Inactivation of MukB, MukE or MukF produces the same phenotype: chromosome decondensation and cutting, anucleate cells.
MukB recognizes global DNA shape

Predominant formation of 3- and 5-noded knots suggests solenoidal DNA supercoiling.

Intramolecular condensation + Muk + Topo II + ATP

Condensins + Cohesins

Predominant formation of 3- and 5-noded knots suggests solenoidal DNA supercoiling.
Table of knots with less than 9 minimal crossings

Knots can be classified according to the minimal number of crossings in a projection.

Note *twist* *(circled; step of 1)* and *torus* *(boxed; step of 2)* families of knots
Chiral trefoil knots suggest solenoidal, looped DNA

Topology of more complex knots is also consistent with looped DNA
DNA reshaping by MukB

- MukB stabilizes right handed coils in DNA
- DNA coils are arranged in space - and thereby limit excessive knotting – *protein-DNA filament*?
DNA with modified extremities can be attached to a bead and a surface.

XYZ position of the bead can be followed ±10 nm.
DNA condensation by MukB in real time

Crystallographic DNA length

Buffer

MukB

$F = 0.5 \text{ pN}$
DNA stretching confirms multiprotein MukB-DNA complex
Summary of DNA reshaping by MukB (E.coli) vs. 13S condensin (frogs)

<table>
<thead>
<tr>
<th></th>
<th>13S condensin</th>
<th>MukBEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA knotting</td>
<td>(+)trefoils</td>
<td>(+)trefoils</td>
</tr>
<tr>
<td>Right handed DNA looping</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Superciling</td>
<td>(+)</td>
<td>(-)</td>
</tr>
<tr>
<td>ATP dependence of DNA reshaping</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Non-SMC subunits</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Why do we need MukEF?
MukEF inhibits DNA binding by MukB
Summary of DNA reshaping by MukBEF

- MukBEF reshapes DNA in vitro by introducing right-handed loops
- MukB is the DNA reshaping end of MukBEF
- MukEF inhibits MukB

In vitro artifact?
Biochemistry in vivo:
Overproduction of either MukBEF or MukB condenses nucleoids of live cells

Blue – SyproOrange (cells) Red – DAPI (DNA)

Wang et al., J. Bacteriol. 2006
Overproduction of either B or BEF results in ~3 fold reduction of nucleoid area
MukBEF has additional attachment sites within the cell

MukBEF copurifies with chromatin scaffold

- Only a subset of proteins co-purifies with the Scaffold fraction of nucleoids.
- These proteins are believed to be a part of chromatin scaffold.
- Most of endogenous but not of overproduced MukB is in Scaffold.
- Excess (or absence) of MukEF disrupts association of MukB with scaffold.
Our current view of condensins

- MukBEF is a condensin: in vitro and in vivo
- Right-handed DNA looping is highly conserved between species
- MukB is the DNA reshaping end
- MukEF is needed for chromosome organization and association with chromatin scaffold.
Summary

Chromatin organization in Eukaryota:
- Chromatin scaffold
- Loops
- Nucleosome packing (30-nm fiber)
- Wrapping around nucleosomes

Chromatin organization in Bacteria:
- Chromatin scaffold
- Loops
- DNA supercoiling
Dr. Zoya Petrushenko
Dr. Qinhong Wang
Dr. Elena Mordukhova
Dr. Yuanbo Cui
Chien-Hung Lai
Yun Liu
Weifeng She
Rachna Rai
Andrea Edwards

Alex Vologodskii
Nick Cozzarelli

• Funding:
 – National Institute of Health
 – American Heart Association
 – Research Corporation