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Background--Calvin College

• Calvin College is a comprehensive college of
4,000 students in Grand Rapids, MI

• Physics and Astronomy Department has 8
tenure-track faculty (7.5 postns)
– 5 experimental physicists
– 2 astronomers
– 1 theorist

• Graduate ~5 physics majors per year.  About
half immediately go on to grad school.
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My background
• I started at Calvin in 1983, fresh from a

postdoc
• Spent at least part of each of the first 3

summers back at Colorado, where I’d
postdocked.

• Received my first grant for research at Calvin
in 1987 (Research Corp + NSF-RUI), and
hired my first undergraduate assistant in
Summer 1987

• Continuous NSF support since then
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Professional Development

• Sabbatical 1992-93 to University of Rochester
– Funded in part through NSF ROA program

– Collaboration (with J.H. Eberly) still ongoing!

• Sabbatical also marked a transition from work
that was analytically based to work that was
more computer based.
– Brought “supercomputer techniques” back to

Calvin

– Now do my work on desktop machines
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Usual Procedures

• I like to hire 2 students each summer.
• Ideally, one of the students is experienced

and can help the other
• The students work on closely related threads

of the same project
• I challenge each student to take ownership of

the thread, and to see it through to
completion by working on a part-time basis
through the academic year
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The Motivation

Experiments in the early 1990s
showed considerably more
double ionization occurring than
would be expected for
independently behaving
electrons.

• Somehow the electrons
share energy and escape
together

first ionization 16 photons;
second 34 more
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The Challenge
We can’t just solve the 3-d Time-Dependent Schrödinger
Equation for two electrons in an oscillating electric field, even
on the best computers.
Instead, we (& several other groups) worked with a one-
dimensional model of the helium atom

•In the model, each electron could move only parallel or antiparallel to
the laser polarization

Picture the electrons as being on railroad tracks
• A full quantum solution is possible.
•We learned a lot,

including that the electron behavior seemed very classical.
•So we tried classical modeling of the one-dimensional system,

and we found that the classical results reproduced all the
important quantum results.



S.L. Haan, Calvin College KITP 2007

Overview of Classical Method
• We set up an ensemble of classical two-electron

atoms.
– Each atom has slightly different initial conditions, so that

collectively they imitate the quantum ground state of the
atom.

– Ensemble sizes typically 400,000.

• We evolve each two-electron atom in time through a
laser pulse, using Newton’s laws of motion.
– Account for electron-electron interaction, electron-nucleus

interaction, and influence of laser field (in dipole
approximation).

• After each run, we can sort the trajectories and
– Study statistical behavior;
– Backtrack individual trajectories to learn their history.
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Extension to 3D

The success of 1D classical simulations gives us
motivation to pursue the 3D classical case.

The classical advantage--
In classical studies we find the time development

for each classical atom separately.
The QM wavefunction incorporates, at each time,

everything that can happen
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R. Panfili (Rochester grad student) wrote a first draft of a
computer program for the 3d classical case.

He graduated & took a job in industry
without getting the kinks out of it.

My students and I got the kinks out
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Example double ionization trajectory :
Recollision ionization, with brief recapture of recolliding

electron

Recollision had been proposed from the outset (by others), but most
everyone overlooked this possibility of having one electron bound for a
portion of a cycle after recollision.
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Delay time between recollision & double ionization

• Most DI trajectories
show a part-cycle
phase delay
between recollision
and double
ionization

• Runs at right are all
for laser
wavelength 780
nm.
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Final longitudinal momenta sorted by:
delay times from recollision to ionization

and by final direction relative to recollision direction

delay<1/25 cycle delay<1/4 cycle

delay<1/2 cycle delay≥1/2 cycle

 RE directions--adjust signs
of momenta so all collisions
occur with returning electron
traveling in the +z direction.

•For small delay times,
almost all final z-
momenta are opposite
from the recollision
direction.

•With increased delay
times, there is increased
spillover into the 2nd and
4th quadrants.

I=6x1014 W/cm2
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•  If, to first approximation, second electron ionizes  after the field
peaks, the electrons can have drift velocities in opposite
momentum hemispheres.
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• These results all summarized in two recent
papers

• S.L. Haan, L. Breen,* A. Karim,* and J.H. Eberly,
“Recollision Dynamics and Time Delay in Strong-Field
Double Ionization,” Optics Express 15, 767-778 (February
2007).

• S.L. Haan, L. Breen,* A. Karim,* and J.H. Eberly, “Variable
Time Lag and Backward Ejection in Full-Dimensional
Analysis of Strong-Field Double Ionization,” Phys. Rev. Lett.
97, 103008 (8 September 2006).  Republished in Journal of
Ultrafast Science 5, Issue 10 (October 2006).
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A challenge for 3D:  Classical 3-D Helium
is unstable, even without external fields

• One electron can dive deep
into potential-energy well,
letting the other escape.

• The well is bottomless if use
Coulomb potentials.

• Can stabilize by screening
the Coulomb interaction:

• For  initial energy = -2.9035
au, setting a ≥ 0.7 au
prevents self-ionization
– Results I’ve shown a=0.825 au Plots show only the nuclear.
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Populating initial ensemble to mimic 3D ground state?

There are various possibilities related to energy and angular momentum.

We simply:
-Set electron-nuclear shielding at 0.825 au, and electron-electron shielding at 0.05
au

-Fixed the energy at -2.9035 au (He ground state)

-Choose classically allowed positions

Employed several methods--He quantum ground state, Gaussian, random

--but always spherically symmetric

-Randomly divided the available KE between the two electrons

(subject to constraint that each electron have total energy <-1 au)

-Gave each electron zero angular momentum.

(If don’t constrain angular momentum, we get very little double ionization.)

-Allow the system to evolve for the equivalent of one laser cycle (~100 au) with no
laser field

Total energy and total angular momentum conserved

Position and momentum distributions stabilize
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A difficulty
• The screening of the nucleus works well for stabilizing

our initial state
– It can be justified on the basis of the uncertainty principle--the

system starts in a state with low uncertainty for energy and
momentum, and electron isn’t allowed to know very precisely
its position relative to the nucleus

• But what about at recollision?
– We’ve found that details of the final electron momentum &

energy distributions depend on the form of the interaction with
the nucleus

• One electron can scatter off nucleus at recollision
– This electron may be either free or still bound

• Small impact parameter ⇒ large deflection, if nucleus unshielded

– In order to reproduce experimental results, we need to partly
unscreen the nucleus.
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I=.2 PW/cm2 I=.4 PW/cm2

I=.6 PW/cm2 I=.8 PW/cm2

Our results:

Experiment (I=.5 PW/cm2)

Other theoretical results

Experimental results--V.L.B. de Jesus, et al., Journal of
Electron Spectroscopy 141, 127 (2004);

theoretical--J. Chen et al PRA 63,011404R (2001); A.
Becker and F.H.M. Faisal, PRL89, 193003 (2002); Lein et
al PRL 85, 4707 (2000)

Classical calculation: S matrix:

1-d model:

Egg-like shapes show kinematically
allowed regions after recollision ionization
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Current work
• This summer my students and I have revised

our program with a “toggle switch” on the
nuclear screening

–When one electron ionizes,
we reduce the nuclear
shielding for both electrons

•We adjust the electrons’
radial kinetic energies to
preserve total energy

-Now we get trajectories with
higher final energy.
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Present Status
• We’re sytematically adjusting the shielding at return
• I’m working on a “dynamic shielding,” in which the

screening of the nucleus for each electron depends
on the energy of that electron
– How, precisely, should the screening depend on the energy?
– Should I add terms to the equation of motion to account for

the “velocity dependent potential”?

• Research projects can lead us into new areas we
know nothing about!


