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MAGNETOROTATIONAL INSTABILITY i

INTRODUCTION COMPARISON TO SHEARING WAVES

We study the magnetorotational instability from using nonmodal stability The local MRl is commonly studied with a shearing wave decomposion [3].

methods [I].

Even for the unstable case, the non-normality of the system can have profound

Insert f(z.t) = f(t)exp (igk, (t — to) = + ik,y + ik.z) for each variable. All nonlinear
terms cancel and one is left with a system of ODEs [4].

consequences.
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Fig 1: Local equations, hard wall BCs. Fig 2: Global equations, hard wall BCs.

/ General feature of nonmodal
stability: results are less affected
by changes to the system, e.g.,
boundary conditions [1].
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Fig.1 (solid, blue) compared to least stable eigenmode (red). Fig.2 (solid, blue) compared to least stable eigenmode (red).

Over short time-scales s/fegrz’nﬂ waves grow j(aster than static structures

Examine growth over infinitesimally short time-scales — Remarkably, one obtains simple analytic results at
opposite to t=eo limit where eigenvalues apply. arbitrary wavenumber and dissipation.
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Quantify these ideas using
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In the shearing case, the growth rate has the same
maximum, qQ, at all (k,k;). The maximum is reached at
k,(0)=k,. This growth is obtained for eigenmodes only
at k,=0.968 By,, k,=0 [3].

t=0

given by the largest eigenvalue of A + AT, with

A= FLF~ '+ 0,FF! ‘z:o' L(t) the linear operator, and
F(t) the inner product matrix ||U|%, = Ut - FTF - U.

Compare growth of shearing wave at chosen k(0), k,, k,, to
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Re=500. Solid, shear waves;
dashed, static waves; dotted,

Use a WKB expansion for the static calculation in the least stable eigenvalue at
local case. Have also carried out global calculation using a oA NEDEBUEL,

- . . region where static modes can .
WAKB-like time-dependent global shearing wave [7]. grow faster, caused by low Re. 25 10 - et £(0)

\ drastically change the nonmodal structure.

In many cases — particularly for non-
axisymmetric MRI — the nonmodal
growth can be far more physically
relevant than eigenmodes.

Even in unstable situations, transient
growth can last a sufficient time to
give very large mode amplification.

Leads to a very natural connection
between global modes and local
shearing wave calculations [6].

Nonmodal techniques should
always be used in considering the
relative importance of different
mode numbers. Eigenmodes will
underestimate the importance of
non-axisymmetric modes.

Smmg [inear growtﬁ over
short times at all scales:

What is the role of linear physics
in MRI turbulence and dynamo?
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