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Extragalactic Transients:
Why Now???

. We still have much to learn about the
endpoints of stellar evolution

. New Surveys are coming online that are likely
to reveal many new phenomena.

. There are enough ‘unusual’ events already to
imagine that this will be an exciting time...

. What we know about white dwarfs certainly
hints that the outcomes are not all ‘textbook’












Stellar Termini and Transients

Open questions remain about stellar death, but usually it
1s sudden

Supernovae are ‘obvious’ only because they are bright
(M_V=-18), odd SN now appearing!

Novae can be seen in nearby galaxies and evolve on
month timescales (M_V=-8), connections to Ia?

WD-WD mergers are expected and maybe some of their
long-lived aftermaths are known (R CrB stars?)

Main Sequence mergers, binaries . . . .
A few unusual transients seen in nearby galaxies...

White dwarf mass and surface compositions imply
mergers and H depleting events make >10% of WDs!

Some stars ‘eaten” by SMBH...



R 0.1-1% of white dwarfs are in
g binaries where accretion occurs,
I rcleasing gravitational energy

- (CHS | keV

R~ — J

R nucleon

| Whereas the nuclear fusion of
H=>He or He=>C releases

MeV

nucleon

1 -5

B T'his contrast is further enhanced
Bl when the white dwarf stores fuel

I {or > 1000 years and burns it

Brapidly, making these binaries

. detectable 1n distant galaxies

S during thermonuclear events.
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To fill the tidal radius:
Ry = 0.46a(My/M,)/3

Giving the relation:
100 gr cm_3> 1/2
p

Porb =64 m (
p = Donor Density

The mass transfer rate 1s
set by angular momentum
losses, typically from
gravitational wave
emission.



In 10711 solar masses of old stars
(e.g. E/SO galaxy), two WDs are
made per year. The observed rates
for thermonuclear events are:

20 Classical Novae (Hydrogen fuel,
triggered by accretion) per year

e One Type Ia Supernovae every 250
years, or one 1in 500 WDs explode!

mM87 @ Anglo—Austrﬁlian Observatory Predicted ¢ event ’ rates are :

Photo by David Malin

e WD-WD mergers (He or C/O accretion) every 100-500 years

e CV birthrate (H accretion) from observed Classical Novae rate 1s one
every 200-500 years (Townsley and LB 2005)

e AMCVn birthrate (He accretion) 1s 1 1n 5000 years (Roelofs et al. ‘07)



G. Contardo et al.: Epochs of maximum light and bolometric light curves «
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Thermonuclear Supernova Lightcurves

e Type Ia result from burning a solar mass of C/O to ~0.6 solar masses
of 56N1 (rest burned to Si1, Ca, Fe) and ejected at v=10,000 km/sec.

* This matter would cool by adiabatic expansion, but instead 1s
internally heated by the radioactive decay chain S5S6Ni1=>56Co=>56F¢
e Arnett (1982) (also see Pinto & Eastman 2000) showed that the peak
in the lightcurve occurs when the radiation diffusion time through the
ejected envelope equals the time since explosion, giving

1/
T = R ~ 20 days
fcv

* The luminosity at peak 1s set by the radioactive decay heating rate
==> can measure the S6N1 mass, yielding 0.1-1.0 solar masses



Light Curve Fitting to Measure Ejected and S6N1 Masses
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Carbon Ignition

If cold (T<3e8 or so), then ignition is from high densities..which
only occur for massive white dwarfs, requiring accretion of mass!
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Hydrogen Burning 1s Usually Unstable

Townsley & Bildsten 2005 Supersoft Sources:
10~ T T Burn H Stably (van
: den Heuvel et al
1992), or weakly
10-7 N““ unstable. Accretion
I“““ . phase ~100 Myrs
Accumulated mass 107° M, i
108 £ . /\
Cataclysmic
Variables:
1072 unstable burning
- leads to Classical
10-10 L Novae. Whether
: the mass stays or
goes 18 uncertain,
10-H but WDs are not

massive enough!
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pure carbon WD to an interior mass point. The curves are for isothermal WDs

Heat Transport in the White Dwart Core
Townsley & LB 2004

(T = 107 K) with masses M = 04, 0.6, 0.8, 1.0, and 1.2 M.

There are no heat sources deep in
the white dwart prior to the
explosion, so to increase the core
temperature for C 1gnition, must
either:

* Compress the matter adiabatically

e Allow heat to flow in from a hotter
surface set by the temperature from

H or He Burning:
CpR?

where K 1s the conductivity and



Carbon Ignition

The competition for the central fluid element is thus between

density compression at the rate set by accretion of matter (on

averdge)y— ' ' '
&C) (Hernanz et al. 1988; Nomoto 1982) [\/i
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Single Degenerate Ignition Story
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Rapid C/O Accretion from Mergers

Accretion of C/O at a high rate leads to:

1. Adiabatic compression of the core

2. Ignition at the outer edge, where there is a
larger density change from accretion
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LogT (K)

Rapid C/O Accretion (Cont.)

Rapid accretion results in an off-center ignition that likely leads to burning C/O
to O/Ne and maybe NS formation, but remains actively debated. However,

critical M_dot and M_tot depends on initial core temperature (i.e. age of the
WD)!! (see Lesaffre et al. ‘06)
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DD-Ch: Merged WDs
He-ELD: Helium
edge lit detonations
SG-ELD: Thick
Helium shell built by
H burning

SG-Ch: Stable H
burning, central core
1gnition



Type Ia Supernovae Dependence on
Galaxy Type and Cosmic Rates

There are observed trends in Ia properties with galaxy type (no
evidence yet for metallicity effects):

1. Brightest (e.g. 1991T) events occur preferentially in young
stellar environments (hence mostly spiral and irregular galaxies)

2. Sub-luminous (and peculiar, eg. 1991bg) Ia’s dramatically prefer
old stellar populations . . (Elliptical and SO Galaxies)

3. Rates track BOTH the stellar mass and the star formation rate

These are likely the result of old and young stellar populations and
motivated (Scannapieco & LB, 2005, ApJ, 629, L85) simple
explanation for the observed cosmic Ia rate.
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SN Rate Dependence — .

SNe per century

on Galaxy Type

II
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Canada-France-Hawaii Telescope SuperNova

Legacy Survey (SNLS)
125 la Sne, 0.2<z<0.75 e Galaxies identified
L 1 from the CFHT survey.
- Sullivan et al 2006 ) '—:—{ 1 AllIa’s are
s | %&g -4 spectroscopically
B - s
~ 0_ e T LT‘* %HE_FL _ e For the clear
gej [T _lT a1l | counterparts (some are
T | %_ 7 ambiguous), the
§ S l T ‘ galaxies were
- 2— 1T — classified via colors as
3 S I G l | 1 vigorous star formers,
o NIy E , and
e | AL L Ef"ig,t, 1 passive.
At L L lod eWhen SNLS is done,
6 7 8 9 10 11 12

LOG stellar mass (M) this list should be ~500



Scalings with Star Formation Rate

Passive Star-forming Burst
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Confirmation of the mass specific rate of Mannucci et al for passive
galaxies, and confirmation of the Ia rate dependence on
star formation rate.



CFHT Supernovae Legacy Survey (SNLS)

Star Forming Galaxies Red=Passive Star Forming-Passive

Sullivan et al 2006

151
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4 Fainter Stretch
The number of faint (small stretch) Ia’s in spirals 1s

consistent with the old stellar population in the spiral galaxy.

The two populations are distinct, but overlapping in their
S56N1 production levels.



Mergers of WD’s?
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* Howell et al (2006) suggested
that 2003fg was ‘super’chandra
based on:

- Presence of carbon at early
times

- Low velocities of S1 at early
times

- Luminous and broad light
curve with high 56N1

e Recent discovery of similar
behavior in 2006gz (Hicken et al.
‘O7) 1n a spiral and
ROTSE3J011051+15..(Yuan et al;
Atel 1212)



2002c¢cx “likes”™

Only seen 1n active star forming galaxies
Do NOT follow the Phillips relation

Have very LOW velocities early and late times
and very low velocities

6 known systems at this time.. likely to grow.
See work by Jha, Li et al, Chornock

Best summary 1s Jha’s talk at KITP online
http://online.itp.ucsb.edu/online/snovae07/jha/



Ia Preliminary Conclusions

e There are two distinct populations of Ia that track stellar
mass and star formation rate and have, on average,
different (but overlapping) 56N1 masses

 New and unusual systems like 2002cx as well as ‘super-
chandra’ will hopefully help unravel the physics

 Though we have not 1dentified progenitors with specific
classes of Ia’s, evidence 1s mounting that:

— Ia’s at 10 Gyrs requires either a new single degenerate channel
or a WD-WD merger

— Ia’s occur within 0.5-1 Gyr of star formation.
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EvENTS IN THE EVOLUTION OF FG SAGITTAE, V605 AQUILAE, AND V4334 SAGITTARI

51500

Three Events

TABLE 5

1 e Dust 1s formed..

FG Sge (1894)
V605 Aql (1917) (-5)
V4334 Sgr (1992, Sakurai)

1 » Typically up to -5 to -8, lasts
| for many years, evolves to red..

Parameter FG Sge V605 Aql V4334 Sge
Brightness increase (spectrum) ....................... 1894-1975 [B-G2 I] 1917.7-1918 1994.8-1995
Time of brightness maximum in B (spectrum)...... 1968 [A3 1] 1919.6 B 1996.3 [FO]
Spectrum at later stage............ccooeiiiiiiiiinnn.. G-KO I in 1980s C2,21n 1921.7 C2,21n 1997.3
Onset of dust formation ................cceevvvnne.... 1992 1922.6 (?) 1998.4
Dramatic decline (“disappearance™)................. ? 1924 1999.2




[Late Thermal Pulses (10-20% of
all WDs!)
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The depletion of H is likely why the rise 1s rapid and it explains the
10-20% prevalence of DB WD:s...
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606

CK Vul (M_v=-7 to -8)

T. Kato: CK Vul as a candidate eruptive stellar merging event
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1008

V mag.

V445 Puppis= Helium Novae?

N. M. Ashok and D. P. K. Banerjee: IR spectroscopy of V445 Puppis
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M31-RV and V838 Mon

F. Boschi and U. Munari: M 31-RV evolution and its alleged multi-outburst pattern
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M85 OT (Kulkarni et al.

2007)
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WD-WD Mergers: R Cr B stars?
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e Variable stars at M_v=-4 to -5. No hydrogen present, pure He+
carbon. Variability due to dust formation episodes.

* MACHO found many, rough numbers for our galaxy are 3000
(Alcock et al. 2001)

e Current hypothesis 1s He+C/O mergers, followed by burning for
100,000 years=> birthrate 1s 3 in 100 years..
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