Magnetic Torques in Disks (ITP Black Holes Conference 2/27/02)

Magnetic Torques in Accretion Disks

Chris Reynolds
Department of Astronomy
University of Maryland

3/18/02 ITP 2002 Black Holes Meeting

External torques: The Blandford-Payne model

3/18/02 ITP 2002 Black Holes Meeting
Outline for this talk

- The magneto-rotational instability (MRI)
 - Linear and non-linear properties
 - Local and global simulations
- MHD properties of the innermost disk
 - Inner “edge” of the disk is important!
 - Interesting magnetic/MHD effects occur
 - Simulations (global and cylindrical)
- Reality…some data from XMM-Newton
 - MCG-6-30-15 and XTE J1650-500
- Also see coming talk by Neal Turner

I: The Magneto-Rotational Instability (MRI)

- The magneto-rotational instability (MRI)
 - Generic instability in MHD accretion disks
 - Balbus & Hawley (1991) rediscovered this instability and realized importance for accretion disks
 - The resulting MHD turbulence produces the angular momentum transport that drives accretion
Magnetic Torques in Disks (ITP Black Holes Conference 2/27/02)

- Linear theory (Balbus & Hawley 1991)
 - Perturbations of linearized ideal MHD equations with shear
 - Instability if and only if $\frac{d\Omega^2}{dr} < 0$
 - Fastest mode grows on dynamical timescale (independent of magnetic field strength).
 - Fastest growing mode has wavenumber $k \sim \Omega/v_A$
 - Do not get hydrodynamics in limit as $B \rightarrow 0$
- Non-linear evolution
 - Sustained MHD turbulence
 - Investigated in local and global simulations

Shearing box (local) models
Global disk models

Hawley, Balbus & Stone (2001)

Summary of simulation results

- Simulations by several groups
 - Armitage, Brandenburg, Gammie, Hawley, Miller, Stone, Turner, and others...
- Local (shearing box simulations)
 - MHD turbulence produced and sustained
 - Angular momentum transport
 - Effective α depends upon net flux threading box
 - $\alpha \sim 0.01$ for zero net field
 - $\alpha \sim 0.1$ for significant net field
- Global simulations (zero net field)
 - Can only do relatively hot, adiabatic disks
 - MHD turbulence, with significant power on large scales
 - $\alpha \sim 0.1$; characteristic of local simulations with net field
II: The innermost regions of the accretion disk

- Properties of inner boundary are extremely important
 - Determines the radiative-efficiency of disk
 - Determines existence/nature of coupling to black hole spin
- "Standard" model (Page, Novikov & Thorne)
 - Generalization of Shakura & Sunyaev (1973) model
 - Assume internal torque goes to zero at ISCO
 - This determines efficiency of disk.

\[L = \eta \dot{M} c^2 \]
\[\eta = 0.42 \] for maximal Kerr hole

Analytic arguments

- General arguments (Krolik 1999)
 - Within ISCO (i.e. plunging region), assume
 - Dynamically-weak field frozen into plasma
 - Material pushed into plunging region by magnetic forces
 - [axisymmetry and time-independence]
 - Then...
 - Find that plasma-\(\beta\) decreases rapidly in plunging region
 - Magnetic field will become dynamically significant
 - Can produce interesting effects within plunging region
 - Field could causally-connect plunging region to rest of disk
Particular disk models
- Gammie (1999)
 - 1-D MHD model of plunging region
 - Significant torques at ISCO
 - Significant enhancement of disk efficiency
- Agol & Krolik (2000)
 - Extended Page & Thorne model, with torque at ISCO
 - Significant enhancement of efficiency

Back to simulations…
- “Toy” model of Schwarzschild accretion disk…
 - Non-relativistic MHD (ZEUS algorithm)
 - Approximate GR using Pseudo-Newtonian potential.

\[\Phi = \frac{M}{r - 2M} \]

- Global models
 - Moderately hot, adiabatic accretion tori
 - Sustained turbulence with effective \(\alpha \sim 0.1 \)
 - Verified importance of magnetic torques at ISCO
Cylindrical simulations

- Trouble with global simulations...
 - Very computer intensive (no parameter survey yet)
 - Limited spatial resolution in central regions
- Cylindrical simulations
 - Armitage, Reynolds & Chiang (2001); Reynolds & Armitage (2001); Hawley (2001)
 - Distills out essential physics (complements global models)
 - Look at 3-D wedge of disk.
 - Ignore vertical component of gravity
 - Use pseudo-Newtonian potential
 - Isothermal gas, with \(h/r \approx 0.08 \) at ISCO
 - Use ZEUS-3D & ZEUS-MP codes
- Perform set of simulations with “tunable” saturation field strengths (Reynolds & Armitage 2001)
 - Tune saturation strength by changing initial vertical fields (hence different net fluxes).
 - Angular-momentum (& energy) transport in plunging region correlates with B-field strength in final turbulent state.
 - ISCO torques tremendously variable on dynamical timescale!
 - Accretion efficiency may vary on short timescales.

- Another way of phrasing this…
 - Saturation field affects value of effective α
 - Presence of ISCO torques correlates with effective α
• Significant fluctuations between independent timeslices
• \mathcal{U} flattens in plunging region

• Larger saturation field \Rightarrow stronger torques in plunging region
• Very large fluctuations
• Especially strong torques in plunging region during red period
• Good agreement with Hawley & Krolik (2000) during these times
Beyond the Simulations…

- Relativistic effects around rotating black hole
 - Effects of frame-dragging and gravitational redshifting?
 - Charles Gammie’s talk; Koide et al. (1999), Meier et al. (2000)
- What about colder/thinner disks?
 - Do ISCO torques occur in thinner disks?
 - May be limited by reconnection of tightly wound field
- Development of large-scale fields
 - Inverse turbulent cascade, or advection of pre-existing field?
 - Black hole will “integrate” accreted magnetic flux
 - Field strength may be limited by field pressure in body of disk (Ghosh & Abramowicz 1997, Livio et al. 1997)?
 - Much greater fields may be permitted due to inertial confinement by accretion flow in plunging region.

XMM-Newton observations of MCG-6-30-15

- Wilms, Reynolds, Reeves et al., 2001, MNRAS.
- XMM-Newton satellite
 - Recently launched European X-ray observatory
 - Several co-aligned instruments
 - Reflection Grating Spectrometer (RGS)
 - European Photon Imaging Camera (EPIC)
 - Optical Monitor (OM)
 - Superb for obtaining high S/N spectra of accreting black holes (AGN and GHBCs)
- Model soft X-rays
 - Ionized absorption
 - Soft X-ray emission features
 - Fit to RGS spectrum
- Isolate spectral features from disk

X-ray reflection...
Basic result

- Model within context of rapidly rotating BH
 - Requires extreme degree of broadening!
 - Implies very centrally concentrated X-ray source
 - $F(r) \sim r^{-\beta}$, $4.5 < \beta < 6.0$
 - $R_\in < 2.0 \text{GM}/c^2$

- If BH slowly rotating:
 - more extreme β required
 - Need emission down to $3\text{GM}/c^2$

Spin extraction hypothesis

- Suppose that X-ray emissivity is proxy for disk dissipation profile.
- Spin extraction hypothesis…
 - steep emissivity profile due to torquing of inner disk
 - Inner disk torquing by plunging region in extreme Kerr geometry (Penrose)…
 - …or, torquing by direct magnetic connection between disk and horizon (Blandford-Znajek 1977, Li 2000)
 - In either case, much of extra energy originates from spin of black hole!
The Tower of Power...

- Suppose X-ray source is on-axis above the black hole at r~3GM/c² or less.
- Then, gravitational focusing gives
 - Very broad line, as observed
 - Very strong reflection signatures (R=4)
- Examined by Martocchia, Matt & Karas (2002).
- But, some potential concerns...
 - Would predict significantly stronger reflection than observed.
 - Marginal disagreement with lack of time-lags observed for this object (Reynolds 2000).

Same thing in a GBHC? XTE1650-500

Miller et al. (2002, astro-ph/0202375)
Conclusions

- MRI-driven turbulence excellent candidate for angular momentum transport mechanism
- Magnetic torques across ISCO
 - Magnitude depends upon β in turbulent state
 - Torques highly variable (changing efficiency?)
 - Physical realization of Penrose effect
- Observations already pushing at these frontiers
 - XMM-Newton data MCG-6-30-15 & XTEJ1650-500
 - Steep emissivity may require inner disk torques (and/or direct magnetic connection to spinning black hole?)