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A brief review of the diagrammatic 
theory





“scrambling” of the signal

Loss of information

Propagation of  classical waves in disordered systems

COHERENT PROPAGATION



Coherent backscattering

Something survives 
after averaging over 
disorder 



Information about the system

Width, polarization. 

Diffusive Wave spectroscopy l < L < linc

(many collisions, phase is 
preserved)

Quantum transport. Or rather 
coherent transport.  

No quantum statistics.  



Breaking the phase 
coherence between the   
time-reversed paths



NOTE:  In typical optical 
experiments we measure 
average quantities.



•Electronic systems    (a few atoms)

• Conduction in nanowires

•Optical Systems   (microns)

•Random Lasers   

• Microwaves    (centimeters)

• Accoustical systems     (meters)

• Seismic Phenomena   (kilometers)

Phenomena at many scales



Towards a diagrammatic theory
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Dyson’s solution ; Go(r-r’) is the free propagator (translationally invariant) :      
G is not, before averaging over disorder
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Helmholtz eq. for the Green’s function 
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≡ Is a small parameter, and the theory breaks down 

when it reaches 1  (Ioffe-Regel)

Diagrammatic approach to the Intensity
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Equation for the average intensity; 
BETHE-SALPETER   4-vertex 

insertionAt  ALL  orders
Each step of the ladder 
is of order 1

Important Identity   l =  4π/Δ
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In 3-d

The maximally crossed diagrams 
(MCD) admit a similar expansion 
(switching around the variables)

Finally the FT of the Intensity  <E(r1)E(r2)> becomes
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In the diffusive approximation
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there is a diffusive pole in the 
insertion for I 

1/K2  in momentum, and 1/r in space

For the MCD the diffusive pole 
appears only for q = - p

Summing the perturbation series

If there is absorption 
the  number 1 goes to ll
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Photonic Crystals

Universal conductance fluctuations

Holy Grail:

“Seeing” Localization 



COHERENT PROPAGATION

Elastic scattering
Phase preserved
Direction randomized over l
l < L < lin

l

Weak Localization
Universal Conductance Fluctuations

Berkovits & Feng, Phys Rep 238 (1994)



Semi-Conclusions
• A diagrammatic theory of the propagation of a 

wave in a disordered system, that includes all 
orders of scattering can be written.

• Even in its simplest version it can explain a lot 
of the phenomenology in the field. (WL, UCF, 
Memory Effects, etc)

• Can be adapted to treat polarization 
phenomena, anisotropy of the scatterers, more 
complex scatterers, etc. 

• A complete systematic diagrammatic theory is 
still not complete 



CORRELATIONS
Feng, Kane, Lee & Stone PRL 61, 834 (1988)

Diagrammatic theory for I - I correlations

g = (e2/h) Σab Tab (Landauer)  Tab  = | tab |2

Transmission: Ta = Σb Tab      ; g  =  Σab Tab 

<g> = N<Ta> =  N2 < Tab >       follows from isotropy



C1 is essentially  (FE )2 

=  (square of field correlation)

In transmission:
Caba’b’ =  <Tab> < Ta’b’>{ C1 δaa’ δbb’ + C2 (δaa’ +δbb’) + C3 }

This leads to interesting 

experimental effects:  

Caba’b’ =  <δTab δTa’b’>  =  C1 +  C2 + C3

No crossing, one crossing, two crossings
prop to 1,            1/g ,                  1/g2



Fluctuations of the intensity at one 
speckle pattern (Shapiro, PRL 86)   

SHORT RANGE
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Fluctuations in total transmission   
(Stephen & GC,  PRL 87).

LONG RANGE
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= = + +∑ Fluctuations in g   UCF
(Feng et al,  PRL88)

INFINITE RANGE

Caba’b’ =  <Tab> < Ta’b’>{ C1 aa’ bb’ + C2 ( aa’ + bb’) 
+ C3}



The experiment

Spatial-Field Correlation: The Building Block of Mesoscopic Fluctuations
P. Sebbah, B. Hu, A. Z. Genack, R. Pnini, and B. Shapiro 

Similar results in 2003-2004 for polarization
Van Tiggelen



Microwaves:
Tumbles system and averages ~ 700 configurations
Places a source at 50 positions on the input face, and detector at the output face.

100 cm

7.5 cm
r

R

Measures E(r,R)

C(Δr,0) = C(0,ΔR)

C1(Δr,0) = C1(0,ΔR)
There is complete symmetry  source-detector





C1(Δr,d) = (0.002) C1(Δr,0)

C1 is a product of two identical functions 
of the source and detector

[C- C1](Δr, ΔR) falls to ½ when one of 
the variables increases beyond a 
certain value. 
C2 is a sum of the same two identical 
functions of the source and detector



THE RMT APPROACH

The coefficients of the scattering matrix  have to verify the 
physical constraints

Flux conservation  S S+ = 1

Also:     S = St (if there is no time reversal breaking 
mechanism)



Expand in eigenfunctions of the clean cavity

Quasi – 1D - geometry
Transverse        Longitudinal 

Statistical 
averages



Transport RMT theory to evaluate the 
averages (Mello, Beenakker)              

polar decomposition

The average over transmission coefficients factorizes in a geometric  part 
which is independent of the transport regime  ISOTROPY

Unitary matrices

All information about transport 
is contained in the 

Key idea:      maximum  entropy



Indeed the symmetry source-detector; 
and the product (C1) and the sum (C2)  
have been reproduced.  Also C3 = C1-1

One can prove results for the averages of the ui

<( ui
jn )(ui

j’n’)*> = (1/N) jj’ nn’
e.c.a



In the limit of large N
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FIELD CORRELATION

Torres and Saenz,         
J.Phys. Soc. Japan 73, 2182

Comparison between the large limit and a solution on a cavity of cross 
section W x W   with W/( /2) = 21/2 (which corresponds to  77 modes, 
similar to the experimental conditions
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Intensity correlations

The correlations for sources at 
ΔR12=0 and ΔR12 >> λ, 
comparing our expressions with 
the numerical simulation



Dependence of correlations with the length of the system

Dorokhov and Mello-Pereyra-Kumar introduced an equation for the joint distribution of 
the transport eigenvalues τ as a function of the length  s = L/l        (Fokker-Planck)

Exact solution only for β=2 , but there are approximations in the 
localized case  s>>N,  and the diffusive limit 1<<s<<N.  

Monte Carlo method Froufe-Perez et al , PRL (2003)



Dependence of correlations with the length of the system

Using our numerical values 
for C(Δr,ΔR) we adjust with 
the RMT expression obtained 
and find C1, C2, C3 at 
different scales

The continuous line is the 
DMPK solution

C2 goes negative at small 
scales  s = L/l



Intuitive explanation 
in terms of flux 
conservation



Conclusions

• RMT is a useful tool to understand transport properties, in 
particular space correlations, for specific geometries.

• The structure of the correlations is independent of the 
transport regime. 

• We get good agreement with numerical simulations.

• We can predict dependence of the correlations with length 
of the cavity, which can be tested.
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