Teaching Physics for Pre-Medical Students at UCLA.

Undergraduate Curriculum

• General science requirements:
 • Math with calculus: three quarters (freshman)
 • Physics with calculus: same (sophomore)
 • General Chemistry: same
 • Organic Chemistry: same

• Life-Science requirements:
 • Biochemistry
 • Molecular, Cell and Developmental Biology
 • Genetics
 • Physiology

*Acceptance by UCLA medical school: requires average of A-.

Heavy course load
Students

20 % First time exposure to Physics.
30-40% “Algebra-based” Physics in high school.
30-40% Advanced Placement physics class with some calculus.

• Student quality and preparation: very heterogeneous pool.
• Top 15% compares well with physics and engineering majors.

Physics 6

• 1, 100 - 1, 500 students per year; more than 2/3 pre-med.
• Typical class size: 200 - 300.
• Last physics-based class for life-science student. No biophysics!
• Major “service-class” of UCLA Physics Department.
Three contact hours per week + one hour recitation session. Homework problems + “equation drill”. Weekly lab class.

- Physics 6A: Mechanics
 6B: Electricity and Magnetism
 6C: Waves, Optics, Modern Physics

* Soft version of “Halliday-Resnick” general physics.

- Taught by mixture of ladder faculty (often HEP) and “soft-money” instructors.
1994: Dean Roberto Peccei:

- Reform of General Science Requirements.

- Reorganize Physics 6 to reflect needs of Life-Science students.

Life Science faculty: dissatisfied about General Science curriculum. No consensus about content for an appropriate physics class.

- Department and Dean supported hiring Biological Physics faculty.
Why should Life-Science students have to take a physics class?

• Essential part of scientific literacy. Foundation of a rational, scientific analysis of nature. “Lewis Thomas argument”

But how does “equation drill” serve that purpose?

• Life science students practically never use an equation of Physics 6 in the remaining Life Science curriculum. Only rarely as MD’s or as career Life Science professionals.

• Physics is imbedded in the “protocols” for experimental procedures or operation of equipment (NMR, Xray, laser, ultrasound, ..)
Existing Physics 6 could be dropped from the Life Science curriculum without serious negative impact.

- What **concepts** will Life-Science students encounter in their Life Science **required classes** that require physics for a serious understanding?

 * Can the Halliday-Resnick curriculum be updated to achieve this?
Physiology and Animal Anatomy ("Marieb")

• Mechanics:
 • Forces on skeleton. ("Biomechanics")
 • Physics of senses: Vision, Hearing, & Speech.
 • Hydrostatics and Hydrodynamics:
 • Blood pressure.
 • Blood circulation. Laplace Law.
 • Swimming and Flight.

• Thermodynamics:
 • Metabolism.
 • Thermoregulation.
 • Osmotic Pressure.

• Electricity.
 • Transport of Nervous Signals
Molecular Biology and Biochemistry ("Alberts", "Stryer").

- Macromolecule Interaction (hydrophobic interactions, van der Waals, ...)
- Electrophoresis.
- Sedimentation.
- X-ray crystallography and NMR.
- Thermodynamics of Energy Transfer.
- Membrane Electrical Potential.
Can the H-R curriculum be upgraded? Add problem sets and/or extra chapters. (Giancoli, Serway, ..)

- Time-constraint Problem. Extra material is dropped.

- “Wrong Physics” Problem

Example: Electrical Transport

H-R Curriculum: Definition of EMF, Ohm’s Law, Equivalent Resistance, Kirchhof’s Laws, “Circuit Drill”.

Electrical circuits in water: short-circuit.
Electrical potential of a cell in water.

Chemical potential of ion.

\[\mu = \mu_0 + eV + k_B T \ln c \]

Second Law of Thermodynamics:

Thermal equilibrium: \(\mu_{in} = \mu_{out} \)

\[\Delta V_{eq} \cong \left(\frac{k_B T}{e}\right) \ln \left(\frac{c_{in}}{c_{out}}\right) \]
Universal voltage scale (about 20 mV)
Ohm’s Law: current density of ion i:

$$J_i = g_i \left(\Delta V - \Delta V_{eq}^i \right)$$

Conservation of Electrical Charge:

$$J_{total} = \sum_{\text{ion species}} J_i$$

For a cell: must vanish under steady state conditions.

Membrane potential:

$$\Delta V = \frac{\sum_i g_i \Delta V_{eq}^i}{\sum_i g_i}$$
- four fundamental physical principles!

- Can an undergraduate physics curriculum be constructed that does support the Life-Science curriculum?

- Is relevant undergraduate material even available?

1996-1999:

* Wrote lecture notes for Physics 6A, B, & C
 Published by a custom publishing house (Hayden-McNeill) (teaching relief from Dean). Aim: book form.
* Lab reconstruction (funded by Dean and NSF).
* Pilot classes 50-100 students.
 Students response to new lectures was very positive. Did better in MCAT exams
* Problems with new labs (mechanics arm, heat diffusion,..).
I. The Measurement of Physical Quantities ... 1
 * A. The Fundamental Interactions ... 1
 1. Gravitational Force .. 1
 2. Electrostatic Force .. 7
 3. Nuclear Forces ... 9
 * B. Newton’s Laws of Motion .. 10
 1. Kepler’s Law ... 11
 * C. Dimensions and Units ... 13
 D. Dimensional Analysis .. 17
 Advanced Topic: Scaling Laws in Physiology 22

II. Vectors ... 35
 * A. Displacement Vectors ... 35
 1. Cartesian Coordinate System ... 36
 2. Polar Coordinate System .. 37
 * B. Vector Addition and Subtraction 39
 1. Geometric Method ... 40
 2. Algebraic Method .. 43
 * C. Force Vectors ... 45
 Appendix: Exponentials and Logarithms 48

III. Forces: Statics .. 53
 * A. The Laws of Statics .. 53
 1. Introduction ... 53
 2. Contact Forces and Newton’s Third Law 54
 3. Newton’s First Law .. 58
 * B. Torque and the Lever Rule of Archimedes 66
 1. Perpendicular Forces ... 66
 2. General Definition of Torque 72
 * C. Stability and the Center-of-Gravity Point 83
 * D. Muscle Forces ... 86
 Advanced Topic: Hill’s Law, Muscles, and Motor Proteins 89
 Appendix: Measuring and Calculating the Center-of-Gravity Point 92

IV. Energy: Work and Potential Energy ... 95
 * A. Work ... 96
 1. Case I: Constant Force Parallel to Straight-Line Motion 97
 2. Case II: Constant Force at Arbitrary Angle to Straight-Line Motion ... 99
 * B. Potential Energy .. 102
 1. Potential Energy Associated with a Constant Force 102
 2. General Relationship between Potential Energy and Force 104
 * Box: Derivatives ... 105

V. States of Matter I: Solids ... 119
 * A. Introduction ... 119
 1. Crystalline Solids ... 119
 2. Amorphous Solids .. 120
 * B. Elastic Force ... 121
 1. Hooke’s Law .. 121
 * Advanced Topic: The Strange Elasticity of DNA 126
 2. Stress and Strain ... 129
 * Advanced Topic: Fracture and Bone Design 131
 * C. Elastic Work and Energy .. 132
 1. Linear Regime ... 132
 2. Stress-Strain Plots and Work 134
 * Box: Integration ... 137
 * D. Bone Fracture and Beam Theory 139
 * Advanced Topic: How Trees Bend 144
 Appendix: Derivation of the Formula for the Stress in a Curved Bone 150

VI. States of Matter II: Liquids .. 151
 * A. Introduction ... 151
 1. Pressure ... 151
 * B. Laws of Hydrostatics ... 152
 1. Pascal’s Law ... 153
 2. Archimedes’ Principle ... 162
dynamics
1999-2001: Full Scale

Growing problems

• Faculty members not comfortable with new material. TA’s could not deal with problem sets involving new material (example: hydrodynamics). Faculty communicated negative attitude to TA and soft-money instructors.

• Faculty Angst: “Students ask me questions about photon absorption in eye by retinal molecules (“cis-trans isomerisation”) that I am teaching. They know more than me about subject!”

• Violation of “Social Contract”: “It is 11 pm. I have to prepare next day’s class. I don’t want to learn about membrane potentials. This is a large class which already takes a lot of my time”
Dean Peccei: suggests a teaching manual to assist faculty.

2001: Faculty votes to return to the old format.

2003: Physics 6 is *split*:
- Regular series: “old” format.
- Honors series: “new” format.
 Maximum class size: 100 students, taught by Biological Physics/Soft Matter faculty (three experimentalists, two theorists).

2005: Biophysics Major at UCLA.

Regular series: *Revitalized* (by Katshushi Arisaka). Student seminars on topics like special relativity, black holes, super nova’s.....
Conclusions

• Teaching physics appropriate for a Life Science curriculum in a research-based institution requires faculty members with research programs in Biophysics or Biological Physics.

• The graduate students of these faculty members are the “natural” TA’s of the class.

• Offering a choice to the Life-Science student about the type of Physics class they can take works well for a large, heterogeneous student body.

• “Top-down” teaching reforms may run into faculty resistance.