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Absence of Diffusion in Certain Random Lattices

F. W. AxpeEnson
Bell Teleplone Laboratories, Murray Till, New Servey

{Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some zenze random, and in them diffusion
iz expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.
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“scrambling” of the signal

Loss of information
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FIG. 1. Experimental setup for the study of backscy
ing (not on scale).

Something survives
after averaging over
disorder
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ATTERED THMTEMEITY
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FIG. 3. dal Dependence of the coheranl backscallering
effect on the solid fraction Ca) of beads: curve 1, w=0011;
curve 2, m=0.06; curve 3, nm=0.0286 and curve 4,
#= 0004 The bead dismeter is 046 pm. The analyeer is
parallel 1o the vertical incident palarization, ¥V, For sach
curve, the intensity 5 pormalized v the inccherenl Back-
pround intensity Li,e., the intensity outside the peak). Curve

£<L<einc

(many collisions, phase is
preserved)

Quantum transport. Or rather
coherent transport.

No quantum statistics.
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FIG. 4. Polarization dependence of the coherent back-
scattering effect for 0.46-pum-diam beads at a solid fraction
of 10%. Directions of polarization are vertical-vertical (VV)

and vertical-horizontal (VH). Curves are plotted at the
same scale.

Information about the system
Width, polarization.

Diffusive Wave spectroscopy
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Breaking the phase
coherence between the
time-reversed paths

™ A -’m"‘n,.-r I‘u L

a || "l""... I Ik“:_,’r . l,"' '—"‘-J'II
iy J [
O N Y
\

™ IlllI.-\LI\II"I "Illl ! [

[ |'I w

LY
¥ :

(] w F A [} 4 Al

Sharvin & Sharvinl
(1981)

Conductance of metallic cvlinders vs magnetic field:

d, /2 - oscillations

BITI

FIG. 6. Magnetoresistance of a pure Mg film at different
temperatures (upper part). A superposition of ﬁ atomic layer
of Au (statistically) changes the behavior completely. The Au
introduces a rather pronounced spin-orbit coupling which rotates
the spins of the complementary scattered waves. This changes
the interference from constructive to destructive.,

ing and absorbing (& ~'=400 xm) media.
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FIG. 2. A probabilistic means of terminating a coherent
random walk: The effect of absorption on the line shape of the
backscattering peak, where /=13 pm for both the nonabsorb-
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FIG. 20, (a) Normalized (see text) difference cones recorded
for the parallel light component using the sample of Fig. 19.
Difference slabs: curve 1, 0-13 pm; curve 2, 13-25 um; curve
3, 25-50 pm; curve 4, 50-100 um; curve 5, 100-1000 yum. (b}

NOTE: In typical optical
experiments we measure
average quantities.



*Electronic systems (a few atoms)
e Conduction in nanowires

*Optical Systems (microns)
Random Lasers

e Microwaves (centimeters)

e Accoustical systems (meters)

e Seismic Phenomena (kilometers)




Towards a diagrammatic theory

{Vz 0 gt—zz}'f(r’t) - V2 + k2@+ e(r)]G(rr) = s(r.r)
C

Helmholtz eq. for the Green’s function

G(r,r) =G°(r,r") -k*[G°(r, p)e(p)G°(p.1") dp  +K*[G°(r, p)e()G°(p. ') £(p")G° (', 1")dp dp'

Dyson’s solution ; Go(r-r’) is the free propagator (translationally invariant) :
G is not, before averaging over disorder

e(r)=>g(r-r) k*<e(r)e(r')>=Ao(r,r") White noise

G(r-r)=G"(r-r)+[G°(r-p)2(o-p)G°(pr)dpdp’ 5 _, . % . (730 .

|
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_ 1 G(r—r' :#E iklr—rE (_”‘”j
G(p)_kz_pz_z(p) (r-r) P xplik | r—r'[] Exp o

Important Identity €= 4n/A

(=k/ImE) %

1 _Im(E) s asmall parameter, and the theory breaks down
- 2
il £ when it reaches 1 (loffe-Regel)

Diagrammatic approach to the Intensity

P (01102, P31 P4

<E(RE(r,)> =<E(R) ><E(r,)>+[G (- p)G"(r, - p,

< E(pa)E*(,O4) >

Equation for the average intensity;

BETHE-SALPETER 4-vertex
insertion
VRV ro At ALL orders
Sl A S A AR N A I Each step of the ladder

Is of order 1
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L = :’ + H ' i

it Summing the perturbation series

PO (011 031030 0) = A 80, — ,)8 (05 — pIE (01— 05) 4 AIG (0, — ;) I Ir 47 |G (0, — p5) G (05 — p3) [F +..

1
1+Q(K)+Q(K)* +Q(K)’ +...=2 ————— Arctan(KI)
QU +QUK) + QUK 4.2 s O(K) =
KI
In 3-d
KX K= X
:CH = K+ s SO The maximally crossed diagrams

(MCD) admit a similar expansion
(switching around the variables)

_ Kiqr+, K 1 Q(q+ p)
F(K.q)—AG(q+2)G (g 2)[1_Q(K)+1_Q(Q+p]F(K,p)

In the diffusive approximation (KI)? there is a diffusive pole in the
Q(K) El_T insertion for |

1/K? in momentum, and 1/r in space

abs For the MCD the diffusive pole
s T | appears only forg=-p

If there is absorption |
the number 1 goes to




i Localizationof light




Elastic scattering
Phase preserved o/
Direction randomized over ¢ =
(<L<I,

Weak Localization
Universal Conductance Fluctuations

Berkovits & Feng, Phys Rep 238 (1994)



Semi-Conclusions

A diagrammatic theory of the propagation of a
wave In a disordered system, that includes all
orders of scattering can be written.

Even in its simplest version it can explain a lot
of the phenomenology in the field. (WL, UCF,
Memory Effects, etc)

Can be adapted to treat polarization
phenomena, anisotropy of the scatterers, more
complex scatterers, etc.

A complete systematic diagrammatic theory is
still not complete



Feng, Kane, Lee & Stone PRL 61, 834 (1988)

Diagrammatic theory for | - | correlations

g=(e4h) 2, T, (Landauer) T, =|t, [?

Transmission: T,=%, T, ; g = 2, T,

<g>=N<T>= N2<T,> follows from isotropy



Caba’b’ = <8Tab 6Ta’b’> = C1 T C2 T CB

NoO crossing, one crossing, two crossings
prop to 1, 1/g , 1/g?

C, is essentially (Fg)?

I
= (square of field correlation) 3 —t—r—0 —«f*_
P L=
il - +__ - '|\I
b = b
i —.-—”/H 1 ( }/ S _ 7 \x+/__.\}\+/.\\ (e)
. - . L Y = <, %
This leads to interesting N ONTNIRSN
i FIG. 1. (a) Feynman diagram for the average intensity
. {Tas). (b) Diagram for Ciddw. (c) Diagram for Cigdw. (d) Di-
experl mental effeCtS agram for Catly. The diamond-shaped vertex in these fipures
is the Hikami vertex (Ref. 16) shown in (e).

In transmission:
Caba’b’ = <Tab> < Ta’b’>{ Cl é‘)aa’ é‘)bb’ + C2 (Saa’ +8bb’) + CB}



Copary = <Tab><Ta’b’>{ C, L& .. L. + C, (Z,, +5y)

+Cs}

var ' ' '
{7 ab} _C.. =C,+2C,+C, Fluctuations of the intensity at one
<T,>° speckle pattern (Shapiro, PRL 86)
SHORT RANGE
var(T.} } Fluctuations in total transmission
<T, > ZCabab C +(1+ )Cz +C, (Stephen & GC, PRL 87).
b,b’'
LONG RANGE
var 1 2 .
{29} = Z Caar =—5C, +—C, +C, Fluctuationsing UCF
g a,ba’b’ N N

(Feng et al, PRL88)
INFINITE RANGE
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Spatial-Field Correlation: The Building Block of Mesoscopic Fluctuations

P. Sebbah,! B. Hu,? A.Z. Genack,” R. Pnini,* and B. Shapiro®

' Laboratoire de Physique de la Matieére Condensée, Université de Nice—Sophia Antipolis, Parc Valrose,
06108, Nice Cedex (02, France
2Department of Physics, Queens College of the City University of New York, Flushing, New York 11367
3Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel
(Received 16 December 2001; published 6 March 2002)

The absence of self-averaging in mesoscopic systems is a consequence of long-range intensity corre-
lations. Microwave measurements suggest, and diagrammatic calculations confirm, that the correlation
function of the normalized intensity with displacement of the source and detector, AR and Ar, re-
spectively, can be expressed as the sum of three terms, with distinctive spatial dependences. Each term
involves only the sum or the product of the square of the field correlation function, F = F. The leading-
order term is the product, F(AR)F(Ar); the next term is proportional to the sum, F(AR) + F(Ar); the
third term is proportional to F(AR)F(Ar) + [F(AR) + F(Ar)] + 1.

DOI: 10.1103/PhysRevLett.88.123901 PACS numbers: 41.20.Jb, 05.40.-a, 71.55.Jv

Similar results in 2003-2004 for polarization

Van Tiggelen



Microwaves:
Tumbles system and averages ~ 700 configurations
Places a source at 50 positions on the input face, and detector at the output face.

Measures E(r,R) Ci(Ar,AR) = KE, (7. R)E, (7', R /1,(7, R)) C(Ar,AR) = (81,(F,R)SL,(F,R") /{1, (7, R))
X (I.(7', R")) . X (1.7, R"),
¢ oo %8 o , o ce o °
o® o o® o o 8o o oo r
R T @ q@Q® e " o3¢ ooo ® | 75cm
o *900 . S e e
100 cm
i 1 T T
1k Real part of FE(Ar)
0.8-"'.,_ 1) ER VT e N —
yl T ] C,(Ar,AR=0) |
) ©  C(Ar,AR=0)
0.2r & theory

0 10 20 30 40 50
Ar (mm)
FIG. 1. Plots of C(Ar,AR = 0) and C{(Ar, AR = 0). and

theoretical fit to €. Inset: real part of the field correlation
function, Fg(Ar).



—— [C—C,](A1,AR=0)
—— [C—C,J(Ar,AR=d)
...... C, (Ar,AR=0)
x[C~C,](Ar=0,AR=d)

0.1

0.05}

0 10 20 30 40) 50
Ar (mm)

FIG. 2. Plots of [C — C]{Ar) for AR =0 and 3 cm, and
Ci(Ar)at AR = 0.
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—— C,(Ar,AR=d)/C (Ar=0,AR=d)

o8kt ... C, (Ar,AR=0)
0.6
0.4} C,(Ar=0,AR=d) ~

C (Ar=d,AR=0) = 2. 107
0.2} ]

0 10 20 30 40 50
Ar (mm)

FIG. 3. Comparison of C(Ar), normalized by its value at
Ar =0, for AR = 3 cm and C,(Ar) at AR = 0.

0.15 : ' '
—— [C-C |(Ar,AR=0)
— [C-C l](/_\.r,AR=d)
o1l v C,(Ar,AR=0) _
X[C—C ](Ar=0,AR=d)
0.05¢
0 10 20 30 40 50

Ar (mm)

FIG. 2. Plots of [C — C{](Ar) for AR = 0 and 3 em, and
Ci(Ar) at AR = 0.

C,(Ar,d) = (0.002) C,(Ar,0)

C, is a product of two identical functions
of the source and detector

[C- C,](Ar, AR) falls to ¥2 when one of
the variables increases beyond a
certain value.

C, is a sum of the same two identical
functions of the source and detector



The coefficients of the scattering matrix have to verify the
physical constraints

Flux conservation S ST =1

Also: S =St (if there is no time reversal breaking
mechanism)




L : : L
Expand in eigenfunctions of the clean cavity HOE T talp n(p) exp tiknz

Quasi — 1D - geometry ! \

Transverse Longitudinal

p,
. k'n: xkﬁ_q;.

E(A l E {E ja H}(}f’}(r])

(EADE'BY)= S cd, qﬁ}(r]m}f(rz@
cm’jjr /

Statistical
averages

A DIB.2)Y= > > {(cac. dyd,)

aa' bb' E:'*‘,r'jr

()l (r) o (

r,) ) ()]



Key idea: maximum entropy

Transport RMT theory to evaluate the
averages (Mello, Beenakker)

polar decomposition
() ()

All information about transport
(2) N (4)
L VT Vi-r 0 u is contained in the

/ _— o S (V)

Unitary matrices

et om! ,




One can prove results for the averages of the u!

<( uijn )(uij’n’)*> = (1/N) &jj’ 2

(tial

¥
‘j'a’

£ )
flbf?’b" ,"} =

|

- ____<?T>é%j’€in1’ e.c.a

(tial i, 7

Ja

| 1 2 \ /) \ - - - - - - - -
[AN (1) — By “»Iz;‘] (03705 0ab Oart + 0557045 Oaar Obiy )

. I \ T2 - - - - - - - -
+ [AN(To) — BN{T?)] (850500 Oaty Oart, + 047011 jOar oty )

(I{a,1)1(b,2))
({(a,1)){1(b,2))

rd
N (T

= =~

[An (T2)

N+

Py

5 A N 1 “

BN(T2)] (|F(Fa,76)° | F(F1.72)*)
By (T?)] (|F(71, 72)|* + |F(Ta. T5)|%)

— Ty 2

By(Ta) = —7(T)

Indeed the symmetry source-detector;
and the product (C;) and the sum (C,) v ="
have been reproduced. Also C;=C;-1 By =




FIELD CORRELATION

EXp[ikAr]
A AY

Comparison between the large limit and a solution on a cavity of cross
section W x W with W/(®/2) = 21/2 (which corresponds to 77 modes,
similar to the experimental conditions

In the limit of large N F(Ar) -

IM{G (r,,1,)}

2 _
. |F(r, )= MG (r,r)} MG (1)}
0.8 & AO) i _
N . i .
3 i P G (r,.1,) :EZ‘DT‘ ) ®i(r,)  z,>1z
h‘:'ﬁ.. 0 6_ | J
e 5z
b, 0.4_ | ,\'“
"“ﬁ 7
2;‘* s— Large N limit (eq. 9) U Lz
—- ECA (eq. 6)

b~

Torres and Saenz,
J.Phys. Soc. Japan 73, 2182




Intensity correlations

C(Ar,,.Arp) = [‘F(rml’b)‘Z‘F(l'bl'z)‘z]cl + [‘F(l’ml'b)‘z"' |F(r].r2)|2]C2 + (3

0.6

0.4

e s

C(km LAR mc (m; KAR=0)
-+ ((,2+(,_‘,_J{j+(\f“(km)}j

- C(kAr,kARzS.EJ—@I{kAr,kARzS.EJ

lf:i'.Z'. I~ ) .2
i X (C I (kAr)] +C,
0.0 i
0 10 15 20
kAr

The correlations for sources at
AR,=0 and AR, >> 1,
comparing our expressions with
the numerical simulation

0.15% . . . .
Y —+— [C-C,](Ar,AR=0)
\ —— [C-C,I(Ar,AR=d)
o1l % | C (Ar,AR=0)
\W‘m x[C~C 1(Ar=0,AR=d)
N MMWWW
0‘05-\\
\.L.\.\
Ok \—_-/"If't'-“..*_-_—-_f-*_‘_—r-m.,“__#*,*.,_.,_.*,Fr_w_ e
0 10 20 30 40 50

Ar (mm)



Dependence of correlations with the length of the system

Dorokhov and Mello-Pereyra-Kumar introduced an equation for the joint distribution of
the transport eigenvalues t as a function of the length s = L/¢ (Fokker-Planck)

OP ({\} . s)

0s

2~ O .
"''n=1 n

<1

3
oA,

des=L/l,v=0N+2-03y Jz(A)=Jsz({\i}) se define como
J.S H)\? }} = H ‘)\m - )\-n"ﬁ

P({\}.s)Js ()\J_l

Exact solution only for 3=2 , but there are approximations in the
localized case s>>N, and the diffusive limit 1<<s<<N.

C,=~1, gC,=2/3 g*C3=2/15

P ({z;},s) xexp[—B8H ({z;},s)] Monte Carlo method Froufe-Perez et al , PRL (2003)




Dependence of correlations with the length of the system

Using our numerical values

10 , ! . ;
8- 1=20 =t for C(Ar,AR) we gdjust W.I'[h
6 7 N the RMT expression obtained
P ; and find C,, C,, C, at
0 | i lrinrririnty different scales

0.50 e

0 0.25 The continuous line is the

0.00 g DMPK solution

-0.25 -A — E

0.10E\ © | T

- 0.05F * . gre> —
0.00F S0P o aad o eornmncoonoe o _
0055 ki Lo . C, goes negative at small

s scales s = L/¢



C(EAR =0, kAr >~ 25) >~ (5

0.10———
0.08

0.06-

=25.8)

0.04-
0.02
0.00

C(AR=0,k!

-0.02

0.04 Intuitive explanation

0 1 2 3 T4 s In terms of flux
conservation




 RMT is a useful tool to understand transport properties, in
particular space correlations, for specific geometries.

« The structure of the correlations is independent of the
transport regime.

e We get good agreement with numerical simulations.

* We can predict dependence of the correlations with length
of the cavity, which can be tested.
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