Power-law decay of the energy spectrum in linearized perturbed systems

Daniela Tordella1
Francesca De Santi1
Stefania Scarsoglio2

1Department of Aeronautics and Space Engineering, Politecnico di Torino, Torino, Italy
2Department of Hydraulics, Politecnico di Torino, Torino, Italy

University of California, Santa Barbara
March 2011, Santa Barbara, California
Examples of temporal evolution

- Amplified wave;
Examples of temporal evolution

- Amplified wave;
- Weakly Amplified wave;
Examples of temporal evolution

- **Amplified wave**;
- **Weakly Amplified wave**;
- **Damped wave**;
Examples of temporal evolution

- Amplified wave;
- Weakly Amplified wave;
- Damped wave;
- Random Wave Collection;
Examples of temporal evolution

- Amplified wave;
- Weakly Amplified wave;
- Damped wave;
- Random Wave Collection;
- Simultaneous Wave Collection;
Energy spectrum in fully developed turbulence

- Phenomenology of turbulence **Kolmogorov 1941**:
 - $-5/3$ power-law for the energy spectrum over the inertial range;
Energy spectrum in fully developed turbulence

- Phenomenology of turbulence **Kolmogorov 1941**:
 \(-5/3\) power-law for the energy spectrum over the inertial range;

- It is a common criterium for the production of a fully developed turbulent field to verify such a scaling (e.g. Frisch, 1995; Sreenivasan & Antonia, ARFM, 1997; Kraichnan, Phys. Fluids, 1967).
Energy spectrum in fully developed turbulence

- Phenomenology of turbulence **Kolmogorov 1941**:
 $-5/3$ power-law for the energy spectrum over the inertial range;

- It is a common criterium for the production of a fully developed turbulent field to verify such a scaling (e.g. Frisch, 1995; Sreenivasan & Antonia, ARFM, 1997; Kraichnan, Phys. Fluids, 1967).

We consider a collection of stable and unstable perturbation in their asymptotic state.
Energy spectrum and linear stability analysis

- We consider a collection of stable and unstable perturbation in their asymptotic state
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
Energy spectrum and linear stability analysis

- We consider a collection of stable and unstable perturbation in their asymptotic state
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 - To quantify the degree of generality on the base of the value of the exponent of the inertial range;
We consider a collection of stable and unstable perturbation in their asymptotic state
- To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
- To quantify the degree of generality on the base of the value of the exponent of the inertial range;

The set of small 3D perturbations:
- Constitutes a system of multiple spatial and temporal scales;
We consider a collection of stable and unstable perturbation in their asymptotic state

- To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
- To quantify the degree of generality on the base of the value of the exponent of the inertial range;

The set of small 3D perturbations:

- Constitutes a system of multiple spatial and temporal scales;
- Includes all the processes of the perturbative Navier-Stokes equations (*linearized convective transport, molecular diffusion, linearized vortical stretching*);
We consider a collection of stable and unstable perturbation in their asymptotic state

- To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
- To quantify the degree of generality on the base of the value of the exponent of the inertial range;

The set of small 3D perturbations:

- Constitutes a system of multiple spatial and temporal scales;
- Includes all the processes of the perturbative Navier-Stokes equations (linearized convective transport, molecular diffusion, linearized vortical stretching);
- Leaves aside the nonlinear interaction among the different scales;
Energy spectrum and linear stability analysis

- We consider a collection of stable and unstable perturbation in their asymptotic state
 - To understand how spectral representation can effectively highlight the nonlinear interaction among different scales;
 - To quantify the degree of generality on the base of the value of the exponent of the inertial range;
- The set of small 3D perturbations:
 - Constitutes a system of multiple spatial and temporal scales;
 - Includes all the processes of the perturbative Navier-Stokes equations (linearized convective transport, molecular diffusion, linearized vortical stretching);
 - Leaves aside the nonlinear interaction among the different scales;
- The perturbative evolution is ruled out by the initial-value problem associated to the Navier-Stokes linearized formulation.
Spectral analysis through initial-value problem

We determine the **exponent of the inertial range of arbitrary longitudinal and transversal perturbations** acting on a typical **shear flow**, i.e. the bluff-body wake:
We determine the exponent of the inertial range of arbitrary longitudinal and transversal perturbations acting on a typical shear flow, i.e. the bluff-body wake:

- Base flow approximated through 2D asymptotic Navier-Stokes expansions (Tordella & Belan, Phys. Fluids, 2003; Tordella & Scarsoglio, Phys. Lett. A, 2009) ⇒ (U(x, y; Re), V(x, y; Re));

Variety of the transient linear dynamics ⇒ Understand how the energy spectrum behaves and compare the decay exponent to that of the corresponding developed turbulent state:

The difference is large ⇒ quantitative measure of the nonlinear interaction in spectral terms;

The difference is small ⇒ higher degree of universality on the value of the exponent of the inertial range, not necessarily associated to the nonlinear interaction.
We determine the **exponent of the inertial range of arbitrary longitudinal and transversal perturbations** acting on a typical *shear flow*, i.e. the bluff-body wake:

- **Base flow** approximated through 2D asymptotic Navier-Stokes expansions (*Tordella & Belan, Phys. Fluids, 2003; Tordella & Scarsoglio, Phys. Lett. A, 2009*) \(\Rightarrow (U(x, y; Re), V(x, y; Re)) \);

Spectral analysis through initial-value problem

- We determine the **exponent of the inertial range of arbitrary longitudinal and transversal perturbations acting on a typical shear flow**, i.e. the bluff-body wake:
 - Base flow approximated through 2D asymptotic Navier-Stokes expansions (*Tordella & Belan, Phys. Fluids, 2003; Tordella & Scarsoglio, Phys. Lett. A, 2009*) ⇒ \((U(x, y; Re), V(x, y; Re))\);
- Variety of the transient linear dynamics ⇒ **Understand how the energy spectrum behaves and compare the decay exponent to that of the corresponding developed turbulent state**:
We determine the exponent of the inertial range of arbitrary longitudinal and transversal perturbations acting on a typical shear flow, i.e. the bluff-body wake:

- Base flow approximated through 2D asymptotic Navier-Stokes expansions (Tordella & Belan, *Phys. Fluids*, 2003; Tordella & Scarsoglio, *Phys. Lett. A*, 2009) ⇒ \((U(x, y; Re), V(x, y; Re))\);
- Recent set of solutions yielded by the initial-value problem applied to a plane bluff-body wake (Scarsoglio et al., *Stud. Appl. Math.*, 2009; Scarsoglio et al., *Phys. Rev. E*, 2010);

Variety of the transient linear dynamics ⇒ Understand how the energy spectrum behaves and compare the decay exponent to that of the corresponding developed turbulent state:

- The difference is large ⇒ quantitative measure of the nonlinear interaction in spectral terms;
Spectral analysis through initial-value problem

- We determine the **exponent of the inertial range of arbitrary longitudinal and transversal perturbations acting on a typical shear flow**, i.e. the bluff-body wake:
 - Base flow approximated through 2D asymptotic Navier-Stokes expansions (Tordella & Belan, Phys. Fluids, 2003; Tordella & Scarsoglio, Phys. Lett. A, 2009) ⇒ \((U(x, y; Re), V(x, y; Re))\);
 - Recent set of solutions yielded by the initial-value problem applied to a plane bluff-body wake (Scarsoglio et al., Stud. Appl. Math., 2009; Scarsoglio et al., Phys. Rev. E, 2010);
- Variety of the transient linear dynamics ⇒ Understand how the energy spectrum behaves and compare the decay exponent to that of the corresponding developed turbulent state:
 - The difference is large ⇒ quantitative measure of the nonlinear interaction in spectral terms;
 - The difference is small ⇒ higher degree of universality on the value of the exponent of the inertial range, not necessarily associated to the nonlinear interaction.
Perturbation scheme

Perturbation scheme

- Linear three-dimensional perturbative equations in terms of velocity and vorticity (Criminale & Drazin, Stud. Appl. Math., 1990);
- Base flow parametric in x and $Re \Rightarrow U(y; x_0, Re)$;
Perturbation scheme

- Base flow parametric in \(x\) and \(Re \rightarrow U(y; x_0, Re)\);
- Laplace-Fourier transform in \(x\) and \(z\) directions, \(\alpha\) complex, \(\gamma\) real.
Perturbation scheme

- Base flow parametric in \(x\) and \(Re \Rightarrow U(y; x_0, Re)\);
- Laplace-Fourier transform in \(x\) and \(z\) directions, \(\alpha\) complex, \(\gamma\) real.
Perturbative equations

- **Perturbative linearized system:**

\[
\frac{\partial^2 \hat{v}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i) \hat{v} = \hat{\Gamma}
\]

\[
\frac{\partial \hat{\Gamma}}{\partial t} = (i\alpha_r - \alpha_i) \left(\frac{d^2 U}{dy^2} \hat{v} - U \hat{\Gamma} \right) + \frac{1}{Re} \left[\frac{\partial^2 \hat{\Gamma}}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i) \hat{\Gamma} \right]
\]

\[
\frac{\partial \hat{\omega}_y}{\partial t} = -(i\alpha_r - \alpha_i) U \hat{\omega}_y - i\gamma \frac{dU}{dy} \hat{v} + \frac{1}{Re} \left[\frac{\partial^2 \hat{\omega}_y}{\partial y^2} - (k^2 - \alpha_i^2 + 2i\alpha_r\alpha_i) \hat{\omega}_y \right]
\]

The transversal velocity and vorticity components are \(\hat{v} \) and \(\hat{\omega}_y \) respectively, \(\hat{\Gamma} \) is defined as \(\hat{\Gamma} = \partial_x \hat{\omega}_z - \partial_z \hat{\omega}_x \).

- **Initial conditions:**
 - \(\hat{\omega}_y(0, y) = 0 \);
 - \(\hat{v}(0, y) = e^{-y^2} \sin(y) \) or \(\hat{v}(0, y) = e^{-y^2} \cos(y) \);

- **Boundary conditions:** \((\hat{u}, \hat{v}, \hat{w}) \to 0\) as \(y \to \infty \).
Perturbation energy

Kinetic energy density e:

$$e(t; \alpha, \gamma) = \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy$$

$$= \frac{1}{|\alpha^2 + \gamma^2|} \int_{-y_d}^{+y_d} (|\frac{\partial \hat{v}}{\partial y}|^2 + |\alpha^2 + \gamma^2||\hat{v}|^2 + |\hat{\omega}_y|^2) dy$$
Perturbation energy

- **Kinetic energy density e:**

\[
e(t; \alpha, \gamma) = \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) \, dy
\]

\[
= \frac{1}{|\alpha^2 + \gamma^2|} \int_{-y_d}^{+y_d} (|\frac{\partial \hat{v}}{\partial y}|^2 + |\alpha^2 + \gamma^2| |\hat{v}|^2 + |\hat{\omega}_y|^2) \, dy
\]

- **Amplification factor G:**

\[
G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}
\]
Perturbation energy

Kinetic energy density e:

\[
e(t; \alpha, \gamma) = \int_{-y_d}^{+y_d} (|\hat{u}|^2 + |\hat{v}|^2 + |\hat{w}|^2) dy
\]

\[
e(t; \alpha, \gamma) = \frac{1}{|\alpha^2 + \gamma^2|} \int_{-y_d}^{+y_d} (|\frac{\partial \hat{v}}{\partial y}|^2 + |\alpha^2 + \gamma^2||\hat{v}|^2 + |\hat{\omega}_y|^2) dy
\]

Amplification factor G:

\[
G(t; \alpha, \gamma) = \frac{e(t; \alpha, \gamma)}{e(t = 0; \alpha, \gamma)}
\]
The early transient evolution of the perturbations offers very different scenarios, that are depended by:

- wavenumber
The early transient evolution of the perturbations offers very different scenarios, that are depended by:

- wavenumber
- obliquity angle
The early transient evolution of the perturbations offers very different scenarios, that are depended by:

- wavenumber
- obliquity angle
- initial condition
The early transient evolution of the perturbations offers very different scenarios, that are depended by:

- wavenumber
- obliquity angle
- initial condition
- wake configuration field
The early transient evolution of the perturbations offers very different scenarios, that are depended by:

- wavenumber
- obliquity angle
- initial condition
- wake configuration field
- Reynolds number
Transient dynamics example

Fixed Reynolds number and wake configuration filed, the transient observed in long and short waves with different initial conditions is very diversified.
Transient dynamics example

Fixed Reynolds number and wake configuration filed, the transient observed in long and short waves with different initial conditions is very diversified.

The amplification factor G, obtained at $Re = 100, x_0 = 10$, with different initial condition and obliquity angle for a long (on the left) and a short (on the right) waves.
We have different temporal scales associated to the different perturbation wavelengths ⇒ A continuous instantaneous normalization can be used by defining as

\[t^* = \frac{t}{\tau_G}, \quad \tau_G = \frac{G(t)}{|dG(t)/dt|} \]

The amplification factor \(G \), obtained at \(Re = 100, x_0 = 10 \), with symmetric initial condition, \(\phi = 0 \) as a function of \(t \) (on the left) and of \(t^* \) (on the right).
The energy spectrum is computed at the asymptotic state, since it can widely vary during the transient;
Stop criterion

- The energy spectrum is computed at the asymptotic state, since it can widely vary during the transient;
- The time that perturbations take to get in their asymptotic condition is defined time such that:
 - $dG(t)/dt = C_s (= 10^{-4})$ for stable perturbations;
 - $dG(t)/dt = C_u (= 10^{+4})$ for unstable perturbation.
The energy spectrum is computed at the asymptotic state, since it can widely vary during the transient;

The time that perturbations take to get in their asymptotic condition is defined time such that:

- $dG(t)/dt = C_s (= 10^{-4})$ for stable perturbations;
- $dG(t)/dt = C_u (= 10^{+4})$ for unstable perturbation.

Perturbation energy normalized over the value at $t = 0 \Rightarrow G(k)$;
Stop criterion

- The energy spectrum is computed at the asymptotic state, since it can widely vary during the transient;
- The time that perturbations take to get in their asymptotic condition is defined time such that:
 - $\frac{dG(t)}{dt} = C_s \ (= 10^{-4})$ for stable perturbations;
 - $\frac{dG(t)}{dt} = C_u \ (= 10^{+4})$ for unstable perturbation.
- Perturbation energy normalized over the value at $t = 0 \Rightarrow G(k)$;
Results

High Reynolds number and intermediate wake configuration

\[\text{Re}=100, \ x_0=10 \]

\[\text{Energy spectrum in linearized systems} \]
Results

High Reynolds number and far wake configuration

\[\text{Re}=100, \ x_0=50 \]

\[G \]

\[10^0 \]

\[k \]

\[10^0 \quad 10^1 \quad 10^2 \]

\[\text{Sym, } \phi=0 \]
\[\text{Sym, } \phi=45 \]
\[\text{Sym, } \phi=90 \]
\[\text{Asym, } \phi=0 \]
\[\text{Asym, } \phi=45 \]
\[\text{Asym, } \phi=90 \]

Energy spectrum in linearized systems
Results

Middle Reynolds number and intermediate wake configuration

\[\text{Re}=50, \ x_0=10 \]

Graph showing energy spectrum for different cases:
- Sym, \(\phi=0 \)
- Sym, \(\phi=45 \)
- Sym, \(\phi=90 \)
- Asym, \(\phi=0 \)
- Asym, \(\phi=45 \)
- Asym, \(\phi=90 \)

The energy spectrum follows a \(-5/3\) power law.
Results

Low Reynolds number and intermediate wake configuration

Re=30, x_0=10

Energy spectrum in linearized systems
Asymmetric initial condition case

- Perturbation with asymmetric initial condition growths in the early transient are much slower than the symmetric ones.
Asymmetric initial condition case

- Perturbation with asymmetric initial condition growths in the early transient are much slower than the symmetric ones.
- The amplification factor function shows a modulation, which is very evident in the first part of the transient.
Asymmetric initial condition case

- Perturbation with asymmetric initial condition growths in the early transient are much slower than the symmetric ones.
- The amplification factor function shows a modulation, which is very evident in the first part of the transient.
Asymmetric initial condition case

Two different self similar state are observed

\[G(t^*) \]

\[\text{Re}=100, \ x=10, \ \phi=0 \ sym \]

Asymptotics self similar state
Asymmetric initial condition case

- Two different self similar state are observed
- The stop criterion cannot be applied a priori
Asymmetric initial condition case

- Two different self similar state are observed.
- The stop criterion cannot be applied a priori.

\[G(t^*) \]

\[\text{Re}=100, \ x=10 \ \phi=0 \ \text{sym} \]

Asymptotics self similar state

Transient self similar state

UCSB D. Tordella, F. De Santi, S. Scarsoglio
Asymmetric initial condition case

The computed slopes differ by up to 2%
Asymmetric initial condition case

The computed slopes differ by up to 2%
Concluding remarks

- Preliminary study of the behaviour of a collection of 3D waves seen throughout their energy spectrum at the asymptotic state;
Concluding remarks

- Preliminary study of the behaviour of a collection of 3D waves seen throughout their energy spectrum at the asymptotic state;
- The energy of the intermediate range of wavenumbers in the spectrum decays with the same exponent observed for fully developed turbulent flows ($-5/3$), where the nonlinear interaction is considered dominant;
Concluding remarks

- Preliminary study of the behaviour of a collection of 3D waves seen throughout their energy spectrum at the asymptotic state;
- The energy of the intermediate range of wavenumbers in the spectrum decays with the same exponent observed for fully developed turbulent flows \((-5/3)\), where the nonlinear interaction is considered dominant;
- The spectral power-law scaling of inertial waves is a general dynamical property which encompasses the nonlinear interaction;
Concluding remarks

- Preliminary study of the behaviour of a collection of 3D waves seen throughout their energy spectrum at the asymptotic state;
- The energy of the intermediate range of wavenumbers in the spectrum decays with the same exponent observed for fully developed turbulent flows \((-5/3)\), where the nonlinear interaction is considered dominant;
- The spectral power-law scaling of inertial waves is a general dynamical property which encompasses the nonlinear interaction;
- The \(-5/3\) power-law scaling in the intermediate range seems to be an intrinsic property of the Navier-Stokes solutions.
Concluding remarks

- Preliminary study of the behaviour of a collection of 3D waves seen throughout their energy spectrum at the asymptotic state;
- The energy of the intermediate range of wavenumbers in the spectrum decays with the same exponent observed for fully developed turbulent flows ($-5/3$), where the nonlinear interaction is considered dominant;
- The spectral power-law scaling of inertial waves is a general dynamical property which encompasses the nonlinear interaction;
- The $-5/3$ power-law scaling in the intermediate range seems to be an intrinsic property of the Navier-Stokes solutions.

Coming next ⇒ Temporal observation window of a large number of small 3D perturbations injected in a statistical way into the system.