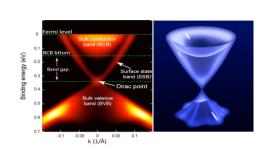
Topological Quantum Chemistry

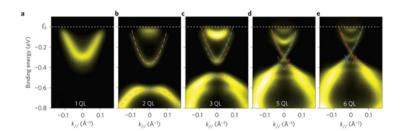
Maia G. Vergniory

KITP

Topological Quantum Matter: Concepts and Realizations

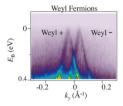
Discovery of topological materials





Discovery of a Wevl fermion semimetal and topological Fermi a

Su-Yang Xu, 1,2a Ilya Belopolski, 1,b Nasser Alidoust, 1,2a Madhab Neupane, 1,2a Guang Blan, 'Chenglong Zhang, 'Raman Sankar,' Guoding Chang, 5 Zhujun Yua Chi Cheng Lee, 5 Siha-Ming Huang, 5 Hao Zheng, 1 Hao Yang, 1 Hao Xiang, 1 Hao



Hsieh Nature (2008) Zhang Nat Phys (2009) Xia Nat Phys (2008)

3D TIs theory + exp protected by TRS: Bi₂Se₃

Chang Science (2013)

QAHE

semimetals

Xu Science (2015) Weyl

Fermions

New

Bradlyn (2016) **Nodal Lines** Bzdušek (2016)

2006

2007

2008

2009

2010

2011

2012

2013

2014

Weng PRX (2015)

2015

2016

2017

2018

Prediction HgTe 2D TI

Bernevig Science (2006) König Science (2007)

charge carriers

Mirror Chern

insulators

Type II Weyls

Soluyanov (2015)

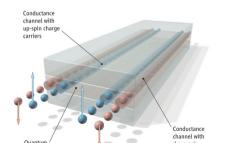
High Order TIs

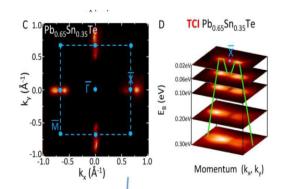
Schindler (2018)

Hsieh Nat Comm (2012) Tanaka Nat Phys (2012)

Non-symmorphic TIs

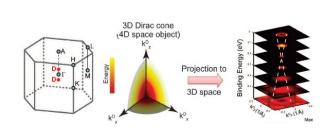
Alexandrinata (2016)





Discovery of a Three-Dimensional Topological Dirac Semimetal, Na₃Bi

Z. K. Liu, ^{1*} B. Zhou, ^{2,3*} Y. Zhang, ³ Z. J. Wang, ⁴ H. M. Weng, ^{4,5} D. Prabhakaran, ² S.-K. Mo, ³ Z. X. Shen, ¹ Z. Fang, ^{4,5} X. Dai, ^{4,5} Z. Hussain, ³ Y. L. Chen^{2,6}†

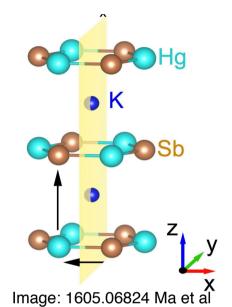


Recall: a space group is a set of symmetries that defines a

crystal structure in 3D

Ingredients:

- unit lattice translations (\mathbb{Z}^3)
- point group operations (rotations, reflections)
 non-symmorphic (screw, glide)
- orbitals
- atoms in some lattice positions



How do we go from real space orbitals sitting on lattice sites to electronic bands (without a Hamiltonian)?

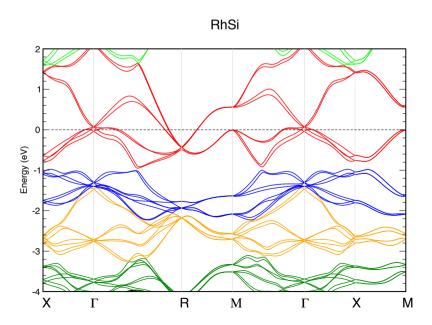
ELEMENTARY BAND REPRESENTATIONS

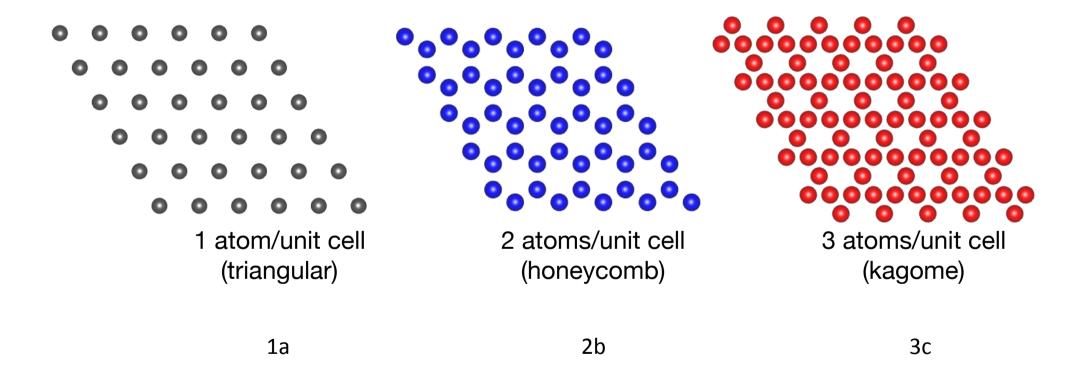
Band as Representations

Band Representation (BR): set of bands linked to a localized orbital (respecting all the crystal symmetries and TRS)

Elementary BR: smallest set of bands cannot be decomposed in elementary bands **Physical Elementary BR**: when EBR also respects TR symmetry **Composite BR**: A BR which is not elementary is a "composite"

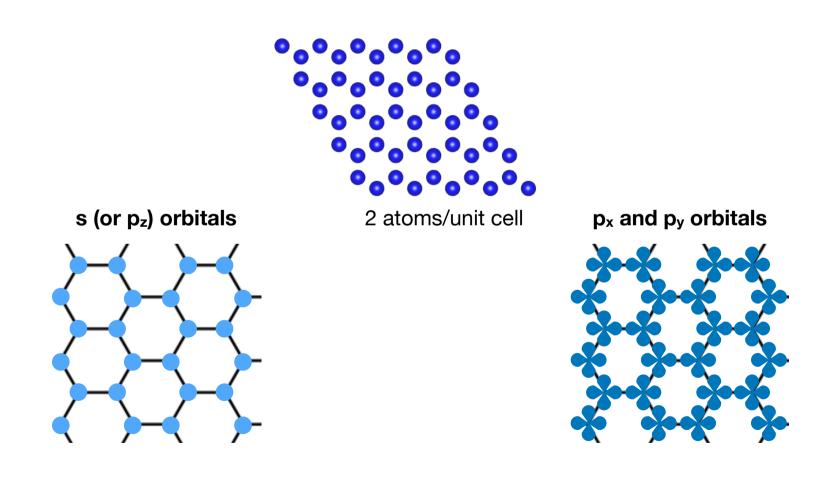
(P)EBRs are connected along the BZ



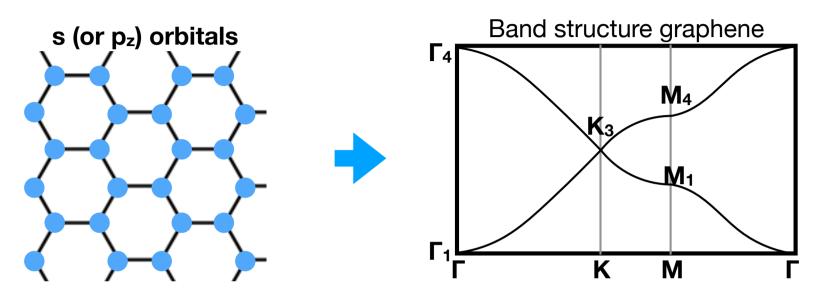


- Within the same SG many ways to arrange atoms
- Each arrangement determines different representations

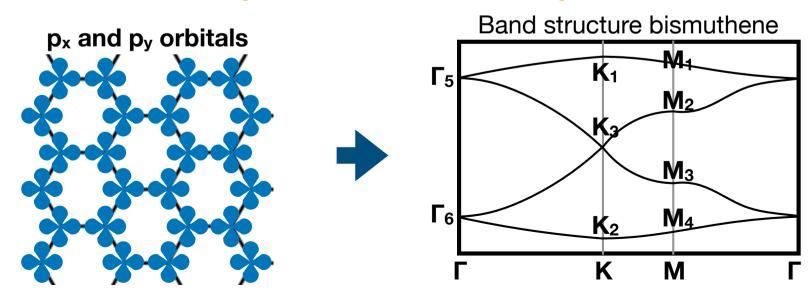
- Within the same lattice, different orbitals



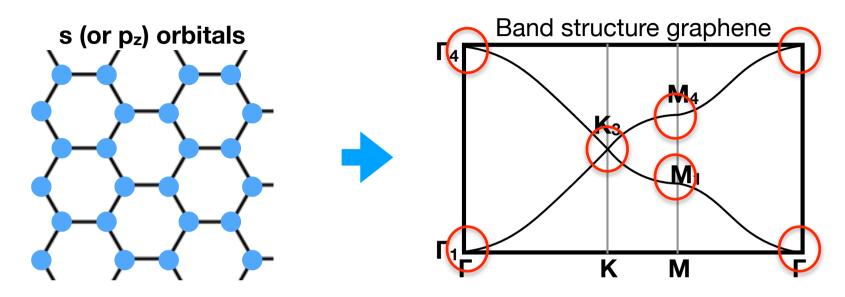
Site-symmetry group, Gq, leaves q invariant



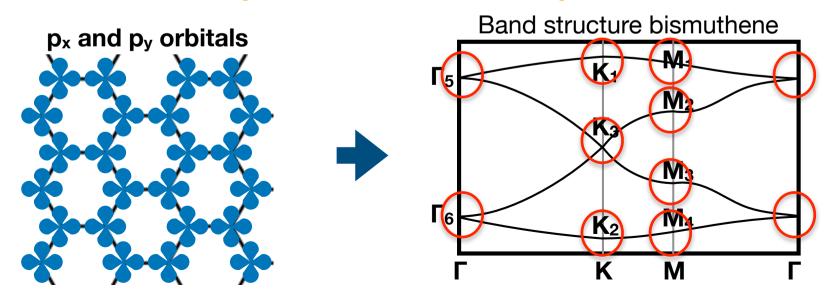
Real space vs momentum space



Each arrangement/orbital determines symmetry representations in the Brillouin zone



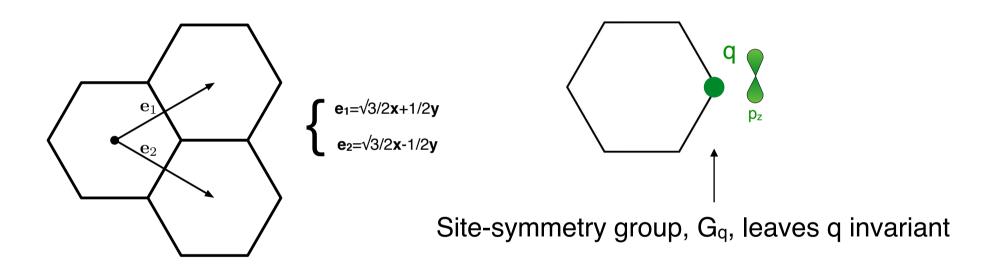
Real space vs momentum space



Lets consider the generators of 2D P6mm: $\{C_2, C_3, m_{1\overline{1}}\}$

Lattice vectors:

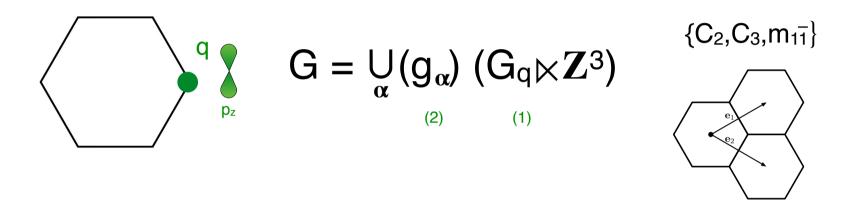
Lattice site: Wyckoff 2b, spinfull pz



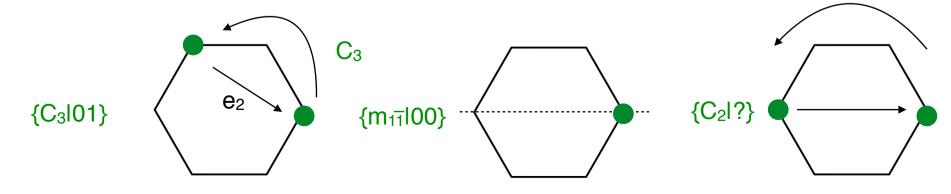
Coset decomposition of a Space Group:

$$G = \bigcup_{\alpha=1}^{n} (g_{\alpha}) (G_{q} \ltimes \mathbf{Z}^{3})$$
, $g_{\alpha} \notin G_{q}$

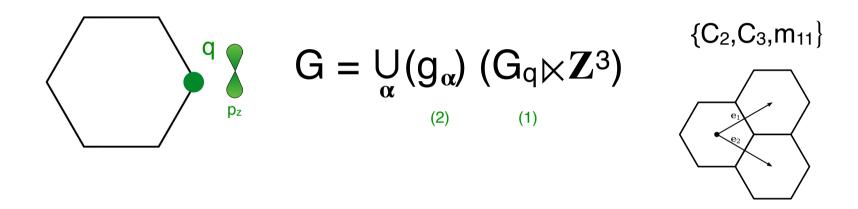
Consider one lattice site:



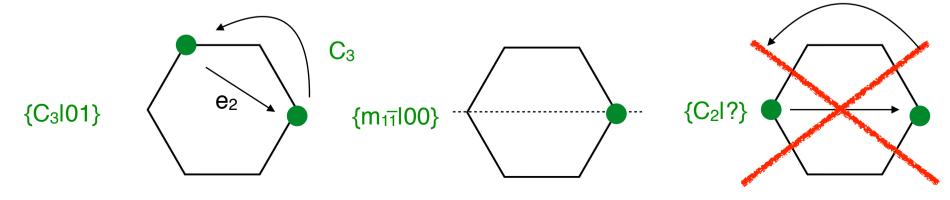
Site-symmetry group, G_q , leaves q invariant $\{C_3|01\}$, $\{m_1|00\} \approx C_{3v}$ Orbitals at q transform under a rep, ρ , of G_q



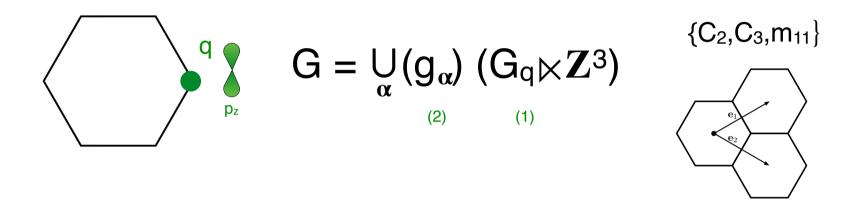
Consider one lattice site:



Site-symmetry group, G_q , leaves q invariant $\{C_3|01\}$, $\{m_1|00\} \approx C_{3v}$ \longrightarrow Orbitals at q transform under a rep, ρ , of G_q



Consider one lattice site:

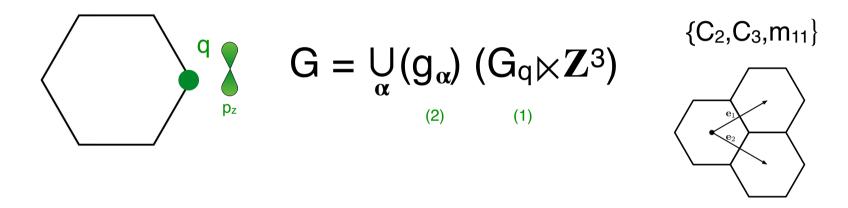


Site-symmetry group, G_q , leaves q invariant $\{C_3|01\}$, $\{m_1|00\} \approx C_{3v}$ Orbitals at q transform under a rep, ρ , of G_q

Rep
$$E C_3 M \overline{E}$$
 $\rightarrow \overline{\Gamma}_6$ 2 1 0 -2

Character table for the double-valued representation of C_{3v}

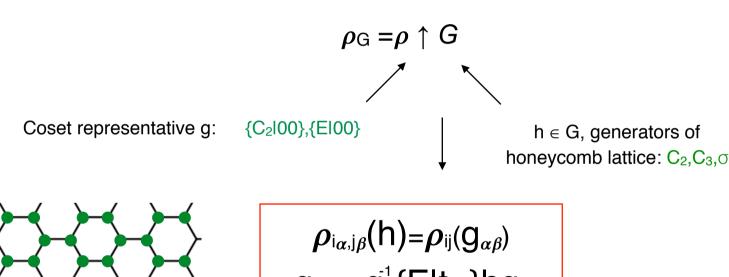
Consider one lattice site:



- Site-symmetry group, G_q , leaves q invariant $\{C_3|01\}$, $\{m_1|00\} \approx C_{3v}$ \longrightarrow Orbitals at q transform under a rep, ρ , of G_q
- Elements of space group $g \notin G_q$ (coset representatives) move sites in an orbit "Wyckoff position" $\{C_2|00\},\{E|00\}$

 $\overline{\Gamma}_6$ induced in C_{6v}

electron bands sitting at pz orbitals in Wyckoff 2b in wall paper group 17



$$g_{\alpha\beta} = g_{\alpha}^{-1} \{ Elt_{\alpha\beta} \} hg_{\beta}$$

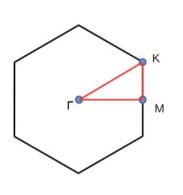
$$\downarrow$$

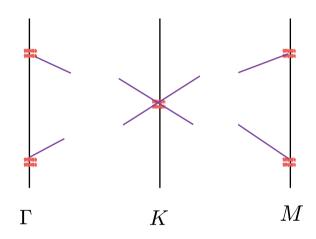
$$\rho_{G}(h) = e^{-(k \cdot t_{\alpha\beta})} \rho_{ij}(g_{\alpha\beta})$$

dimension of this band representations = connectivity in the Brillouin zone

Subduction in momentum space

$$(\rho \uparrow G) \downarrow G_k$$





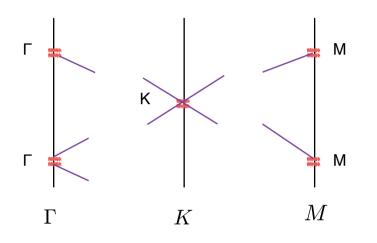
$$\rho_G^{\Gamma} = \bar{\Gamma}_7 \oplus \bar{\Gamma}_8$$

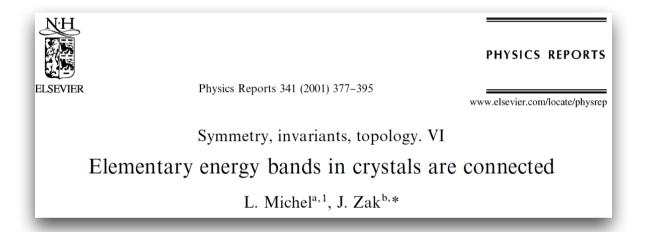
Table 1.5	Table of charact	ers of the group (C_{6i}
------------------	------------------	--------------------	----------

C_{6v}	E	C_3^{\pm}	C_2, \bar{C}_2	C_6^{\pm}	m_{11}	$m_{1\bar{1}}$	\bar{E}	\bar{C}_3^{\pm}	\bar{C}_6^{\pm}
$ ho_G^{_I}$	4	2	0	0	0	0	-4	-2	0
$ar{ar{arGamma_{7}}}$	2	1	0	$-\sqrt{3}$	0	0	-2	-1	$\sqrt{3}$
$ar{arGamma_8}$	2	1	0	$\sqrt{3}$	0	0	-2	-1	$-\sqrt{3}$
$ar{arGamma_9}$	2	-2	0	0	0	0	-2	2	0

ATOMIC LIMIT

- Restricting to the little group at k to find irreps at each k point (subduction) -> all bands connected
- EBR is defined by a maximal Wyckoff position and the irreps in real space



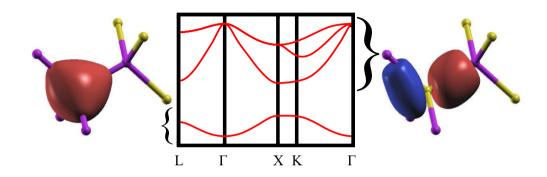


O Topology?

By construction, a **band representation has an atomic limit**, and all atomic limits yield a band representation

Recall: Topological bands CANNOT Have Maximally Localized Wannier Function

ATOMIC LIMIT

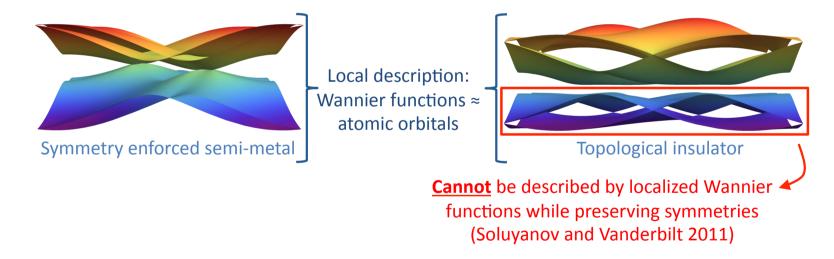


- 1) Bands in ρ_G are **connected** (this phase can always realized) in the Brillouin zone
- 2) Bands in ρ_G are **not connected**: at least one **topological band** (Disconnected (P)EBR = set of disconnected bands that connected form an (P)EBR)

GRAPHENE

What makes the disconnected bands topological?

All four bands come from a single set of localized orbitals (p₂, spin up/down)



Disconnected bands are topological because they lack localized Wannier functions that obey TR

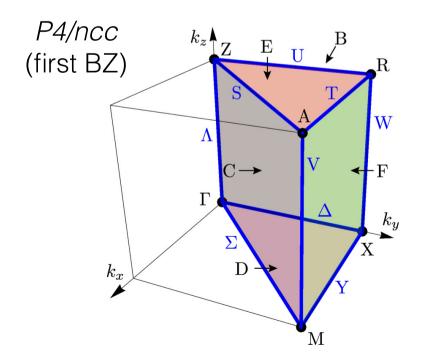
TQC Statement

All sets of bands induced from symmetric, localized orbitals, are topologically trivial by design.

Maximal k-vectors and paths

For all the 230 SG: maximal k-vectors + minimal set non-redundant connections

k vector in a manifold is maximal if its little co-group it's not a subgroup of another manifold of vectors **k**' (in general coincides with high-symmetry k-vector)

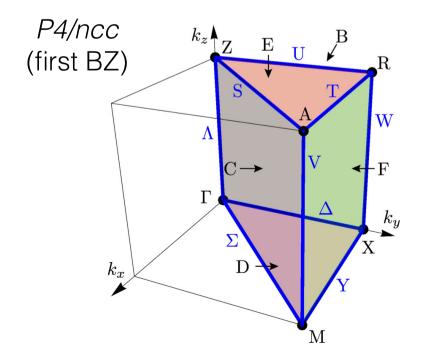


k-vec	mult.	Coordinates	Little	Maximal co-group	TR
Γ	1	(0,0,0)	$4/mmm(D_{4h})$	yes	yes
Z	1	(0,0,1/2)	$4/mmm(D_{4h})$	yes	yes
M	1	(1/2,1/2,0)	$4/mmm(D_{4h})$	yes	yes
A	1	(1/2,1/2,1/2)	$4/mmm(D_{4h})$	yes	yes
R	2	(0,1/2,1/2)	$mmm(D_{2h})$	yes	yes
X	2	(0,1/2,0)	$mmm(D_{2h})$	yes	yes
Λ	2	(0,0,w),0 < w < 1/2	$4mm(C_{4v})$	no	no
V	2	(1/2, 1/2, w), 0 < w < 1/2	$4mm(C_{4v})$	no	no
W	4	(0,1/2,w),0 < w < 1/2	$mm2(C_{2v})$	no	no
Σ	4	(u,u,0),0 < u < 1/2	$mm2(C_{2v})$	no	no
S	4	(u,u,1/2),0 < u < 1/2	$mm2(C_{2v})$	no	no
Δ	4	(0,v,0), 0 < v < 1/2	$mm2(C_{2v})$	no	no
U	4	(0, v, 1/2), 0 < v < 1/2	$mm2(C_{2v})$	no	no
Y	4	(u,1/2,0),0 < u < 1/2	$mm2(C_{2v})$	no	no
T	4	(u,1/2,1/2),0 < u < 1/2	$mm2(C_{2v})$	no	no
D	8	(u, v, 0), 0 < u < v < 1/2	$m(C_s)$	no	no
E	8	(u, v, 1/2), 0 < u < v < 1/2	$m(C_s)$	no	no
C	8	(u,u,w),0 < u < w < 1/2	$m(C_s)$	no	no
B	8	(0, v, w), 0 < v < w < 1/2	$m(C_s)$	no	no
F	8	(u,1/2,w), 0 < u < w < 1/2	$m(C_s)$	no	no
GP	16	(u, v, w), 0 < u < v < w < 1/2	1(1)	no	no

Maximal k-vectors and paths

For all the 230 SG: maximal k-vectors + minimal set non-redundant connections

k vector in a manifold is maximal if its little co-group it's not a subgroup of another manifold of vectors **k**' (in general coincides with high-symmetry k-vector)



				Maximal	
k-vec	mult.	Coordinates	Little	co-group	TR
Γ	1	(0,0,0)	$4/mmm(D_{4h})$	yes	yes
Z	1	(0,0,1/2)	$4/mmm(D_{4h})$	yes	yes
M	1	(1/2,1/2,0)	$4/mmm(D_{4h})$	yes	yes
A	1	(1/2,1/2,1/2)	$4/mmm(D_{4h})$	yes	yes
R	2	(0,1/2,1/2)	$mmm(D_{2h})$	yes	yes
X	2	(0,1/2,0)	$mmm(D_{2h})$	yes	yes
Λ	2	(0,0,w), 0 < w < 1/2	$4mm(C_{4v})$	по	no
V	2	(1/2, 1/2, w), 0 < w < 1/2	$4mm(C_{4v})$	no	no
W	4	(0,1/2,w),0 < w < 1/2	$mm2(C_{2v})$	no	no
Σ	4	(u,u,0),0 < u < 1/2	$mm2(C_{2v})$	no	no
S	4	(u, u, 1/2), 0 < u < 1/2	$mm2(C_{2v})$	no	no
Δ	4	(0, v, 0), 0 < v < 1/2	$mm2(C_{2v})$	no	no
U	4	(0, v, 1/2), 0 < v < 1/2	$mm2(C_{2v})$	no	no
Y	4	(u, 1/2, 0), 0 < u < 1/2	$mm2(C_{2v})$	no	no
T	4	(u, 1/2, 1/2), 0 < u < 1/2	$mm2(C_{2v})$	no	no
D	8	(u, v, 0), 0 < u < v < 1/2	$m(C_s)$	no	no
E	8	(u, v, 1/2), 0 < u < v < 1/2	$m(C_s)$	no	no
C	8	(u,u,w),0 < u < w < 1/2	$m(C_s)$	no	no
B	8	(0, v, w), 0 < v < w < 1/2	$m(C_s)$	no	no
F	8	(u,1/2,w), 0 < u < w < 1/2	$m(C_s)$	no	no
GP	16	(u, v, w), 0 < u < v < w < 1/2	1(1)	no	no

Maximal k-vectors and paths

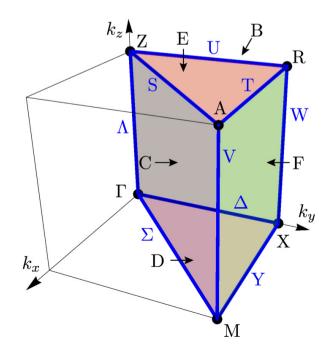
All possible connection between maximal and non-maximal **k**-vectors

→ 2 manifolds are connected if:

$$\mathbf{k}_{i} (\mathbf{u}_{1}) = \mathbf{k}_{1}$$

$$\mathbf{k}_{i} (\mathbf{u}_{2}) = \mathbf{k}_{2}$$

for each max. **k** in *k and k_i non-maximal



Maximal k-vec	Connected k-vecs	Specific coordinates	Connections with the star
Γ: (0,0,0)	$\Lambda: (0,0,w)$	w = 0	2 4
	Δ : $(0, v, 0)$ Σ : $(u, u, 0)$	$ v = 0 \\ u = 0 $	4
	B: (0, v, w) C: (u, u, w)	v = w = 0 $u = w = 0$	8 8
	D: (u, v, 0)	u = v = 0	8

Γ:3 lines and 3 planes

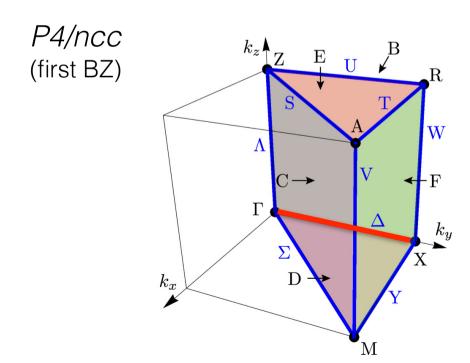
All possible connection between maximal and non-maximal **k**-vectors

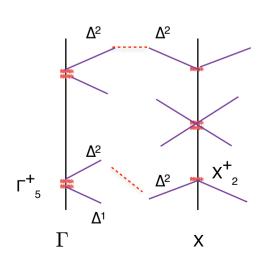
→ 2 manifolds are connected if:

$$\mathbf{k}_{i}\left(\mathbf{u}_{1}\right)=\mathbf{k}_{1}$$

$$\mathbf{k}_{i}\left(\mathbf{u}_{2}\right)=\mathbf{k}_{2}$$

for each max. **k** in *k and k_i non-maximal





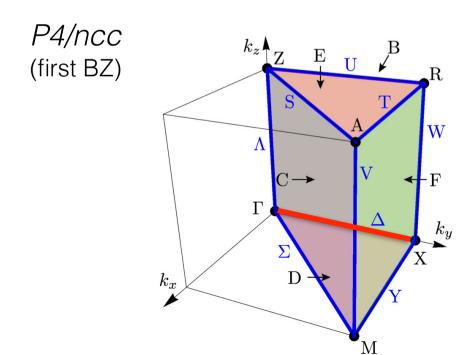
All possible connection between maximal and non-maximal **k**-vectors

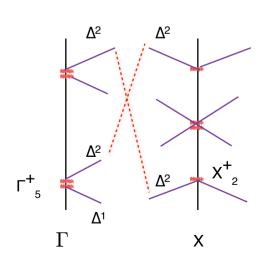
→ 2 manifolds are connected if:

$$k_i (u_1)=k_1$$

 $k_i (u_2)=k_2$

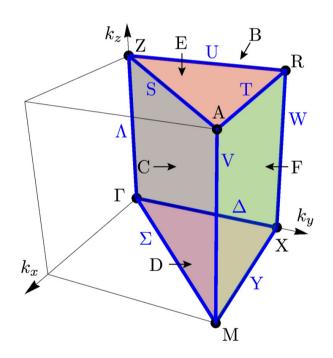
for each max. **k** in *k and k_i non-maximal



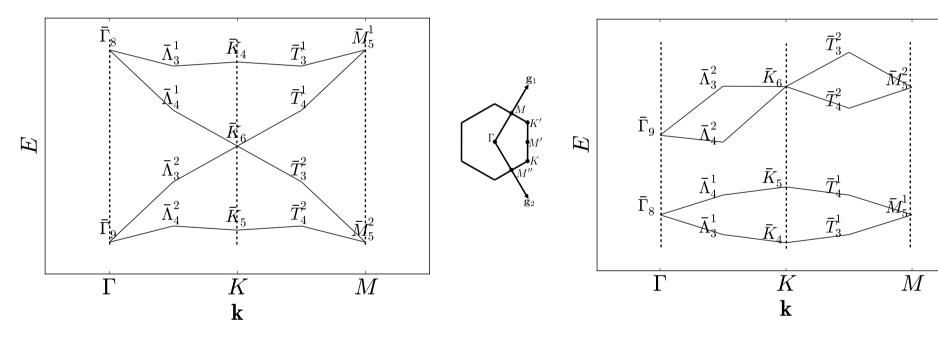


Reducing the number of paths

- (i) Paths are subspace of other paths k_1^{1} and k_2^{2} connect through k_p and k_1 , k_p is redundant
- (ii) Paths related by symmetry operations
 A single line or plane of the *k gives all independent restrictions
- (iii) Paths that are combinations of other paths
- * additional restrictions in non-symmorphic groups (monodromy)



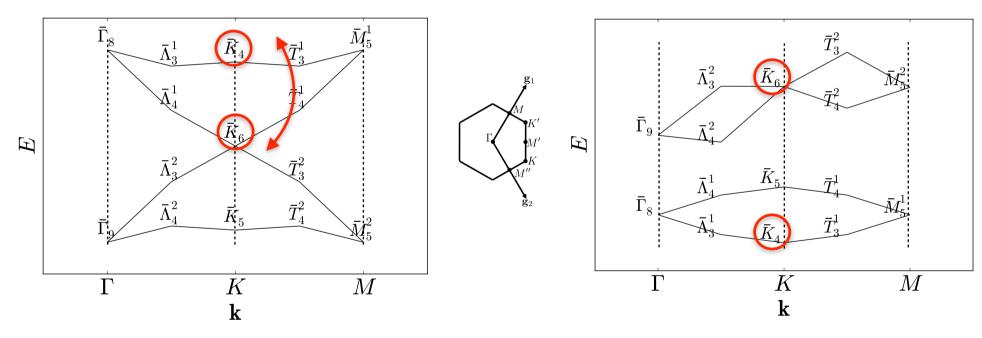
2 possible connectivities for $\overline{E}_1 \uparrow G(4)$



- Single connected component
- → Fully connected

- Splitting of EBR
→ Topological bands

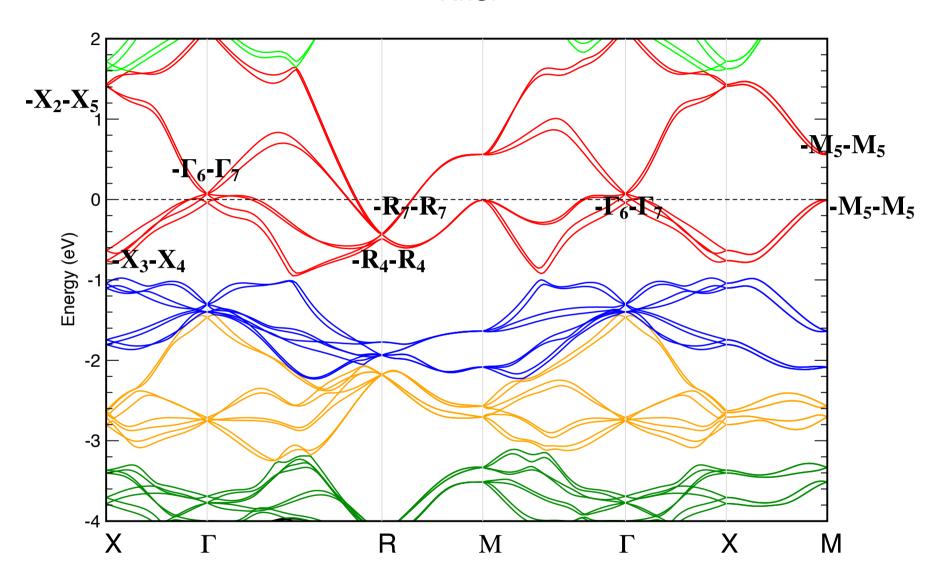
2 possible connectivities for $\overline{E}_1 \uparrow G(4)$



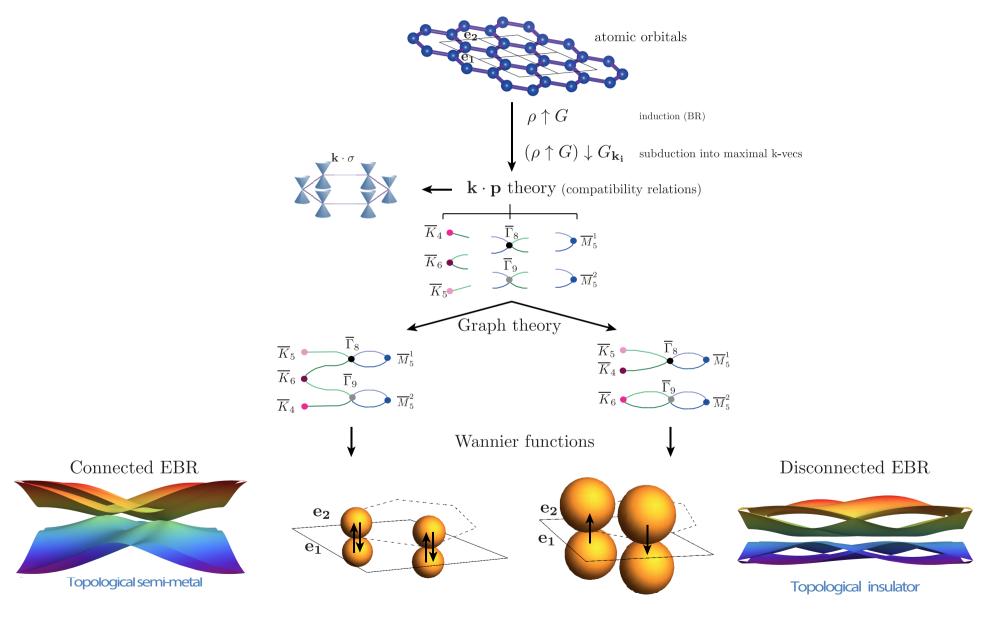
- Single connected component
- → Fully connected

- Splitting of EBR
→ Topological bands

RhSi



TOPOLOGICAL QUANTUM CHEMISTRY



Classification of crystalline atomic limits

10398 real-space **atomic limits** of materials

\overline{SG}	MWP	WM	PG	Irrep	Dim	KR	Bands	Re	Ε	PE	SG	MWP	WM	PG	Irrep	Dim	KR	Bands	Re	Е	PE
1	1a	1	1	Γ_1	1	1	1	1	e	e	131	2d	2	8	Γ_2^-	1	1	2	1	e	e
1	1a	1	1	$ar{\Gamma}_2$	1	2	2	2	e	e	131	2d	2	8	Γ_4^{+}	1	1	2	1	e	e
2	1a	1	2	$\Gamma_{ exttt{1}}^{+}$	1	1	1	1	e	e	131	2d	2	8	Γ_4^-	1	1	2	1	e	e
2	1a	1	2	$\Gamma_1^{\frac{1}{2}}$	1	1	1	1	e	e	131	2d	2	8	Γ_3^{+}	1	1	2	1	e	e
2	1a	1	2	$ar{\Gamma}_3$	1	2	2	2	e	e	131	2d	2	8	$\Gamma_3^{\frac{3}{2}}$	1	1	2	1	e	e
2	1a	1	2	$ar{\Gamma}_2$	1	2	2	2	e	e	131	2d	2	8	$ar{\Gamma}_5^{^3}$	2	1	4	1	e	e
2	1b	1	2	$\Gamma_{\scriptscriptstyle 1}^+$	1	1	1	1	e	e	131	2d	2	8	$\bar{\Gamma}_6$	2	1	4	1	e	e
2	1b	1	2	$\Gamma_1^{\frac{1}{-}}$	1	1	1	1	e	e	131	2e	2	14	Γ_1	1	1	2	1	e	e
2	1b	1	2	$ar{\Gamma}_3$	1	2	2	2	e	e	131	2e	2	14	Γ_4	1	1	2	1	e	e

SG: Space Group

MWP: Maximal Wyckoff Position

WM: Wyckoff multiplicity in the primitive cell **PG**: Point group number of the site-symmetry

Irrep: Name of the Irrep of the site-symmetry for each BR

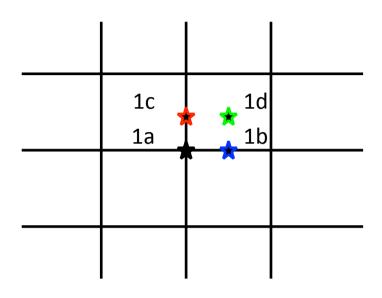
KR: 1 for PEBR, 2 for EBR (f and s)

Bands: Total number of bands

Re: 1 for TRS at each k, 2 for connection with its conjugate

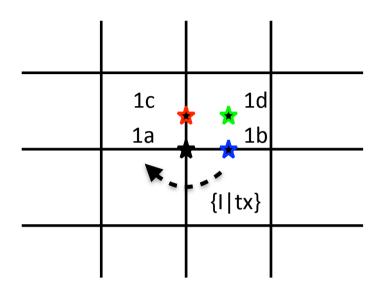
E: e for elementary, c for composite

PE: e for elementary, c for composite



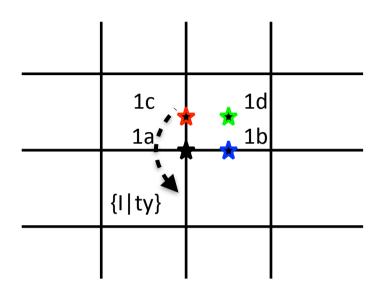
Zeroth Order: How To Use The Eigenvalues of EBRs to Find Topological Materials:

1. Find the Atomic Limit Real Space Orbitals



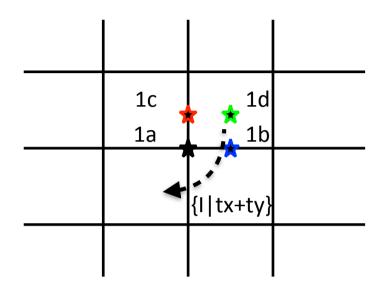
Zeroth Order: How To Use The Eigenvalues of EBRs to Find Topological Materials:

1. Find the Atomic Limit Real Space Orbitals



Zeroth Order: How To Use The Eigenvalues of EBRs to Find Topological Materials:

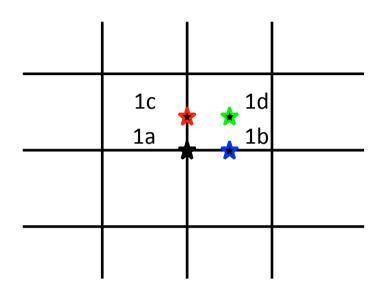
1. Find the Atomic Limit Real Space Orbitals

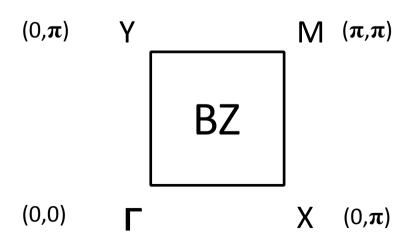


Zeroth Order: How To Use The Eigenvalues of EBRs to Find Topological Materials:

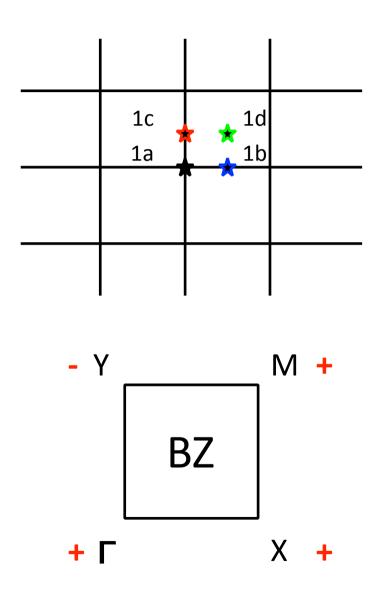
2.Obtain the Induced Representation in k(momentum) space

Spinless 2D material, \emph{I} , \emph{s} and \emph{p} orbitals





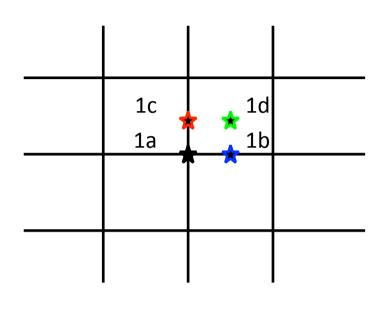
	Γ	Χ	Υ	M	
s 1a	+	+	+	+	
р 1а	-	-	-	-	
s 1b	+	-	+	-	†
p 1b	-	+	-	+	
s 1c	+	+	-	-	e ^{ik}
р 1с	-	-	+	+	
s 1d	+	-	+	-	
p 1d	-	+	+	-	↓

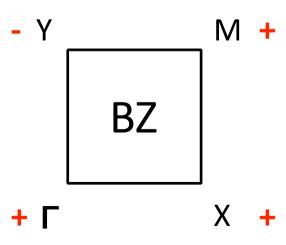


odd # in I eigenvalues

	Г	X	Υ	M		
s 1a	+	+	+	+		
р 1а	-	-	-	-		
s 1b	+	-	+	-		
p 1b	-	+	-	+		
s 1c	+	+	-	-		
р 1с	-	-	+	+		
s 1d	+	-	+	-		
p 1d	-	+	+	-		

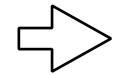
Spinless 2D material, I, s and p orbitals



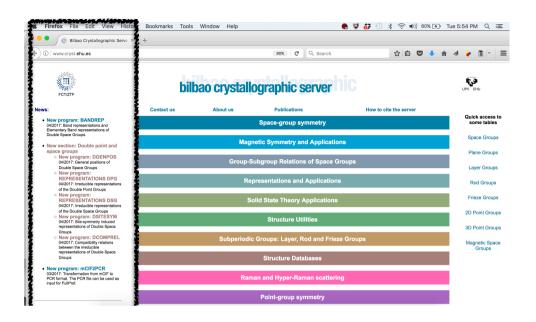


odd # in \emph{I} eigenvalues

	Г	Χ	Υ	M
s 1a	+	+	+	+
p 1a	-	-	-	-
s 1b	+	-	+	-
p 1b	-	+	-	+
s 1c	+	+	-	-
р 1с	-	-	+	+
s 1d	+	-	+	-
p 1d	-	+	+	-



TOPOLOGICAL



All 230 double groups

For each group, reps/wyckoff/k point reps

Compatibility relations in the Brillouin Zone

All 10398 Atomic limits

Disconnected EBR's/Graphs/Topological bands

Wyckoff pos.	1a(6mm)	1a(6 <i>mm</i>)	1a(6 <i>mm</i>)	1a(6mm)	1a(6 <i>mm</i>)	1a(6 <i>mm</i>)	2b(3 <i>m</i>)		<u> </u>
Band-Rep.	A ₁ ↑ G (1)	A ₂ ↑G(1)	B ₁ ↑G(1)	B ₂ ↑G(1)	E₁↑G(2)	E ₂ ↑G(2)	A₁↑G(2)		
Decomposable\ Indecomposable	Indecomposable	Indecomposable	Indecomposable	Indecomposable	e Indecomposable	Indecomposable	Indecomposable	lr	
Γ:(0,0,0)	Γ ₁ (1)	Γ ₂ (1)	Γ ₄ (1)	Γ ₃ (1)	Γ ₆ (2)	Γ ₅ (2)	Γ ₁ (1) ⊕ Γ ₄ (1)	\	
A:(0,0,1/2)	A ₁ (1)	A ₂ (1)	A ₄ (1)	A ₃ (1)	A ₆ (2)	A ₅ (2)	A ₁ (1) @ A ₄ (1)	ı	
K:(1/3,1/3,0)	K ₁ (1)	K ₂ (1)	K ₂ (1)	K ₁ (1)	K ₃ (2)	K ₃ (2)	K ₃ (2)	J	
H:(1/3,1/3,1/2)	H ₁ (1)	H ₂ (1)	H ₂ (1)	H ₁ (1)	H ₃ (2)	H ₃ (2)	H ₃ (2)	1	
M:(1/2,0,0)	M ₁ (1)	M ₂ (1)	M ₄ (1)	M ₃ (1)	M ₃ (1) ⊕ M ₄ (1)	M ₁ (1) ⊕ M ₂ (1)	M ₁ (1) & M ₄ (1)		
L:(1/2,0,1/2)	L ₁ (1)	L ₂ (1)	L ₄ (1)	L ₃ (1)	L ₃ (1) ⊕ L ₄ (1)	L ₁ (1) ⊕ L ₂ (1)	L ₁ (1) ⊕ L ₄ (1)		

Atom arrangement
Orbital
High-symmetry
points

Band Representations in the Bilbao Crystallographic Server

http://www.cryst.ehu.es/cryst/bandrep

Bilbao Crystallographic Server → BANDREP **Band representations of the Double Space Groups Band Representations** Please, enter the sequential number of group as given in the International Tables choose it for Crystallography, Vol. A This program calculates the band representations (BR) induced from the irreps of the site-symmetry group of a given Wyckoff position. Alternatively, it gives the set of elementary BRs of a Double 1. Get the elementary BRs without time-reversal symmetry Elementary Space Group. 2. Get the elementary BRs with time-reversal symmetry Elementary TR In both cases, it can be chosen to get the BRs with or without time-reversal symmetry. 3. Get the BRs without time-reversal symmetry from a Wyckoff position Wyckoff The program also indicates if the elementary BRs are decomposable or indecomposable. If it is decomposable, the 4. Get the BRs with time-reversal symmetry from a Wyckoff position Wyckoff TR program gives all the possible ways to decompose it. Bilbao Crystallographic Server For comments, please mail to

administrador.bsc@ehu.eus

http://www.cryst.ehu.es

Output

12b(2)	8a(3)	8a(3)	12b(2)
B ↑ G(6)	¹ Ē ² Ē↑G(8)	EE ↑G(8)	¹Ē²Ē↑G(12)
Indecomposable	Indecomposable	Decomposable	Decomposable
2 Γ ₄ (3)	2 Γ̄ ₅ (2) ⊕ Γ̄ ₆ Γ̄ ₇ (4)	2	2
H ₁ (1) ⊕ H ₂ H ₃ (2) ⊕ H ₄ (3)	2 H̄ ₅ (2) ⊕ H̄ ₆ H̄ ₇ (4)	2 H ₆ H ₇ (4)	2 H̄ ₅ (2) ⊕ 2 H̄ ₆ H̄ ₇ (4)
P ₁ (2) ⊕ P ₂ (2) ⊕ P ₃ (2)	$\overline{P}_{5}(1) \oplus \overline{P}_{6}(1) \oplus 2 \overline{P}_{7}(3)$	2 ₱ ₄ (1) ⊕ 2 ₱ ₇ (3)	$\overline{P}_4(1) \oplus \overline{P}_5(1) \oplus \overline{P}_6(1) \oplus 3 \overline{P}_7(3)$
PA ₁ (2) ⊕ PA ₂ (2) ⊕ PA ₃ (2)	$\overline{PA}_5(1) \oplus \overline{PA}_6(1) \oplus 2 \overline{PA}_7(3)$	2 PA ₄ (1) ⊕ 2 PA ₇ (3)	$\overline{PA}_4(1) \oplus \overline{PA}_5(1) \oplus \overline{PA}_6(1) \oplus 3 \overline{PA}_7(3)$
3 N ₁ (1) ⊕ 3 N ₂ (1)	4 N ₃ N ₄ (2)	4 N ₃ N ₄ (2)	6 N ₃ N ₄ (2)

Output

	branch 1	branch 2
1	$\overline{H}_5,\overline{\Gamma}_5,\overline{P}_5,\overline{P}_6,\overline{N}_4,\overline{N}_4$	$\overline{H}_6,\overline{H}_7,\overline{\Gamma}_6,\overline{\Gamma}_7,\overline{P}_4,\overline{P}_7,\overline{N}_3,\overline{N}_3,\overline{N}_4,\overline{N}_4$
2	$\overline{H}_6,\overline{\Gamma}_6,\overline{P}_4,\overline{P}_6,\overline{N}_4,\overline{N}_4$	$\overline{H}_7,\overline{H}_5,\overline{\Gamma}_5,\overline{\Gamma}_7,\overline{P}_5,\overline{P}_7,\overline{N}_3,\overline{N}_3,\overline{N}_4,\overline{N}_4$
3	$\overline{H}_7,\overline{\Gamma}_7,\overline{P}_4,\overline{P}_5,\overline{N}_4,\overline{N}_4$	$\overline{H}_5,\overline{H}_6,\overline{\Gamma}_5,\overline{\Gamma}_6,\overline{P}_6,\overline{P}_7,\overline{N}_3,\overline{N}_3,\overline{N}_4,\overline{N}_4$

Output

Elementary band-representations without time-reversal symmetry of the Double Space Group *I*2₁3 (No. 199)

The first row shows the Wyckoff position from which the band representation is induced. In parentheses, the symbol of the point group isomorphic to the site-symmetry group.

The second row gives the symbol $\rho \uparrow G$, where ρ is the irrep of the site-symmetry group. In parentheses, the dimension of the representation.

The output shows the decomposition of the band representations into irreps of the little groups of the given k-vectors in the first column.

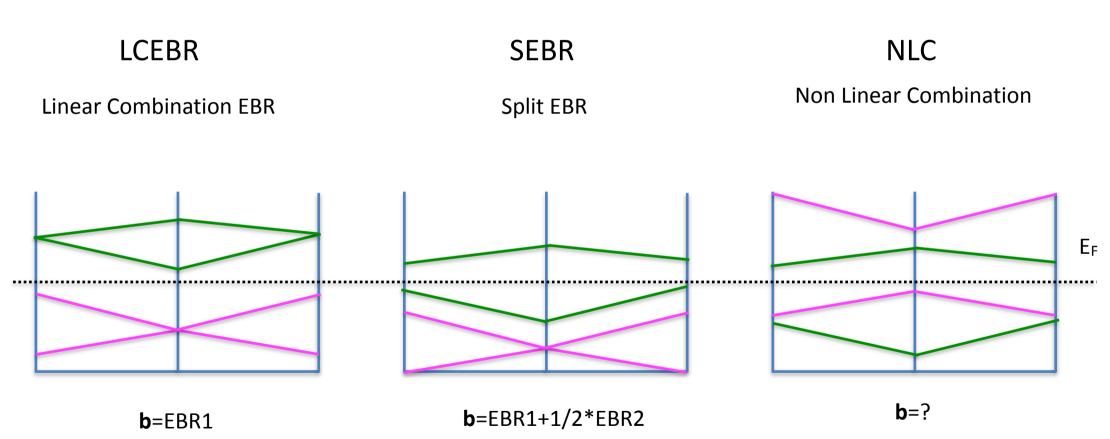
In parentheses, me dimensions of the representations.

Minimal set of paths and compatibility relations to analyse the connectivity

Show all types of k-vectors

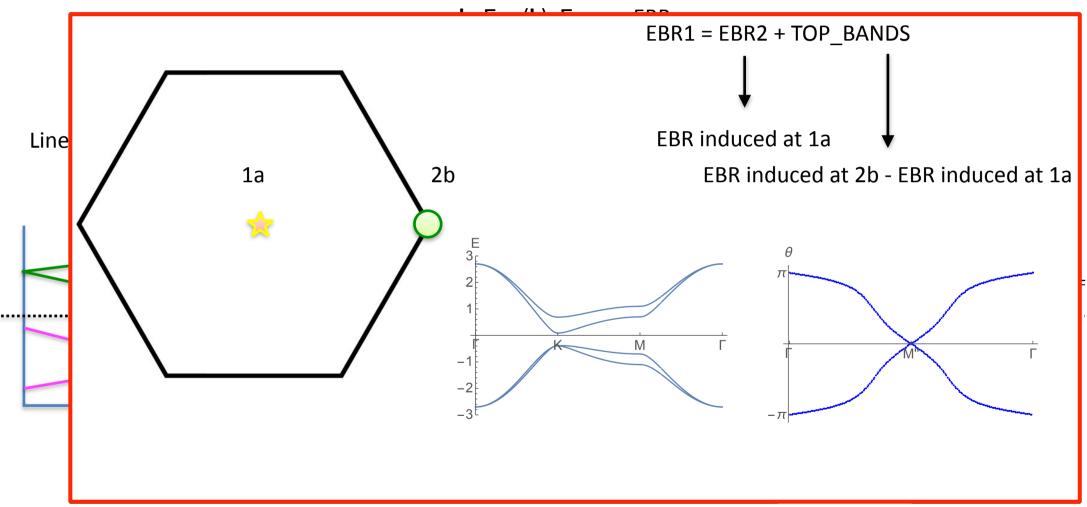
Output

Maximal k-vec	Compatibility relations	Intermediate path	Compatibility relations	Maximal k-vec
Γ:(0,0,0)	$\Gamma_{1}(1) \rightarrow \Delta_{1}(1)$ $\Gamma_{2}(1) \rightarrow \Delta_{1}(1)$ $\Gamma_{3}(1) \rightarrow \Delta_{1}(1)$ $\Gamma_{4}(3) \rightarrow \Delta_{1}(1) \oplus 2 \Delta_{2}(1)$ $\overline{\Gamma}_{5}(2) \rightarrow \overline{\Delta}_{3}(1) \oplus \overline{\Delta}_{4}(1)$ $\overline{\Gamma}_{6}(2) \rightarrow \overline{\Delta}_{3}(1) \oplus \overline{\Delta}_{4}(1)$ $\overline{\Gamma}_{7}(2) \rightarrow \overline{\Delta}_{3}(1) \oplus \overline{\Delta}_{4}(1)$	Δ:(0,v,0)	$H_1(1) \rightarrow \Delta_2(1)$ $H_2(1) \rightarrow \Delta_2(1)$ $H_3(1) \rightarrow \Delta_2(1)$ $H_4(3) \rightarrow 2 \Delta_1(1) \oplus \Delta_2(1)$ $\overline{H}_5(2) \rightarrow \overline{\Delta}_3(1) \oplus \overline{\Delta}_4(1)$ $\overline{H}_6(2) \rightarrow \overline{\Delta}_3(1) \oplus \overline{\Delta}_4(1)$ $\overline{H}_7(2) \rightarrow \overline{\Delta}_3(1) \oplus \overline{\Delta}_4(1)$	H:(1,1,1)
Γ:(0,0,0)	$ \Gamma_{1}(1) \rightarrow \Lambda_{1}(1) $ $ \Gamma_{2}(1) \rightarrow \Lambda_{2}(1) $ $ \Gamma_{3}(1) \rightarrow \Lambda_{3}(1) $ $ \Gamma_{4}(3) \rightarrow \Lambda_{1}(1) \oplus \Lambda_{2}(1) \oplus \Lambda_{3}(1) $ $ \overline{\Gamma}_{5}(2) \rightarrow \overline{\Lambda}_{5}(1) \oplus \overline{\Lambda}_{6}(1) $ $ \overline{\Gamma}_{6}(2) \rightarrow \overline{\Lambda}_{4}(1) \oplus \overline{\Lambda}_{6}(1) $ $ \overline{\Gamma}_{7}(2) \rightarrow \overline{\Lambda}_{4}(1) \oplus \overline{\Lambda}_{5}(1) $	Λ:(-u,u,-u)	$H_1(1) \rightarrow \Lambda_1(1)$ $H_2(1) \rightarrow \Lambda_2(1)$ $H_3(1) \rightarrow \Lambda_3(1)$ $H_4(3) \rightarrow \Lambda_1(1) \oplus \Lambda_2(1) \oplus \Lambda_3(1)$ $\overline{H}_5(2) \rightarrow \overline{\Lambda}_5(1) \oplus \overline{\Lambda}_6(1)$ $\overline{H}_6(2) \rightarrow \overline{\Lambda}_4(1) \oplus \overline{\Lambda}_6(1)$ $\overline{H}_7(2) \rightarrow \overline{\Lambda}_4(1) \oplus \overline{\Lambda}_5(1)$	H:(1,1,1)
Γ:(0,0,0)	$\Gamma_{1}(1)\rightarrow\Lambda_{1}(1)$ $\Gamma_{2}(1)\rightarrow\Lambda_{2}(1)$ $\Gamma_{3}(1)\rightarrow\Lambda_{3}(1)$ $\Gamma_{4}(3)\rightarrow\Lambda_{1}(1)\oplus\Lambda_{2}(1)\oplus\Lambda_{3}(1)$ $\overline{\Gamma}_{5}(2)\rightarrow\overline{\Lambda}_{5}(1)\oplus\overline{\Lambda}_{6}(1)$ $\overline{\Gamma}_{6}(2)\rightarrow\overline{\Lambda}_{4}(1)\oplus\overline{\Lambda}_{6}(1)$ $\overline{\Gamma}_{7}(2)\rightarrow\overline{\Lambda}_{4}(1)\oplus\overline{\Lambda}_{5}(1)$	Λ:(-u,u,-u)	$\begin{array}{c} P_1(2) {\longrightarrow} \Lambda_1(1) \oplus \Lambda_2(1) \\ P_2(2) {\longrightarrow} \Lambda_2(1) \oplus \Lambda_3(1) \\ P_3(2) {\longrightarrow} \Lambda_1(1) \oplus \Lambda_3(1) \\ \overline{P}_4(1) {\longrightarrow} \overline{\Lambda}_4(1) \\ \overline{P}_5(1) {\longrightarrow} \overline{\Lambda}_5(1) \\ \overline{P}_6(1) {\longrightarrow} \overline{\Lambda}_6(1) \\ \overline{P}_7(3) {\longrightarrow} \overline{\Lambda}_4(1) \oplus \overline{\Lambda}_5(1) \oplus \overline{\Lambda}_6(1) \end{array}$	P:(1/2,1/2,1/2)



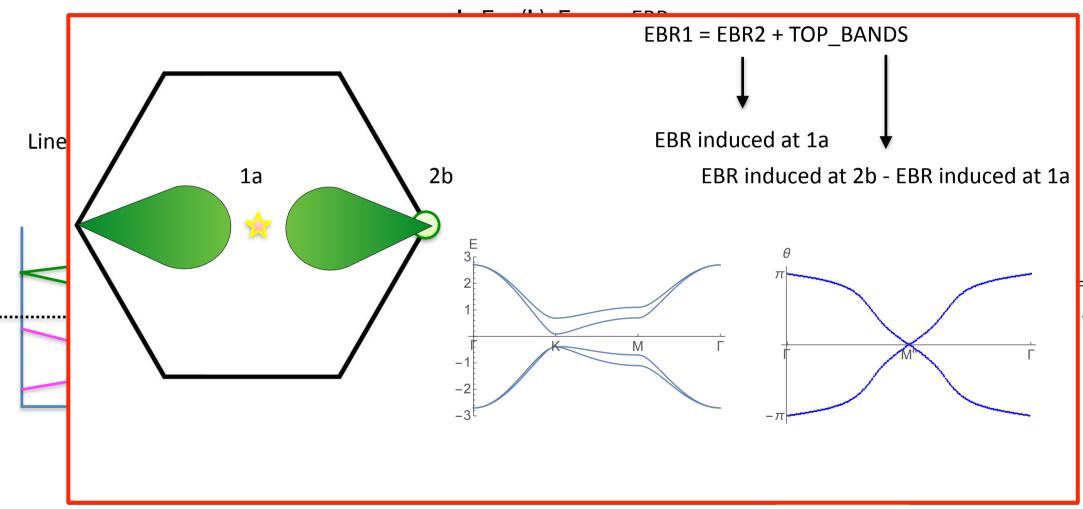
* Fragile: EBR_F=EBR1-EBR2

Topological "insulating" classes { EBR1 EBR2



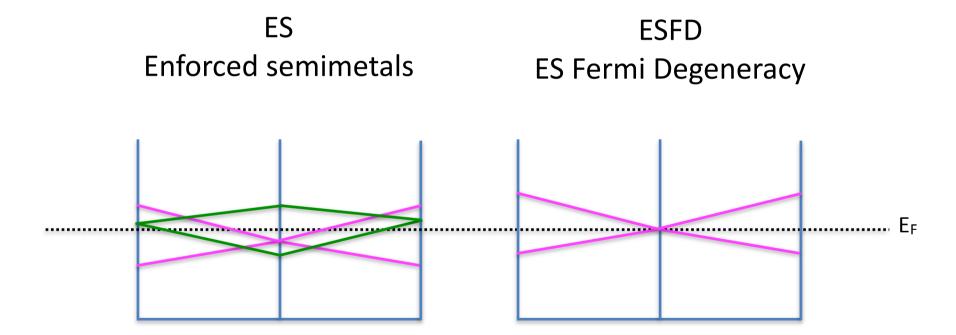
* Fragile: EBR_F=EBR1-EBR2

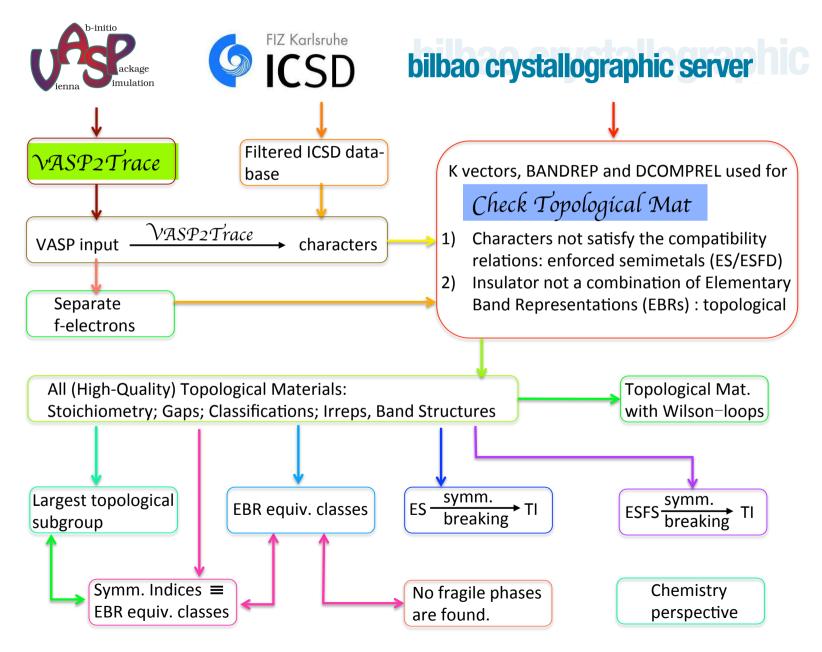
Topological "insulating" classes { EBR1 EBR2



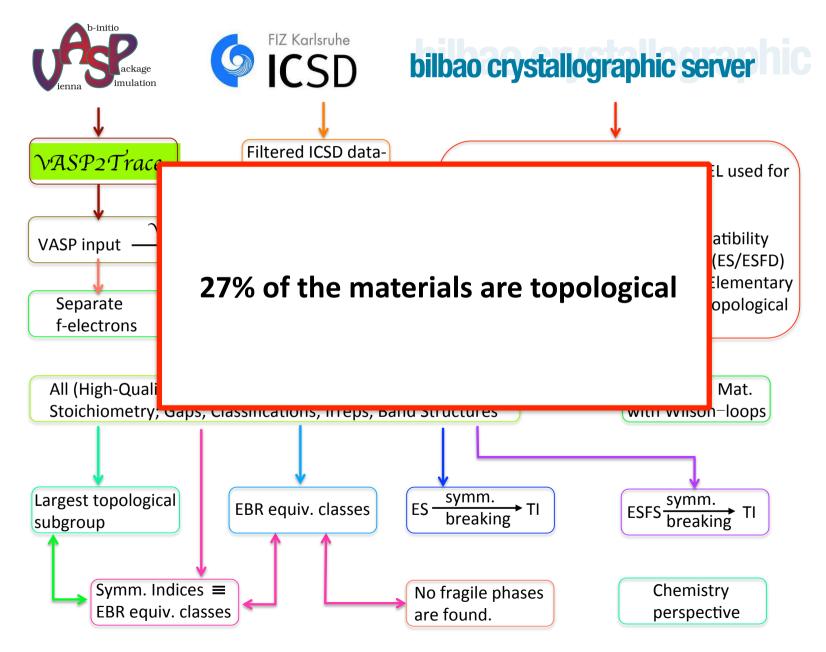
* Fragile: EBR_F=EBR1-EBR2

Topological "metalic" classes { EBR1 EBR2





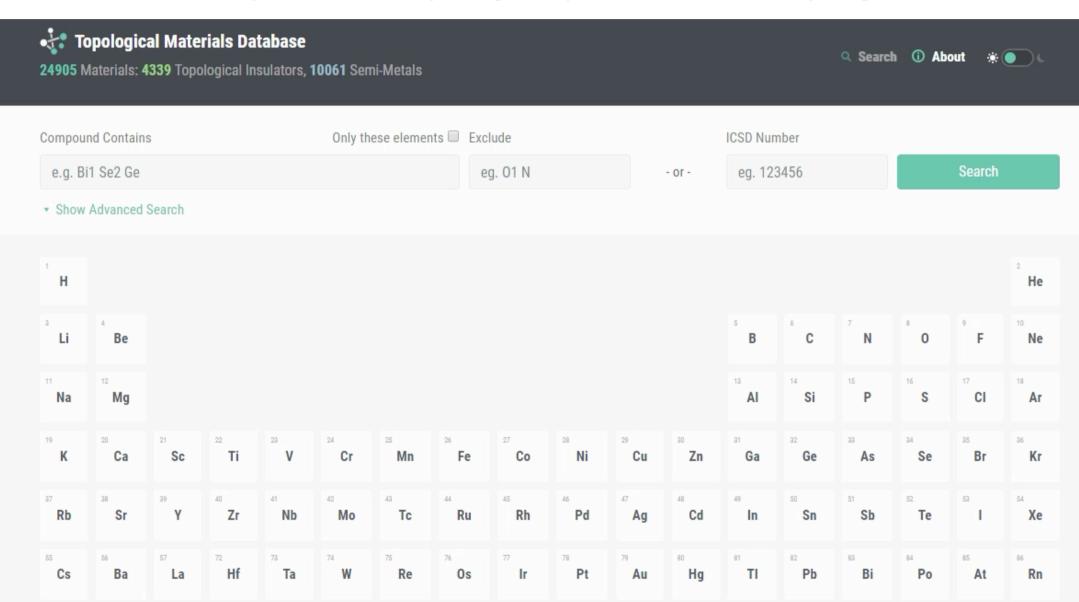
M.G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B.A. Bernevig, Z. Wang Nature 566 (2019)



M.G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B.A. Bernevig, Z. Wang Nature 566 (2019)

Topological Materials Database

https://www.topologicalquantumchemistry.org



Check Topology

www.cryst.ehu.es/cryst/checktopologicalmat

Check Topological Mat

Check Topological Mat.

Given a file that contain the eigenvalues at each maximal k-vec of a space group, the program gives the set of irreducible representations at each maximal k-vec (time-reversal is assumed). Then, using the compatibility relations and the set of Elementary Band Representations (EBRs), it checks whether the set of bands can be put as linear combinations of EBRs. This (self-explanatory) file shows the format of the file to be uploaded in the menu on the right:

File Description

You can download examples of input files here:

Example_Ag1Ge1Li2 Example_Ag1O2Sc1 Example_B2Ca3Ni7 Example_Ba3Co10O17 Example Ba3Ca1O9Ru2

You can generate the "trace.txt" file in your own computer using VASP and this program (fortran).

vasp2trace

Read the "README.pdf" file for help on the use of vasp2trace.

If you are using "Check Topological Mat." and/or "vasp2trace" programs in the preparation of an article, please cite this reference:

M.G. Vergniory, L. Elcoro, C. Felser, B.A. Bernevig, Z. Wang (2018) arXiv:1807.10271

Upload your traces.txt file

Browse... No file selected.

Show

1. A number of bands that is not a sum of EBRs is topological

2. A number of bands that does not satisfy the compatibility relations cannot be separated from other bands and describes a semimetal

Check Topology

www.cryst.ehu.es/cryst/checktopologicalmat

Bilbao Crystallographic Server → Check Topological Mat.

Result of the analysis

- The material is a topological insulator.
- List of topological indices:

```
z2w,1=0
z2w,2=0
z2w,3=0
z4=0
z2=0
z8=4
```

```
Number of electrons=10
Number of maximal k-vectors=4
Symbols of the k-vectors, number of bands up to fermi level and set of irreps.
     -GM
             -X
                        -L
      10
             10
                        10
                               10
 -GM6(2) -X6(2)
                   -L9(2) -W6(2)
 -GM6(2) -X6(2)
                   -L8(2) -W7(2)
 -GM8(2) -X8(2)
                   -L8(2) -W7(2)
-GM11(4) -X8(2) -L4-L5(2) -W6(2)
                    -L9(2) -W7(2)
```

- The material belongs to the strong topological class: 1
- Clicking on See the irreps you can see the details about the number of bands and the idea
- The set of bands can be put as linear combination of Elementary Band Representations (I to get some possible linear combinations of EBRs and partial EBRs.
- Click on Subgroups to check the topological character of the structure in each of its (trans



Zhijun Wang (CAS)

Jennifer Cano (Stony Brook)

Luis Elcoro (UPV/EHU)

Claudia Felser (MPI Dresden)

Andrei Bernevig (Princeton)

Barry Bradley (UIUC)

Mois Aroyo (UPV/EHU)

Nicolas Regnault (ENS)