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Recall: a space group is a set of symmetries that defines a 
crystal structure in 3D

Ingredients:
• unit lattice translations (𝚭3)

• point group operations (rotations, reflections)
• non-symmorphic (screw, glide)
• orbitals
• atoms in some lattice positions

Image: 1605.06824 Ma et al

How do we go from real space orbitals sitting on lattice sites to 
electronic bands (without a Hamiltonian)?

ELEMENTARY BAND REPRESENTATIONS

Zak PRB 26 (1982)

{230
Space-Groups



Elementary BR: smallest set of bands cannot be decomposed in elementary bands
Physical Elementary BR: when EBR also respects TR symmetry 
Composite BR: A BR which is not elementary is a “composite” 

Zak PRB 26 (1982)

(P)EBRs are connected along the BZ
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			Band	as	Representations

Band Representation (BR): set of bands linked to a localized orbital 
(respecting all the crystal symmetries and TRS)



			Induction	of	a	(P)EBR

Within one space group, many ways to arrange atoms

1 atom/unit cell

(triangular)

2 atoms/unit cell

(honeycomb)

3 atoms/unit cell

(kagome)

All atoms are related by symmetry
-	Within	the	same	SG	many	ways	to	arrange	atoms	
-	Each	arrangement	determines	different	representations

1a 2b 3c



			Induction	of	a	(P)EBR

Within one arrangement, many choices of orbitals

2 atoms/unit cells (or pz) orbitals px and py orbitals

-	Within	the	same	lattice,	different	orbitals	



Each arrangement/orbital determines symmetry 
representations in Brillouin zone

s (or pz) orbitals

px and py orbitals
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Band structure graphene

Band structure bismuthene
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Γ K M Γ

Real space vs momentum space

			Induction	of	a	(P)EBR
Site-symmetry group, Gq, leaves q invariant



Each arrangement/orbital determines symmetry 
representations in Brillouin zone

s (or pz) orbitals

px and py orbitals

Γ K M ΓΓ1

Γ4
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M1

Band structure graphene

Band structure bismuthene

Γ5

Γ6

K3

K1

K2

M1

M2

M3

M4

Γ K M Γ

Real space vs momentum space

Each	arrangement/orbital	determines	symmetry	representations	in	the	Brillouin	zone	

			Induction	of	a	(P)EBR



q

pz

Lattice vectors: 

Lets consider the generators of 2D P6mm: {C2,C3,m11}
3

organize the discussion to show how a local description
(or, mathematically, a site-symmetry group representa-
tion) of atomic orbitals induces a global description of the
band structure that determines a local k · p description
at every point in momentum space.

A. Wycko↵ positions and stabilizer groups

A crystal structure consists of an arrangement of atoms
that is described by a Bravais lattice and which is invari-
ant under a group of symmetry operations, the space
group (SG), G, of the crystal. We denote an element
g 2 G that acts in real space by r ! Rr + v by {R|v};
the Bravais lattice translations are denoted {E|t}.

We use q to denote a position in the unit cell, whether
occupied by an atom or not. A crystal with an atom at
q must also have an atom at each site in the orbit of q,
{gq|g 2 G}.

Definition 1. The set of symmetry operations, g 2 G,

that leave the site q fixed is called the stabilizer group
or site-symmetry group of q, and is denoted Gq ⌘

{g|gq = q} ⇢ G.

The site-symmetry group, Gq, can include elements
{R|v} with v 6= 0. Nonetheless, a site-symmetry group
is, by its definition, always isomorphic to a crystallo-
graphic point group.

As an often-used example, we consider the two-
dimensional plane group p6mm, which is generated by
{C3|0}, {C2|0}, {m11̄|0} and translations, and which de-
scribes the honeycomb lattice, are shown in Fig 1b. Now
consider the site q = (e1 � e2)/2. The mirror op-
eration {m11|0}, which is a reflection across the line
perpendicular to the e1 + e2 axis, (i.e., {m11|0} sends
e1 + e2 ! �(e1 + e2)) leaves q invariant, as does a ⇡
rotation about the origin followed by a translation by
e1�e2. Hence, Gq is generated by {m11|0} and {C2|11̄}
and is isomorphic to the point group C2v.

The site-symmetry groups of any two points in the
orbit of q are conjugate to each other and are hence iso-
morphic. More generally,

Definition 2. Any two sites whose site-symmetry groups

are conjugate are said to lie in the same Wycko↵ posi-
tion. Given a site in the Wycko↵ position, the number

of sites in its orbit that lie in a single unit cell defines

the multiplicity of the position.

We always define the lattice translations relative to the
primitive (not conventional) unit cell. The Wycko↵ po-
sitions of p6mm are shown in Fig 1.

Given a site, q, that is part a Wycko↵ position of mul-
tiplicity n, we label the points in the orbit of q that lie
in the same unit cell as q by q↵, where ↵ = 1, . . . , n
and q1 ⌘ q. For each ↵ > 1 there exists an element
g↵ /2 Gq, which is not a pure lattice translation, such
that g↵q = q↵. The stabilizer group of q↵ is given by

Gq↵ ⌘ {g↵hg�1
↵

|h 2 Gq} (1)

e1

e2

(a)

1a
2b 2b

3c

3c 3c

(b)

FIG. 1. Lattice basis vectors (a) and Wycko↵ positions (b)
of the hexagonal lattice. The (maximal) 1a, 2b and 3c Wyck-
o↵ positions are indicated by a black dot, blue squares, and
red stars, respectively. The non-maximal 6d and 6e positions
are indicated by purple crosses and green squares, respec-
tively. The multiplicity is determined by the index of the sta-
bilizer group with respect to the point group C6v (6mm). The
general position 12f , corresponding to the orbit of a generic
point, is not explicitly indicated.

The g↵ furnish the following coset decomposition of G:

G =
n[

↵=1

g↵(Gq n Z3), (2)

where Z3 is the group of Bravais lattice translations and
g1 is the identity element. The n denotes the semidirect
product: Gq n Z3 is the symmorphic space group which
contains the elements of Gq and which has the same Bra-
vais lattice as G.

We again consider p6mm and use the site q = (e1 �
e2)/2 as an example. Since {C6|0} /2 Gq

⇠= C2v, the
other two sites in the orbit of q in the unit cell are given
by q2 ⌘ {C6|0}q and q3 ⌘ {C6|0}�1q; the red stars
in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
di↵ers from one of these sites by a pure lattice translation.

It will be important in what follows to understand how
each site symmetry group, Gq, fits into the space group,
G. To this end, we define:

Definition 3. A site-symmetry group is non-maximal
if there exists a finite group H 6= Gq, such that Gq ⇢

H ⇢ G. A site-symmetry group that is not non-maximal

is maximal. A Wycko↵ position containing q is maxi-

mal if the stabilizer group Gq is maximal.

A word of caution: if Gq
⇠= P and Gq0 ⇠= P 0, where P

and P 0 are abstract point groups, it is possible for P ⇢ P 0

even though Gq 6⇢ Gq0 . For example, in P6mm, taking
q = (e1 � e2)/2, Gq

⇠= C2v, while G0
⇠= C6v. Even

though Gq 6⇢ G0 (because, for example, {C2|11̄} 2 Gq

and {C2|11̄} 62 G0), C2v ⇢ C6v.
We can quickly find the maximal Wycko↵ positions of

p6mm by using a su�cient, although not necessary, con-
dition for a site-symmetry group, Gq, to be maximal.
The condition is the following: if q is the unique point
which is fixed by each operation in Gq, i.e., there does
not exist a second point, q0

6= q, which is also fixed by
each element of Gq, then Gq is maximal (we derive this

Lattice site: Wyckoff 2b, spinfull pz

e1=√3/2x+1/2y

e2=√3/2x-1/2y

Site-symmetry group, Gq, leaves q invariant

｛

G = ∪(g  ) (Gq⋉𝚭3)
𝛂=1 𝛂 
n

g   ∉ Gq𝛂 ,

Coset decomposition of a Space Group : 

			Induction	of	a	(P)EBR:	Example	of	the	honeycomb	lattice



Orbitals at q transform under a rep, 𝝆, of Gq

q

pz

G = ∪(g  ) (Gq⋉𝚭3)
𝛂 𝛂 

Site-symmetry group, Gq, leaves q invariant {C3|01}, {m11|00}

(1)(2)

(1) ≈ C3v

3

organize the discussion to show how a local description
(or, mathematically, a site-symmetry group representa-
tion) of atomic orbitals induces a global description of the
band structure that determines a local k · p description
at every point in momentum space.

A. Wycko↵ positions and stabilizer groups

A crystal structure consists of an arrangement of atoms
that is described by a Bravais lattice and which is invari-
ant under a group of symmetry operations, the space
group (SG), G, of the crystal. We denote an element
g 2 G that acts in real space by r ! Rr + v by {R|v};
the Bravais lattice translations are denoted {E|t}.

We use q to denote a position in the unit cell, whether
occupied by an atom or not. A crystal with an atom at
q must also have an atom at each site in the orbit of q,
{gq|g 2 G}.

Definition 1. The set of symmetry operations, g 2 G,

that leave the site q fixed is called the stabilizer group
or site-symmetry group of q, and is denoted Gq ⌘

{g|gq = q} ⇢ G.

The site-symmetry group, Gq, can include elements
{R|v} with v 6= 0. Nonetheless, a site-symmetry group
is, by its definition, always isomorphic to a crystallo-
graphic point group.

As an often-used example, we consider the two-
dimensional plane group p6mm, which is generated by
{C3|0}, {C2|0}, {m11̄|0} and translations, and which de-
scribes the honeycomb lattice, are shown in Fig 1b. Now
consider the site q = (e1 � e2)/2. The mirror op-
eration {m11|0}, which is a reflection across the line
perpendicular to the e1 + e2 axis, (i.e., {m11|0} sends
e1 + e2 ! �(e1 + e2)) leaves q invariant, as does a ⇡
rotation about the origin followed by a translation by
e1�e2. Hence, Gq is generated by {m11|0} and {C2|11̄}
and is isomorphic to the point group C2v.

The site-symmetry groups of any two points in the
orbit of q are conjugate to each other and are hence iso-
morphic. More generally,

Definition 2. Any two sites whose site-symmetry groups

are conjugate are said to lie in the same Wycko↵ posi-
tion. Given a site in the Wycko↵ position, the number

of sites in its orbit that lie in a single unit cell defines

the multiplicity of the position.

We always define the lattice translations relative to the
primitive (not conventional) unit cell. The Wycko↵ po-
sitions of p6mm are shown in Fig 1.

Given a site, q, that is part a Wycko↵ position of mul-
tiplicity n, we label the points in the orbit of q that lie
in the same unit cell as q by q↵, where ↵ = 1, . . . , n
and q1 ⌘ q. For each ↵ > 1 there exists an element
g↵ /2 Gq, which is not a pure lattice translation, such
that g↵q = q↵. The stabilizer group of q↵ is given by

Gq↵ ⌘ {g↵hg�1
↵

|h 2 Gq} (1)

e1

e2

(a)

1a
2b 2b

3c

3c 3c

(b)

FIG. 1. Lattice basis vectors (a) and Wycko↵ positions (b)
of the hexagonal lattice. The (maximal) 1a, 2b and 3c Wyck-
o↵ positions are indicated by a black dot, blue squares, and
red stars, respectively. The non-maximal 6d and 6e positions
are indicated by purple crosses and green squares, respec-
tively. The multiplicity is determined by the index of the sta-
bilizer group with respect to the point group C6v (6mm). The
general position 12f , corresponding to the orbit of a generic
point, is not explicitly indicated.

The g↵ furnish the following coset decomposition of G:

G =
n[

↵=1

g↵(Gq n Z3), (2)

where Z3 is the group of Bravais lattice translations and
g1 is the identity element. The n denotes the semidirect
product: Gq n Z3 is the symmorphic space group which
contains the elements of Gq and which has the same Bra-
vais lattice as G.

We again consider p6mm and use the site q = (e1 �
e2)/2 as an example. Since {C6|0} /2 Gq

⇠= C2v, the
other two sites in the orbit of q in the unit cell are given
by q2 ⌘ {C6|0}q and q3 ⌘ {C6|0}�1q; the red stars
in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
di↵ers from one of these sites by a pure lattice translation.

It will be important in what follows to understand how
each site symmetry group, Gq, fits into the space group,
G. To this end, we define:

Definition 3. A site-symmetry group is non-maximal
if there exists a finite group H 6= Gq, such that Gq ⇢

H ⇢ G. A site-symmetry group that is not non-maximal

is maximal. A Wycko↵ position containing q is maxi-

mal if the stabilizer group Gq is maximal.

A word of caution: if Gq
⇠= P and Gq0 ⇠= P 0, where P

and P 0 are abstract point groups, it is possible for P ⇢ P 0

even though Gq 6⇢ Gq0 . For example, in P6mm, taking
q = (e1 � e2)/2, Gq

⇠= C2v, while G0
⇠= C6v. Even

though Gq 6⇢ G0 (because, for example, {C2|11̄} 2 Gq

and {C2|11̄} 62 G0), C2v ⇢ C6v.
We can quickly find the maximal Wycko↵ positions of

p6mm by using a su�cient, although not necessary, con-
dition for a site-symmetry group, Gq, to be maximal.
The condition is the following: if q is the unique point
which is fixed by each operation in Gq, i.e., there does
not exist a second point, q0

6= q, which is also fixed by
each element of Gq, then Gq is maximal (we derive this

{C3|01}

C3

e2 {m11|00} {C2|?}

Consider one lattice site: 

{C2,C3,m11}

			Induction	of	a	(P)EBR:	Example	of	the	honeycomb	lattice



Orbitals at q transform under a rep, 𝝆, of Gq

Consider one lattice site: 

Site-symmetry group, Gq, leaves q invariant {C3|01}, {m11|00}(1) ≈ C3v

3

organize the discussion to show how a local description
(or, mathematically, a site-symmetry group representa-
tion) of atomic orbitals induces a global description of the
band structure that determines a local k · p description
at every point in momentum space.

A. Wycko↵ positions and stabilizer groups

A crystal structure consists of an arrangement of atoms
that is described by a Bravais lattice and which is invari-
ant under a group of symmetry operations, the space
group (SG), G, of the crystal. We denote an element
g 2 G that acts in real space by r ! Rr + v by {R|v};
the Bravais lattice translations are denoted {E|t}.

We use q to denote a position in the unit cell, whether
occupied by an atom or not. A crystal with an atom at
q must also have an atom at each site in the orbit of q,
{gq|g 2 G}.

Definition 1. The set of symmetry operations, g 2 G,

that leave the site q fixed is called the stabilizer group
or site-symmetry group of q, and is denoted Gq ⌘

{g|gq = q} ⇢ G.

The site-symmetry group, Gq, can include elements
{R|v} with v 6= 0. Nonetheless, a site-symmetry group
is, by its definition, always isomorphic to a crystallo-
graphic point group.

As an often-used example, we consider the two-
dimensional plane group p6mm, which is generated by
{C3|0}, {C2|0}, {m11̄|0} and translations, and which de-
scribes the honeycomb lattice, are shown in Fig 1b. Now
consider the site q = (e1 � e2)/2. The mirror op-
eration {m11|0}, which is a reflection across the line
perpendicular to the e1 + e2 axis, (i.e., {m11|0} sends
e1 + e2 ! �(e1 + e2)) leaves q invariant, as does a ⇡
rotation about the origin followed by a translation by
e1�e2. Hence, Gq is generated by {m11|0} and {C2|11̄}
and is isomorphic to the point group C2v.

The site-symmetry groups of any two points in the
orbit of q are conjugate to each other and are hence iso-
morphic. More generally,

Definition 2. Any two sites whose site-symmetry groups

are conjugate are said to lie in the same Wycko↵ posi-
tion. Given a site in the Wycko↵ position, the number

of sites in its orbit that lie in a single unit cell defines

the multiplicity of the position.

We always define the lattice translations relative to the
primitive (not conventional) unit cell. The Wycko↵ po-
sitions of p6mm are shown in Fig 1.

Given a site, q, that is part a Wycko↵ position of mul-
tiplicity n, we label the points in the orbit of q that lie
in the same unit cell as q by q↵, where ↵ = 1, . . . , n
and q1 ⌘ q. For each ↵ > 1 there exists an element
g↵ /2 Gq, which is not a pure lattice translation, such
that g↵q = q↵. The stabilizer group of q↵ is given by

Gq↵ ⌘ {g↵hg�1
↵

|h 2 Gq} (1)

e1

e2

(a)

1a
2b 2b

3c

3c 3c

(b)

FIG. 1. Lattice basis vectors (a) and Wycko↵ positions (b)
of the hexagonal lattice. The (maximal) 1a, 2b and 3c Wyck-
o↵ positions are indicated by a black dot, blue squares, and
red stars, respectively. The non-maximal 6d and 6e positions
are indicated by purple crosses and green squares, respec-
tively. The multiplicity is determined by the index of the sta-
bilizer group with respect to the point group C6v (6mm). The
general position 12f , corresponding to the orbit of a generic
point, is not explicitly indicated.

The g↵ furnish the following coset decomposition of G:

G =
n[

↵=1

g↵(Gq n Z3), (2)

where Z3 is the group of Bravais lattice translations and
g1 is the identity element. The n denotes the semidirect
product: Gq n Z3 is the symmorphic space group which
contains the elements of Gq and which has the same Bra-
vais lattice as G.

We again consider p6mm and use the site q = (e1 �
e2)/2 as an example. Since {C6|0} /2 Gq

⇠= C2v, the
other two sites in the orbit of q in the unit cell are given
by q2 ⌘ {C6|0}q and q3 ⌘ {C6|0}�1q; the red stars
in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
di↵ers from one of these sites by a pure lattice translation.

It will be important in what follows to understand how
each site symmetry group, Gq, fits into the space group,
G. To this end, we define:

Definition 3. A site-symmetry group is non-maximal
if there exists a finite group H 6= Gq, such that Gq ⇢

H ⇢ G. A site-symmetry group that is not non-maximal

is maximal. A Wycko↵ position containing q is maxi-

mal if the stabilizer group Gq is maximal.

A word of caution: if Gq
⇠= P and Gq0 ⇠= P 0, where P

and P 0 are abstract point groups, it is possible for P ⇢ P 0

even though Gq 6⇢ Gq0 . For example, in P6mm, taking
q = (e1 � e2)/2, Gq

⇠= C2v, while G0
⇠= C6v. Even

though Gq 6⇢ G0 (because, for example, {C2|11̄} 2 Gq

and {C2|11̄} 62 G0), C2v ⇢ C6v.
We can quickly find the maximal Wycko↵ positions of

p6mm by using a su�cient, although not necessary, con-
dition for a site-symmetry group, Gq, to be maximal.
The condition is the following: if q is the unique point
which is fixed by each operation in Gq, i.e., there does
not exist a second point, q0

6= q, which is also fixed by
each element of Gq, then Gq is maximal (we derive this

{C3|01}

C3

e2 {m11|00} {C2|?}

q

pz

G = ∪(g  ) (Gq⋉𝚭3)
𝛂 𝛂 

(1)(2)

			Induction	of	a	(P)EBR:	Example	of	the	honeycomb	lattice

{C2,C3,m11}



Orbitals at q transform under a rep, 𝝆, of Gq

Consider one lattice site: 

Site-symmetry group, Gq, leaves q invariant {C3|01}, {m11|00}(1) ≈ C3v

3

organize the discussion to show how a local description
(or, mathematically, a site-symmetry group representa-
tion) of atomic orbitals induces a global description of the
band structure that determines a local k · p description
at every point in momentum space.

A. Wycko↵ positions and stabilizer groups

A crystal structure consists of an arrangement of atoms
that is described by a Bravais lattice and which is invari-
ant under a group of symmetry operations, the space
group (SG), G, of the crystal. We denote an element
g 2 G that acts in real space by r ! Rr + v by {R|v};
the Bravais lattice translations are denoted {E|t}.

We use q to denote a position in the unit cell, whether
occupied by an atom or not. A crystal with an atom at
q must also have an atom at each site in the orbit of q,
{gq|g 2 G}.

Definition 1. The set of symmetry operations, g 2 G,

that leave the site q fixed is called the stabilizer group
or site-symmetry group of q, and is denoted Gq ⌘

{g|gq = q} ⇢ G.

The site-symmetry group, Gq, can include elements
{R|v} with v 6= 0. Nonetheless, a site-symmetry group
is, by its definition, always isomorphic to a crystallo-
graphic point group.

As an often-used example, we consider the two-
dimensional plane group p6mm, which is generated by
{C3|0}, {C2|0}, {m11̄|0} and translations, and which de-
scribes the honeycomb lattice, are shown in Fig 1b. Now
consider the site q = (e1 � e2)/2. The mirror op-
eration {m11|0}, which is a reflection across the line
perpendicular to the e1 + e2 axis, (i.e., {m11|0} sends
e1 + e2 ! �(e1 + e2)) leaves q invariant, as does a ⇡
rotation about the origin followed by a translation by
e1�e2. Hence, Gq is generated by {m11|0} and {C2|11̄}
and is isomorphic to the point group C2v.

The site-symmetry groups of any two points in the
orbit of q are conjugate to each other and are hence iso-
morphic. More generally,

Definition 2. Any two sites whose site-symmetry groups

are conjugate are said to lie in the same Wycko↵ posi-
tion. Given a site in the Wycko↵ position, the number

of sites in its orbit that lie in a single unit cell defines

the multiplicity of the position.

We always define the lattice translations relative to the
primitive (not conventional) unit cell. The Wycko↵ po-
sitions of p6mm are shown in Fig 1.

Given a site, q, that is part a Wycko↵ position of mul-
tiplicity n, we label the points in the orbit of q that lie
in the same unit cell as q by q↵, where ↵ = 1, . . . , n
and q1 ⌘ q. For each ↵ > 1 there exists an element
g↵ /2 Gq, which is not a pure lattice translation, such
that g↵q = q↵. The stabilizer group of q↵ is given by

Gq↵ ⌘ {g↵hg�1
↵

|h 2 Gq} (1)

e1

e2

(a)

1a
2b 2b

3c

3c 3c

(b)

FIG. 1. Lattice basis vectors (a) and Wycko↵ positions (b)
of the hexagonal lattice. The (maximal) 1a, 2b and 3c Wyck-
o↵ positions are indicated by a black dot, blue squares, and
red stars, respectively. The non-maximal 6d and 6e positions
are indicated by purple crosses and green squares, respec-
tively. The multiplicity is determined by the index of the sta-
bilizer group with respect to the point group C6v (6mm). The
general position 12f , corresponding to the orbit of a generic
point, is not explicitly indicated.

The g↵ furnish the following coset decomposition of G:

G =
n[

↵=1

g↵(Gq n Z3), (2)

where Z3 is the group of Bravais lattice translations and
g1 is the identity element. The n denotes the semidirect
product: Gq n Z3 is the symmorphic space group which
contains the elements of Gq and which has the same Bra-
vais lattice as G.

We again consider p6mm and use the site q = (e1 �
e2)/2 as an example. Since {C6|0} /2 Gq

⇠= C2v, the
other two sites in the orbit of q in the unit cell are given
by q2 ⌘ {C6|0}q and q3 ⌘ {C6|0}�1q; the red stars
in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
di↵ers from one of these sites by a pure lattice translation.

It will be important in what follows to understand how
each site symmetry group, Gq, fits into the space group,
G. To this end, we define:

Definition 3. A site-symmetry group is non-maximal
if there exists a finite group H 6= Gq, such that Gq ⇢

H ⇢ G. A site-symmetry group that is not non-maximal

is maximal. A Wycko↵ position containing q is maxi-

mal if the stabilizer group Gq is maximal.

A word of caution: if Gq
⇠= P and Gq0 ⇠= P 0, where P

and P 0 are abstract point groups, it is possible for P ⇢ P 0

even though Gq 6⇢ Gq0 . For example, in P6mm, taking
q = (e1 � e2)/2, Gq

⇠= C2v, while G0
⇠= C6v. Even

though Gq 6⇢ G0 (because, for example, {C2|11̄} 2 Gq

and {C2|11̄} 62 G0), C2v ⇢ C6v.
We can quickly find the maximal Wycko↵ positions of

p6mm by using a su�cient, although not necessary, con-
dition for a site-symmetry group, Gq, to be maximal.
The condition is the following: if q is the unique point
which is fixed by each operation in Gq, i.e., there does
not exist a second point, q0

6= q, which is also fixed by
each element of Gq, then Gq is maximal (we derive this

Character table for the double-valued representation of C3v 

Rep  E C3 M E

 2  1   0 -2Γ6
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contains the elements of Gq and which has the same Bra-
vais lattice as G.
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other two sites in the orbit of q in the unit cell are given
by q2 ⌘ {C6|0}q and q3 ⌘ {C6|0}�1q; the red stars
in Fig 1b indicate the three sites. All other symmetry
operations in p6mm acting on q take it to a position that
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It will be important in what follows to understand how
each site symmetry group, Gq, fits into the space group,
G. To this end, we define:
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even though Gq 6⇢ Gq0 . For example, in P6mm, taking
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⇠= C2v, while G0
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electron bands sitting at pz orbitals in 
Wyckoff 2b in wall paper group 17

Γ6 induced in C6v

𝝆G =𝝆 ↑ G 

Coset representative g: h ∈ G, generators of 
honeycomb lattice: C2,C3,σ

𝝆i𝜶,j𝜷(h)=𝝆ij(g𝜶𝜷)

g𝜶𝜷 = g𝜶{E|t𝜶𝜷}hg𝜷 
-1

𝝆G(h)=e-(k·t𝜶𝜷)𝝆ij(g𝜶𝜷) 
k

{C2|00},{E|00} 

dimension of this band representations = connectivity in the Brillouin zone
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1.7 Subducing the Band Representation

We have by now obtained the band representation for spinless and spinful graphene.
We will focus now on spinful graphene, since it is the one that can display topologi-
cal properties. We will subduce now the representation at different, high-symmetry
points in the first Brillouin Zone. In this case, we will study the points Γ, K and M
(see Fig. 1.5).

We proceed as before; first, find the character of the representation for the elements
of the little group. Then, see if the representation is irreducible or not, to see if bands
cross at that point. Then, we will study how we can connect those bands.

1.7.1 Γ Point

The little group at this point is the full point group, C6v. This a common property
for all BZs of all space groups. This group contains 3-axis. 2-axis, planes, and 6-
axis also. We haven’t computed the representation for the 6-axis, but we can obtain it
from the representations of 2- and 3-axis by combining them (e.g., a 6-axis is a 2-axis
minus a 3-axis). Doing this way, we can write the character for this representation
(Table1.5):

Just by inspection of the table, we get that the representation is reducible, in fact
(Table1.6):

ρΓ
G = Γ̄7 ⊕ Γ̄8 (1.33)

Fig. 1.5 First Brillouin
Zone for graphene

Table 1.5 Table of characters of the group C6v

C6v E C±
3 C2, C̄2 C±

6 m11 m11̄ Ē C̄±
3 C̄±

6

ρΓ
G 4 2 0 0 0 0 −4 −2 0

Γ̄7 2 1 0 −
√
3 0 0 −2 −1

√
3

Γ̄8 2 1 0
√
3 0 0 −2 −1 −

√
3

Γ̄9 2 −2 0 0 0 0 −2 2 0

30

(a) (b)

FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄8, ⌃̄1

3, ⌃̄
1
4, ⇤̄

1
3, ⇤̄

1
4, K̄4, K̄5, T̄

1
3 , T̄

1
4 and M̄

2
5 , while the other connected component contains the remainder

�̄9, ⌃̄2
3, ⌃̄

2
4, ⇤̄

2
3, ⇤̄

2
4, K̄6, T̄

2
3 , T̄

2
4 and M̄

1
5 . (Interchanging �̄8 and �̄9 also results in a valid disconnected energy graph

as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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1.7 Subducing the Band Representation

We have by now obtained the band representation for spinless and spinful graphene.
We will focus now on spinful graphene, since it is the one that can display topologi-
cal properties. We will subduce now the representation at different, high-symmetry
points in the first Brillouin Zone. In this case, we will study the points Γ, K and M
(see Fig. 1.5).

We proceed as before; first, find the character of the representation for the elements
of the little group. Then, see if the representation is irreducible or not, to see if bands
cross at that point. Then, we will study how we can connect those bands.

1.7.1 Γ Point

The little group at this point is the full point group, C6v. This a common property
for all BZs of all space groups. This group contains 3-axis. 2-axis, planes, and 6-
axis also. We haven’t computed the representation for the 6-axis, but we can obtain it
from the representations of 2- and 3-axis by combining them (e.g., a 6-axis is a 2-axis
minus a 3-axis). Doing this way, we can write the character for this representation
(Table1.5):

Just by inspection of the table, we get that the representation is reducible, in fact
(Table1.6):

ρΓ
G = Γ̄7 ⊕ Γ̄8 (1.33)

Fig. 1.5 First Brillouin
Zone for graphene

Table 1.5 Table of characters of the group C6v

C6v E C±
3 C2, C̄2 C±

6 m11 m11̄ Ē C̄±
3 C̄±

6

ρΓ
G 4 2 0 0 0 0 −4 −2 0

Γ̄7 2 1 0 −
√
3 0 0 −2 −1

√
3

Γ̄8 2 1 0
√
3 0 0 −2 −1 −

√
3

Γ̄9 2 −2 0 0 0 0 −2 2 0

1 Band Theory Without Any Hamiltonians … 19

1.7 Subducing the Band Representation

We have by now obtained the band representation for spinless and spinful graphene.
We will focus now on spinful graphene, since it is the one that can display topologi-
cal properties. We will subduce now the representation at different, high-symmetry
points in the first Brillouin Zone. In this case, we will study the points Γ, K and M
(see Fig. 1.5).

We proceed as before; first, find the character of the representation for the elements
of the little group. Then, see if the representation is irreducible or not, to see if bands
cross at that point. Then, we will study how we can connect those bands.

1.7.1 Γ Point

The little group at this point is the full point group, C6v. This a common property
for all BZs of all space groups. This group contains 3-axis. 2-axis, planes, and 6-
axis also. We haven’t computed the representation for the 6-axis, but we can obtain it
from the representations of 2- and 3-axis by combining them (e.g., a 6-axis is a 2-axis
minus a 3-axis). Doing this way, we can write the character for this representation
(Table1.5):

Just by inspection of the table, we get that the representation is reducible, in fact
(Table1.6):

ρΓ
G = Γ̄7 ⊕ Γ̄8 (1.33)

Fig. 1.5 First Brillouin
Zone for graphene

Table 1.5 Table of characters of the group C6v

C6v E C±
3 C2, C̄2 C±

6 m11 m11̄ Ē C̄±
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Subduction	in	momentum	space



-	Restric@ng	to	the	li9le	group	at	k	to	find	irreps	at	each	k	point	(subduc@on)	->	all	bands	connected	
-	EBR	is	defined	by	a	maximal	Wyckoff	posiBon	and	the	irreps	in	real	space

By	construc@on,	a	band	representaBon	has	an	atomic	limit,		

and	all	atomic	limits	yield	a	band	representa@on
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄8, ⌃̄1

3, ⌃̄
1
4, ⇤̄

1
3, ⇤̄

1
4, K̄4, K̄5, T̄

1
3 , T̄

1
4 and M̄

2
5 , while the other connected component contains the remainder

�̄9, ⌃̄2
3, ⌃̄

2
4, ⇤̄

2
3, ⇤̄

2
4, K̄6, T̄

2
3 , T̄

2
4 and M̄

1
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as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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Recall:	Topological	bands		CANNOT	Have	Maximally	Localized	Wannier	Func@on
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Topology?

Michel and Zak believed elementary bands could not be gapped

“we present the topologically global concepts 
necessary for the proof” 

ATOMIC	LIMIT



1) Bands in ρG are connected (this phase can always realized) in the 
Brillouin zone

2) Bands in ρG are not connected: at least one topological band
(Disconnected (P)EBR = set of disconnected bands that connected 

form an (P)EBR) 

is invariant, even though the j~c nki resulting from Eq. (8) are
no longer generally eigenstates ofH, and n is no longer a band
index in the usual sense.

Our goal is again to construct WFs out of these trans-
formed Bloch functions using Eq. (3). Figures 2(a) and 2(b)
show, for example, what the result might eventually look like
for the case of the four occupied valence bands of Si or GaAs,
respectively. From these four bands, one obtains four equiva-
lent WFs per unit cell, each localized on one of the four
nearest-neighbor Si-Si or Ga-As bonds. The presence of a
bond-centered inversion symmetry for Si, but not GaAs, is
clearly reflected in the shapes of the WFs.

Again, we emphasize that the gauge freedom expressed in
Eq. (8) implies that the WFs are strongly nonunique. This is
illustrated in Fig. 3, which shows an alternative construction
of WFs for GaAs. The WF on the left was constructed from
the lowest valence band n ¼ 1, while the one on the right is
one of three constructed from bands n ¼ 2–4. The former
has primarily As s character and the latter has primarily
As p character, although both (and especially the latter)
contain some Ga s and p character as well. The WFs of
Figs. 2(b) and 3 are related to each other by a certain manifold

of 4" 4 unitary matrices UðkÞ
nm relating their Bloch transforms

in the manner of Eq. (8).
However, before we can arrive at well-localized WFs such

as those shown in Figs. 2 and 3, we again have to address
questions of smoothness of the gauge choice expressed in
Eq. (8). This issue is even more profound in the present
multiband case, since this smoothness criterion is generally
incompatible with the usual construction of Bloch functions.
That is, if we simply insert the usual Bloch functions jc nki,
defined to be eigenstates of H, into the right-hand side of
Eq. (3), it is generally not possible to produce well-localized
WFs. The problem arises when there are degeneracies among
the bands in question at certain locations in the Brillouin

zone. Consider, for example, what happens if we try to
construct a single WF from the highest occupied band
n ¼ 4 in GaAs. This would be doomed to failure, since this
band becomes degenerate with bands two and three at the
zone center ! as shown in Fig. 3. As a result, band four is
nonanalytic in k in the vicinity of !. The Fourier transform of
Eq. (3) would then result in a poorly localized object having
power-law tails in real space.

In such cases, therefore, the extra unitary mixing expressed
in Eq. (8) is mandatory, even if it may be optional in the case
of a set of discrete bands that do not touch anywhere in the
BZ. So, generally speaking, our procedure must be that we
start from a set of Hamiltonian eigenstates jc nki that are not
per se smooth in k, and introduce unitary rotations UðkÞ

mn that
‘‘cancel out’’ the discontinuities in such a way that smooth-
ness is restored, i.e., that the resulting j~c nki of Eq. (8) obey
the smoothness condition that rkj~c nki remains regular at all
k. Then, when these j~c nki are inserted into Eq. (3) in place of
the jc nki, well-localized WFs should result. Explicitly, this
results in WFs constructed according to

jRni ¼ V

ð2!Þ3
Z
BZ

dke% ik&R XJ

m¼1

UðkÞ
mnjc mki: (10)

The question remains how to choose the unitary rotations

UðkÞ
mn so as to accomplish this task. We will see that one way to

do this is to use a projection technique, as outlined in Sec. II.A.3.
Ideally, however, we want the construction to result in WFs
that are ‘‘maximally localized’’ according to some criterion.
Methods for accomplishing this are discussed in Sec. II.C

3. Normalization conventions

In the above equations, formulated for continuous k, we
adopted the convention that Bloch functions are normalized
to one unit cell

R
V drjc nkðrÞj2 ¼ 1, even though they extend

over the entire crystal. We also define hfjgi as the integral of
f'g over all space. With this notation, hc nkjc nki is not unity;
instead, it diverges according to the rule

hc nkjc mk0 i ¼ ð2!Þ3
V

"nm"
3ðk % k0Þ: (11)

With these conventions it is easy to check that the WFs in
Eqs. (3) and (4) are properly normalized, i.e., hRnjR0mi ¼
"RR0"nm.

It is often more convenient to work on a discrete uniform k
mesh instead of continuous k space.2 Letting N be the
number of unit cells in the periodic supercell, or, equivalently,
the number of mesh points in the BZ, it is possible to keep the
conventions close to the continuous case by defining the
Fourier transform pair as

(a) (b)

FIG. 2 (color online). Maximally localized Wannier functions
(MLWFs) constructed from the four valence bands of Si (a) and
GaAs [(b); Ga at upper right, As at lower left], displaying the
character of #-bonded combinations of sp3 hybrids. Isosurfaces of
different shades of gray correspond to two opposite values for the
amplitudes of the real-valued MLWFs.

FIG. 3 (color online). MLWFs constructed from the s band (left)
or from the three p bands (right) of GaAs.

2The discretization of k space amounts to imposing periodic
boundary conditions on the Bloch wave functions over a supercell in
real space. Thus, it should be kept in mind that the WFs given by
Eqs. (12) and (14) are not truly localized, as they also display the
supercell periodicity (and are normalized to a supercell volume).
Under these circumstances the notion of ‘‘Wannier localization’’
refers to localization within one supercell, which is meaningful for
supercells chosen large enough to ensure negligible overlap between
a WF and its periodic images.

Marzari et al.: Maximally localized Wannier functions: Theory . . . 1423

Rev. Mod. Phys., Vol. 84, No. 4, October–December 2012
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Symmetry	enforced	semi-metal	 Topological	insulator	

Local	descrip.on:	
Wannier	func.ons	≈	

atomic	orbitals	

All	four	bands	come	from	a	single	set	of	localized	orbitals	(pz,	spin	up/down)	

What	makes	the	disconnected	bands	topological?	

Cannot	be	described	by	localized	Wannier	
func.ons	while	preserving	symmetries	

(Soluyanov	and	Vanderbilt	2011)		

Disconnected	bands	are	topological	because	they	lack	
localized	Wannier	func.ons	that	obey	TR	

Kane, Mele Phys. Rev. Lett (2005)

GRAPHENE



Nature 547, 298--305 (2017)

All sets of bands induced from symmetric, localized
orbitals, are topologically trivial by design. 

TQC	Statement



For all the 230 SG:
maximal k-vectors + minimal set non-redundant connections

k vector in a manifold is maximal if its little co-group
it’s not a subgroup of another manifold of vectors k’
(in general coincides with high-symmetry k-vector)

GRAPH THEORY DATA FOR TOPOLOGICAL QUANTUM . . . PHYSICAL REVIEW E 00, 003300 (2017)

TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx ,ky ,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx ,ky ,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx ,ky ,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx ,ky ,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx ,ky ,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx ,ky ,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx ,ky ,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx ,ky ,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx ,ky ,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx ,ky ,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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TABLE II. List of k-vectors (second column) connected to each
maximal k-vector (first column) in the P 4/ncc (130) (ordinary, or
double) space group. The third column gives the specific values
taken by the continuous parameters in the coordinate triplets of the
nonmaximal k-vecs in column two. The last column indicates how
many vectors in the star of the nonmaximal k-vectors of the second
column are connected to the maximal k-vector. For example, the !

point is connected to the four vectors of the star of k = (0,v,0) ∈ ":
∗k = {(0,v,0), (0,− v,0), (v,0,0),(− v,0,0)|v ∈ [0, 1

2 ]}, as v → 0.

Maximal Connected Specific Connections
k-vec k-vecs coordinates with the star

!: (0,0,0) #: (0,0,w) w = 0 2
": (0,v,0) v = 0 4
$: (u,u,0) u = 0 4
B: (0,v,w) v = w = 0 8
C: (u,u,w) u = w = 0 8
D: (u,v,0) u = v = 0 8

Z: (0,0,1/2) #: (0,0,w) w = 1/2 2
S: (u,u,1/2) u = 0 4
U : (0,v,1/2) v = 0 4
B: (0,v,w) v = 0,w = 1/2 8
C: (u,u,w) u = 0,w = 1/2 8
E: (u,v,1/2) u = v = 0 8

M: (1/2,1/2,0) V : (1/2,1/2,w) w = 0 2
$: (u,u,0) u = 1/2 4
Y : (u,1/2,0) u = 1/2 4
C: (u,u,w) u = 1/2,w = 0 8
D: (u,v,0) u = v = 1/2 8
F : (u,1/2,w) u = 1/2,w = 0 8

A: (1/2,1/2,1/2) V : (1/2,1/2,w) w = 1/2 2
T : (u,1/2,1/2) u = 1/2 4
S: (u,u,1/2) u = 1/2 4
C: (u,u,w) u = w = 1/2 8
E: (u,v,1/2) u = v = 1/2 8
F : (u,1/2,w) u = w = 1/2 8

R: (0,1/2,1/2) T : (u,1/2,1/2) u = 0 2
U : (0,v,1/2) v = 1/2 2
W : (0,1/2,w) w = 1/2 2
B: (0,v,w) v = w = 1/2 4
F : (u,1/2,w) u = 0,w = 1/2 4
E: (u,v,1/2) u = 0,v = 1/2 8

X: (0,1/2,0) ": (0,v,0) v = 1/2 2
W : (0,1/2,w) w = 0 2
Y : (u,1/2,0) u = 0 2
B: (0,v,w) v = 1/2,w = 0 4
F : (u,1/2,w) u = w = 0 4
D: (u,v,0) u = 0,v = 1/2 8

Continuing with our example, in Table II we show all the236

connections between the kM -vectors and the k-vectors of237

nonmaximal symmetry in the space group P 4/ncc (130).238

The first column shows the list of maximal vectors kM , the239

second gives the nonmaximal k-manifolds (lines or planes)240

connected to each kM , the third column shows the specific241

values of the continuous parameters for which the points242

are connected, and the last column indicates the number243

of vectors ∗k connected to each kM , equal to the quotient244

|∗k|/|∗kM | (where | · | denotes the number of elements in a 245

set). For instance, the four vectors of the star k = (0,v,0) ∈ " 246

are ∗k = {(0,v,0),(0,− v,0),(v,0,0),(− v,0,0)}, and they are 247

connected to ! : (0,0,0) for v → 0. We have suppressed the 248

trivial connections between the kM -vectors and the general 249

position GP = {(u,v,w)}. 250

Let us define the set of direct paths that join two maximal 251

k-vectors kM
1 and kM

2 as the intersection of the sets of 252

nonmaximal ki connected to kM
1 and kM

2 . Using the list of 253

possible connections between k-manifolds in a space group, 254

we can construct the set of all direct paths between pairs of 255

maximal k-vectors. In our example of space group P 4/ncc 256

(130), we can construct the set of all direct paths by taking 257

intersections of the sets of connections given in Table II. 258

Table III shows the result of this analysis. The first and 259

fourth columns give all the pairs of maximal k-vectors. The 260

second column shows the possible direct paths that connect 261

the two kM -vectors. The third column gives the number of 262

vectors in the star of the intermediate k-vectors of nonmaximal 263

symmetry connected to both kM -vectors. As in Table II, the 264

trivial connection through the general position (GP), common 265

to all pairs of kM -vectors, has been omitted in the table. 266

B. Set of independent paths 267

The end goal of enumerating all paths through the Brillouin 268

zone is the determination of all the possible connectivity 269

graphs [17], with a special focus on the graphs for the building 270

blocks of band theory, i.e., the elementary band representations 271

[16,26–28]. The elementary band representations are repre- 272

sentations of infinite dimension that can be expressed—like 273

any representation of the space group—as a direct sum of 274

space group irreps, themselves induced from irreps of the little 275

group of each k-vector in reciprocal space. Recall that the little 276

group Gk is the subgroup of the space group G that leaves k 277

invariant, with the understanding that translations act trivially 278

on k. The little co-group Ḡk is then the point group of Gk, 279

and linear representations of the little group that we use here 280

can equally well be viewed as projective representations of the 281

little co-group [13]. The multiplicities of each irrep of the little 282

group of every maximal vector kM have been calculated for all 283

the elementary band representations [19]. The multiplicities of 284

the irreps of the little group of k-vecs of nonmaximal symmetry 285

can be determined from these via the compatibility relations. 286

The procedure can be briefly described as follows. When two 287

lines of k-vectors intersect at a point (or two planes at a line), 288

this intersection point (line) generically has higher symmetry 289

than the points that lie on only one line (plane). The little 290

co-group of the intersection point ks is thus generically a 291

supergroup of the little co-group of the line Ḡk ⊂Ḡks
, and 292

the little groups also satisfy Gk ⊂Gks
. The matrices of an 293

irrep ρ of the little group Gks
associated with the symmetry 294

elements that belong to Gk form a representation of the little 295

group of k, known as the restricted (subduced) representation 296

ρ ↓ Gk. In general, this subduced representation is reducible. 297

The compatibility relations give the decomposition of the 298

irreps of Gks
into irreps of Gk upon subduction. 299

As an example, we can examine the compatibility of little 300

group representations between the little groups G! and G" 301

in our example of space group P 4/ncc. Because it is located 302
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx ,ky ,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx ,ky ,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄8, ⌃̄1
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as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx ,ky ,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx ,ky ,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
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as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
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where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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* additional restrictions in non-symmorphic groups (monodromy)
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TABLE I. k-vectors of the P 4/ncc (130) (ordinary, or double) space group with TR symmetry. The first column gives the symbol of the
k-manifold. The second column gives the number of vectors in the star of a vector in the k-manifold. The third column shows the coordinates
of one representative k-vector in the manifold. The fourth column gives the little co-group in the Hermann-Mauguin (Schönflies) notation. In
the fifth column we indicate if the k-manifold is maximal. Finally, the last column indicates if the k-vectors in the manifold are TRIMs.

Maximal
k-vec mult. Coordinates Little co-group TR

! 1 (0,0,0) 4/mmm(D4h) yes yes
Z 1 (0,0,1/2) 4/mmm(D4h) yes yes
M 1 (1/2,1/2,0) 4/mmm(D4h) yes yes
A 1 (1/2,1/2,1/2) 4/mmm(D4h) yes yes
R 2 (0,1/2,1/2) mmm(D2h) yes yes
X 2 (0,1/2,0) mmm(D2h) yes yes
" 2 (0,0,w),0 < w < 1/2 4mm(C4v) no no
V 2 (1/2,1/2,w),0 < w < 1/2 4mm(C4v) no no
W 4 (0,1/2,w),0 < w < 1/2 mm2(C2v) no no
# 4 (u,u,0),0 < u < 1/2 mm2(C2v) no no
S 4 (u,u,1/2),0 < u < 1/2 mm2(C2v) no no
$ 4 (0,v,0),0 < v < 1/2 mm2(C2v) no no
U 4 (0,v,1/2),0 < v < 1/2 mm2(C2v) no no
Y 4 (u,1/2,0),0 < u < 1/2 mm2(C2v) no no
T 4 (u,1/2,1/2),0 < u < 1/2 mm2(C2v) no no
D 8 (u,v,0),0 < u < v < 1/2 m(Cs) no no
E 8 (u,v,1/2),0 < u < v < 1/2 m(Cs) no no
C 8 (u,u,w),0 < u < w < 1/2 m(Cs) no no
B 8 (0,v,w),0 < v < w < 1/2 m(Cs) no no
F 8 (u,1/2,w),0 < u < w < 1/2 m(Cs) no no
GP 16 (u,v,w),0 < u < v < w < 1/2 1(1) no no

are TR-invariant; we refer to these as time-reversal invariant197

momentum (TRIM) points. At the TRIM points then, TR198

symmetry sometimes forces irreps that in principle correspond199

to different energy levels without TR to become degenerate.200

A similar issue arises in body- and face-centered space groups201

at points with antiunitary operations combining a rotation or202

reflection with TR. Aside from these caveats, our definition203

of maximal k-vector coincides with the colloquial notion of a204

“high-symmetry” k-vector.205

As an example, we give in Table I the list of k-vectors206

in the space group P 4/ncc (130), sorted into labeled man-207

ifolds sharing the same little co-group. This is a tetragonal,208

nonsymmorphic space group, generated by inversion {I |000},209

a fourfold z-axis rotation {C4z| 1
2 00}, and a twofold screw210

rotation {C2y |0 1
2

1
2 } about the y axis. The first three columns211

of the table show the label of the manifold containing each212

k-vector, the multiplicity or the number of vectors in its star,213

and the coordinates of a representative vector of the star in the214

standard setting, respectively. In the fourth column, we give215

the symbol of the little co-group of each k-manifold. In the216

fifth column, we indicate whether or not each k-manifold is217

maximal. The last column indicates if the TR operator remains218

k-invariant. Being a centrosymmetric space group, the set of219

maximal k-vectors is the same with or without TR: adding time220

reversal is equivalent to adding the composite of inversion221

and time reversal to the little co-group of every k-vector.222

Since this does not change the group-subgroup relation of223

connected k-vectors, it does not change the set of maximal224

k-vectors as per our definition. Figure 1 shows the region225

0 ! kx ,ky ,kz ! 1/2 of the first Brillouin zone, where the226

special k-vectors of Table I have been indicated.227

After having determined all the maximal k-vectors in a 228

given space group (in the following, we denote them as kM ), 229

we next compute all the possible connections between each 230

maximal kM and all the nonmaximal k-vectors. Each manifold 231

of nonmaximal k-vectors is parametrized by one (lines), two 232

(planes), or three (the general k-vector) free parameters. Note 233

that, to get all the possible connections, we must consider 234

an equation analogous to Eq. (2) for each vector in ∗k. 235

FIG. 1. Partial view (0 ! kx ,ky ,kz ! 1/2 region) of the first
Brillouin zone of the space group P 4/ncc (130). The special k-
vectors of Table I: the points of maximal symmetry !, Z, M, A, R, X;
lines ", V ,W,#, S,$, U, Y, T ; and planes D, E, C, B, F have
been indicated.
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FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄8, ⌃̄1
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as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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FIG. 2. Reciprocal lattice vectors and high symmetry points of the hexagonal lattice.

In Figure 1b we show pictorially the location of these Wycko↵ positions within the standard hexagonal lattice.
Before moving on to construct the elementary band representations induced from these Wycko↵ positions, we must

also establish a convention for the Brillouin zone. We take as our reciprocal lattice vectors

g1 = 2⇡

 p
3

3
x̂ + ŷ

!
(42)

g2 = 2⇡

 p
3

3
x̂ � ŷ

!
, (43)

which are shown in Fig 2. We will be primarily interested in the little group representations at three high symmetry
points in the Brillouin zone. The first is the � point, with coordinates (00). The little group G� is, as always, the
full point group C6v. Next, there are the three time-reversal invariant M points, which we denote M , M

0 and M
00.

These have coordinates ( 1
20), ( 1

2
1
2 ) and (0 1

2 ) respectively. For the remainder of this appendix we need only concern
ourselves with the first of these, and so we will refer to it unambiguously as “the” M point; the others are related to
it by C3z symmetry. It has little group GM , which is isomorphic to C2v and generated by C2z and C3zm11̄. Finally,
there are the K and K

0 points – the focus of most topological investigations in graphene. We will focus here primarily
on the K point which has coordinates ( 1

3
2
3 ); the K

0 point can be obtained by a ⇡/3 rotation). The little group GK is
isomorphic to C3v and is generated by C3z and C2zm11̄. The high symmetry points are shown in Fig 2.

B. Elementary band representations

We are now in a position to compute the elementary band representations induced from the maximal Wycko↵
positions in the honeycomb lattice. We will consider each Wycko↵ position in turn, starting with the 1a position.
To aid in this task, we reproduce character tables for the single and double-valued representations of C6v, C3v and
C2v in Tables IV, V and VI, respectively. We label site-symmetry group representations by their Wycko↵ position
label. We denote that a representation is a double-valued representations by an overbar. Finally, we label little group
representations by their k-point label. For symmorphic groups, such as SG 183, the little group, Gk, of each k point
is isomorphic to one of the site-symmetry groups. Because of this, we will indicate whether a given representation
refers to a site-symmetry or little group by the choice of symbol, however we will label the representations for all
isomorphic groups in the same order.

1. Wycko↵ position 1a

The stabilizer group of Wycko↵ position 1a is Gqa
1
⌘ C6v, whose irreps are shown in Table IV. The induction

procedure is quite simple: given an irrep ⇢ of C6v with character �⇢, the characters �
k
G in the induced representation

⇢ " G are given simply by

�
k
G(h) = �⇢(h) (44)

- Single connected component
   Fully connected 

- Splitting of EBR
   Topological bands

Vanderbilt, Soluyanov PRB 83, 035108 (2011)
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exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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(a) (b)

FIG. 3. Band structures corresponding to the connectivity graphs for SG 183, with little group representations along points and
lines labelled as shown. (a) shows the graph corresponding to the adjacency matrix A1, while (b) shows the graph corresponding
to adjacency matrix A2

indicating that the graph described by the matrix A2 has two connected components. Consulting our ordering
of representations in Table XIV, we see that the first connected component contains the little group represen-
tations �̄8, ⌃̄1

3, ⌃̄
1
4, ⇤̄

1
3, ⇤̄

1
4, K̄4, K̄5, T̄

1
3 , T̄

1
4 and M̄

2
5 , while the other connected component contains the remainder
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2
4, ⇤̄

2
3, ⇤̄
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2
3 , T̄
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1
5 . (Interchanging �̄8 and �̄9 also results in a valid disconnected energy graph

as defined in Def. 1). Since each of these connected components comes from splitting an elementary band repre-
sentations, they each describe a tqBR, and hence a topological phase. We show schematically the band structure
corresponding to each case in Figure 3. Although for this analysis our specific aim was understanding the topological
phase transition in graphene, we can use this graph method to predict new topological materials as well, as per
Section ??. In the next section we will show how to realize this particular phase transition in a tight-binding model.

B. Hamiltonian Analysis

We justify the preceding analysis concretely by considering a tight-binding model of pz or (s) orbitals centered on 2b

sites with the most general Rashba and Haldane type SOC interactions. By definition, the lattice Fourier transform of
these orbital functions transform in the ⇢̄

2b
6 " G representation of the space group. In particular, let si be a vector of

Pauli matrices acting in spin space, and �i a vector of Pauli matrices acting in sublattice {qb
1,q

b
2} space. To construct

the action of any element g of the space group on pz orbitals centered on the 2b sites, we consider the action of g on
the spin and location of the orbitals in this basis. This is equivalent to the induction formula Eq. (8), although it gives
the induced representation in a basis that is more convenient for our purposes. For instance, C2z acts as a rotation,
exp(i⇡sz/2), in spin space and acts as �x in the space of lattice sites because it exchanges the two lattice sites qb

1
and qb

2; thus C2z is represented by exp(i⇡sz/2)⌦ �x = isz ⌦ �z. For the Bloch Hamiltonian, H(k), the induced little
group representation at the � point is given by �� = �̄8 � �̄9 from Table VIII and takes the form,

��(C3z) = e
i⇡
3 sz ⌦ �0 (99)

��(C2z) = isz ⌦ �x (100)

��(m11̄) = �isx (101)

��(T ) = isy ⌦ �0K, (102)

where T is time-reversal, and K is the operation of complex conjugation. At the K point, the induced little-group
representation can be written as

�K(C3z) = e
i⇡
3 sz ⌦ e

�i 2⇡
3 �z (103)

�K(C2zm11̄) = isy ⌦ �x, (104)

where the extra phases relative to �� come from the translations in Eqs. (39)–(41). In this basis, we can expand
the Bloch Hamiltonian in terms of sixteen Hermitian basis elements. We call a term in the Hamiltonian an SOC
term if it does not act as the identity in spin space. If it commutes with sz, it is of Haldane type. The most general
Haldane-type SOC term is

HHSOC(k) = d0(k)sz + dx(k)sz ⌦ �x + dy(k)sz ⌦ �y + dz(k)sz ⌦ �z. (105)
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FIG. 2. Reciprocal lattice vectors and high symmetry points of the hexagonal lattice.

In Figure 1b we show pictorially the location of these Wycko↵ positions within the standard hexagonal lattice.
Before moving on to construct the elementary band representations induced from these Wycko↵ positions, we must

also establish a convention for the Brillouin zone. We take as our reciprocal lattice vectors

g1 = 2⇡

 p
3

3
x̂ + ŷ

!
(42)

g2 = 2⇡

 p
3

3
x̂ � ŷ

!
, (43)

which are shown in Fig 2. We will be primarily interested in the little group representations at three high symmetry
points in the Brillouin zone. The first is the � point, with coordinates (00). The little group G� is, as always, the
full point group C6v. Next, there are the three time-reversal invariant M points, which we denote M , M

0 and M
00.

These have coordinates ( 1
20), ( 1

2
1
2 ) and (0 1

2 ) respectively. For the remainder of this appendix we need only concern
ourselves with the first of these, and so we will refer to it unambiguously as “the” M point; the others are related to
it by C3z symmetry. It has little group GM , which is isomorphic to C2v and generated by C2z and C3zm11̄. Finally,
there are the K and K

0 points – the focus of most topological investigations in graphene. We will focus here primarily
on the K point which has coordinates ( 1

3
2
3 ); the K

0 point can be obtained by a ⇡/3 rotation). The little group GK is
isomorphic to C3v and is generated by C3z and C2zm11̄. The high symmetry points are shown in Fig 2.

B. Elementary band representations

We are now in a position to compute the elementary band representations induced from the maximal Wycko↵
positions in the honeycomb lattice. We will consider each Wycko↵ position in turn, starting with the 1a position.
To aid in this task, we reproduce character tables for the single and double-valued representations of C6v, C3v and
C2v in Tables IV, V and VI, respectively. We label site-symmetry group representations by their Wycko↵ position
label. We denote that a representation is a double-valued representations by an overbar. Finally, we label little group
representations by their k-point label. For symmorphic groups, such as SG 183, the little group, Gk, of each k point
is isomorphic to one of the site-symmetry groups. Because of this, we will indicate whether a given representation
refers to a site-symmetry or little group by the choice of symbol, however we will label the representations for all
isomorphic groups in the same order.

1. Wycko↵ position 1a

The stabilizer group of Wycko↵ position 1a is Gqa
1
⌘ C6v, whose irreps are shown in Table IV. The induction

procedure is quite simple: given an irrep ⇢ of C6v with character �⇢, the characters �
k
G in the induced representation

⇢ " G are given simply by

�
k
G(h) = �⇢(h) (44)
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Classification	of	crystalline	atomic	limits
10398 real-space atomic limits of materials

31

SG Mat. SG Mat. SG Mat. SG Mat. SG Mat.

2 P 1̄ IrTe2 92 P41212 La5Si4 146 R3 SnAu5 178 P6122 Ir3Zr5 221 Pm3̄m LaIn3

4 P21 Ge2LaPt2 100 P4bm La5S7 147 P 3̄ NW2 180 P6222 Ge2Ta 223 Pm3̄n IrTi3
13 P2/c AuCrTe4 103 P4cc TaTe4 148 R3̄ Ir3Te8 182 P6322 Ni3N 224 Pn3̄n AgO2

14 P21/c AgF4Na2 109 I41md LaPtSi 149 P312 TiO3 185 P63cm IrMg3 225 Fm3̄m BiLa
26 Pmc21 In4LaPd2 113 P 4̄21m Na5Sn 150 P321 Li7Pb2 186 P63mc Au3Sr7 226 Fm3̄c NaZn13
34 Pnn2 CoTe2 120 I 4̄c2 K(SnAu2)2 152 P3121 Ga3Ni13Ge6 187 P 6̄m2 LiZnGe 227 Fd3̄m RbBi2
36 Cmc21 AsNi 122 I 4̄d FeAgS2 155 R32 Ni3S2 188 P 6̄c2 LiScI3 230 Ia3̄d Ga4Ni3
39 Aem2 LaS 123 P4/mmm InSePd5 157 P31m AuCd 189 P 6̄2m GaAg2
43 Fdd2 Ge5Y3 128 P4/mnc CSc3 159 P31c IrLi2Si3 190 P 6̄2c HfSnRh
52 Pnna Bi3Sr2 129 P4/nmm LaTe2 160 R3m As3Sn4 191 P6/mmm Ga2La
55 Pbam Al3Pt5 130 P4/ncc Ge3La5 161 R3c Li2ReO3 193 P63̄/mcm Sr5Sb3

58 Pnnm AlAu2 131 P42/mmc La(BC)2 162 P 3̄1m Ag5(PbO3)2 194 P63̄/mmc Ge3Li2Zn
59 Pnmm Ag3Sn 136 P42/mnm ReO2 164 P 3̄m1 Ag2F 198 P213 NiAsS
61 Pbca AgF2 138 P42/mcm Ge7La11Mg2 165 P 3̄c1 Ca5CuPb3 200 Pm3̄ Au6In5Na2
62 Pnma AgSr 139 I4/mmm LiTlPd2 166 R3̄m Zr2Te2P 205 Pa3̄ PdN2

63 Cmcm BiZr 140 I4/mcm Te3Tl5 167 R3̄c Ir3Mg13 206 Ia3̄ Mg3Bi2
64 Cmce Al3Ge4La2 141 I41/amd NiTi2 173 P63 AlCaSi 212 P4332 BaSi2
65 Cmce Al3Ge4La2 142 I41/acd IrSn4 174 P 6̄ Li2Ni12P7 213 P4232 Ni2W3N
74 Imma La3Pd4Si 143 P3 TiNi 175 P6/m Rb4SnTe4 214 P4232 La3SbI3
84 P42/m AlNi4Zr5 144 P31 IrGe4 176 P63/m V3S4 215 P 4̄3m Li8Al3Si5

TABLE S15. Excerpt of semimetal candidates, with electron filling smaller than the number of bands in the smallest PEBR.
This criteria ensures that all materials shown are partially filled (semi-)metals with SOC. A complete list will be presented in
a future work.

VII. TABLE OF EBRS AND PEBRS

Here we give the table of elementary and physically elementary band representations induced from the maximal
Wyko↵ positions in all 230 space groups in a condensed form. The column labeled “SG” gives the space group number.
“MWP” gives the standard name of the maximal Wycko↵ position, and “WM” gives its multiplicity in the primitive
cell. “PG” is the point group number of for the site symmetry group, and “Irrep” gives the name of the site-symmetry
group representation from which each band representation is induced. The reperesentations are labelled using the
notation of Stokes, Cordes, and Campbell51. The column “Dim” denotes the dimension of the point stabilizer group
irrep. The column “KR” denotes whether the band representation is also a physical band representation. Those
with a “1” in this column are PEBRs as is, Those with a “2” join with copies of themselves when TR symmetry is
included. Finally, EBRs labelled by “f” (for first) pair with their conjugate BR labelled by “s” (and listed directly
below) when TR symmetry is added. The column labelled “Bands” gives the total number of bands in the physical
band representation (to obtain the number of bands in the EBR without TR, divide this number by 1 if the entry
in KR is 1, and 2 otherwise). The column “Re” indicates whether the given band representation can be made time-
reversal invariant in momentum space: a 1 in this column indicates that TR symmetry is satisfied at each k point,
while a 2 indicates that the given band representation must be connected in momentum space with its TR conjugate.
In particular, those band representations induced from 1d site-symmetry representations and with a 1 in the “Re”
column are prime candidates for topological insulators, as discussed in Section IV. A of the main text. Finally, the
columns “E” and “PE” indicate whether the given band representation is an exception (in the language of Sec. I and
Tables S10, S11, and S12), with and without TR symmetry respectively. An “e” in either of these columns indicates
elementary, while a “c” indicates composite. This full set of data can be accessed in uncondensed form through the
BANDREP program on the Bilbao Crystallographic Server17.

SG MWP WM PG Irrep Dim KR Bands Re E PE SG MWP WM PG Irrep Dim KR Bands Re E PE

1 1a 1 1 �1 1 1 1 1 e e 131 2d 2 8 ��
2 1 1 2 1 e e

1 1a 1 1 �̄2 1 2 2 2 e e 131 2d 2 8 �+
4 1 1 2 1 e e

2 1a 1 2 �+
1 1 1 1 1 e e 131 2d 2 8 ��

4 1 1 2 1 e e

2 1a 1 2 ��
1 1 1 1 1 e e 131 2d 2 8 �+

3 1 1 2 1 e e

2 1a 1 2 �̄3 1 2 2 2 e e 131 2d 2 8 ��
3 1 1 2 1 e e

2 1a 1 2 �̄2 1 2 2 2 e e 131 2d 2 8 �̄5 2 1 4 1 e e

2 1b 1 2 �+
1 1 1 1 1 e e 131 2d 2 8 �̄6 2 1 4 1 e e

2 1b 1 2 ��
1 1 1 1 1 e e 131 2e 2 14 �1 1 1 2 1 e e

2 1b 1 2 �̄3 1 2 2 2 e e 131 2e 2 14 �4 1 1 2 1 e e

SG:	Space	Group	
MWP:	Maximal	Wyckoff	Posi@on	
WM:	Wyckoff	mul@plicity	in	the	primi@ve	cell	
PG:	Point	group	number	of	the	site-symmetry	
Irrep:	Name	of	the	Irrep	of	the	site-symmetry	for	each	BR	

KR:	1	for	PEBR,	2	for	EBR	(f	and	s)	
Bands:	Total	number	of	bands	
Re:	1	for	TRS	at	each	k,	2	for	connec@on	with	its	conjugate	
E:	e	for	elementary,	c	for	composite	
PE:	e	for	elementary,	c	for	composite	
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FIG. 5. Main input screen for the BANDREP program.

representations in the given space group, respectively. Band1178

representations are listed according to Wyckoff position, and1179

the irreducible representation of the site-symmetry group1180

from which they are induced. In addition to the little group1181

representations subduced at each maximal k-vector, for each1182

band representation the output table contains a row labeled1183

“Decomposable\Indecomposable,” which indicates whether1184

or not a disconnected connectivity graph exists for the1185

given band representation. In Fig. 6, we show the output1186

of selecting “Elementary” for the space group I213 (199).1187

In particular, there is one decomposable elementary band1188

representation. It is induced from the 2
Ē (!̄3) representation1189

of the site-symmetry group of the 12b Wyckoff position,1190

which is isomorphic to the point group C2. For this band1191

representation—and more generally for any band representa-1192

tion with disconnected connectivity graphs—the entry in the1193

“Decomposable\Indecomposable” row is a clickable button.1194

The output of clicking this button is a list of all possible1195

ways of partitioning connectivity graphs into disconnected1196

components. These data are given in the format of Sec. II F and1197

Table XVI; each row corresponds to a different disconnected1198

solution to the compatibility relations, and each column gives1199

the little group representations subduced at each maximal1200

k-vector in each branch (disconnected component). Figure 71201

shows this output for the decomposable band representation1202

2
Ē ↑ G induced from the 12b position in SG I213 (199). We 1203

see that there are three possible disconnected connectivity 1204

graphs, each with two disconnected components. 1205

To obtain the analogous information for the physically 1206

elementary band representations with TR symmetry, we can 1207

click instead the “Elementary TR” button on the main input 1208

screen. This output for space group I213 (199) is shown in 1209

Fig. 8. We see that with TR symmetry, there are now two 1210

decomposable physically elementary band representations. 1211

The first is induced from the physically irreducible ĒĒ (!̄4!̄4) 1212

representation of the site-symmetry group of the 8a position, 1213

isomorphic to the point group C3. The second decomposable 1214

physically elementary band representation is induced from the 1215

1
Ē

2
Ē (!̄3!̄4) representation of the site-symmetry group of the 1216

12b Wyckoff position, which is isomorphic to the point group 1217

C2. In Fig. 9 we show the possible disconnected connectivity 1218

graphs for this latter band representation. It turns out that in 1219

this case there is only one allowed disconnected connectivity 1220

graph, with two branches. 1221

In addition to the connectivity graphs, we also give, for each 1222

space group, the minimal list of paths through the BZ and the 1223

associated compatibility relations needed to construct the full 1224

connectivity graphs from the little group representations at 1225

the maximal k-vectors. From the table of band representations 1226

accessed from either the “Elementary” or “Elementary TR” 1227

FIG. 6. Output of BANDREP for the elementary band representations in SG I213 (199) without TR. There is one decomposable elementary
band representation. It is induced from the two-dimensional 2

Ē representation of the site-symmetry group of the 12b Wyckoff position.

003300-18

http://www.cryst.ehu.es/cryst/bandrep



http://www.cryst.ehu.es/cryst/bandrep

Output



http://www.cryst.ehu.es/cryst/bandrep

Output

GRAPH THEORY DATA FOR TOPOLOGICAL QUANTUM . . . PHYSICAL REVIEW E 00, 003300 (2017)

FIG. 7. Possible decompositions of the elementary band repre-
sentation in SG I213 (199) induced from the 2

Ē representation of the
site-symmetry group of the 12bmaximal Wyckoff position.

function, these data can be accessed by clicking the button1228

labeled “Minimal set of paths and compatibility relations to1229

analyze the connectivity.” The location of this button above the1230

table of band representations can be seen in Figs. 6 and 8. The1231

output of this application gives two tables. The first table lists1232

the minimal set of connections between maximal k-vectors,1233

given in the format of Table III. It has three columns: each1234

row gives two maximal k-vectors in the first and third column,1235

which are connected by the nonmaximal k-vector in the second1236

column.1237

Directly below the table of k-vectors, we display the1238

compatibility relations along each of the listed connections.1239

This table has five columns. The first, third, and fifth columns1240

correspond to the first maximal, intermediate, and second max-1241

imal k-vector columns given in the table of connections, while1242

the second and fourth columns give the compatibility relations1243

along each connection. For each little group representation of1244

the maximal k-vectors, the compatibility relations are given in1245

the format of Eq. (13). For those nonsymmorphic groups that1246

require two different sets of compatibility relations related by1247

monodromy, the second set is given immediately next to the1248

first.1249

As an example, we show in Fig. 10 the set of paths 1250

and compatibility relations for SG I213 (199) without TR 1251

symmetry, obtained by clicking the “Minimal set of paths and 1252

compatibility relations to analyze the connectivity” button in 1253

Fig. 6. We see that there are only three maximal k-vectors 1254

that determine the connectivity: !, H , and P . There are three 1255

essential connections, 1256

! ↔ " ↔ H, (32)

! ↔ # ↔ H, (33)

! ↔ # ↔ P. (34)

Although this group is nonsymmorphic, we see from the 1257

compatibility table that only one set of compatibility relations 1258

is needed along each connection. This is due to the additional 1259

constraints imposed by the cubic threefold rotation. 1260

Clicking on the analogous button in the output of Fig. 8 1261

gives the minimal paths and compatibility relations for this 1262

same space group once time-reversal symmetry is included. 1263

We show these in Fig. 11. We see immediately that TR singles 1264

out an additional (TR-invariant) maximal k-vector, labeled N . 1265

In addition to the connections in Eq. (32), we see that with TR 1266

we must also consider compatibility along the connection 1267

N ↔ D ↔ P. (35)

Once again, we see from the compatibility table that only one 1268

set of compatibility relations is needed for every connection 1269

in this space group with TR symmetry. 1270

IV. TECHNICAL VALIDATION 1271

Now that we have produced the data and the applications 1272

with which to access them, we will show here an example of 1273

how they may be used. We examine the case of graphene on 1274

a graphite (or another symmetry-preserving, lattice-matched 1275

FIG. 8. Output of BANDREP for the physically elementary band representations in SG I213 (199). There are two decomposable physically
elementary band representations, induced from the 8aand 12bmaximal Wyckoff position
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http://www.cryst.ehu.es/cryst/bandrep

Output



http://www.cryst.ehu.es/cryst/bandrep

Output

M. G. VERGNIORY et al. PHYSICAL REVIEW E 00, 003300 (2017)

FIG. 9. Decomposition of the elementary band representation in SG I213 (199) induced from the 1
Ē

2
Ē physically irreducible representation

of the site-symmetry group of the 12bmaximal Wyckoff position.

substrate that breaks only inversion symmetry), corresponding1276

to the Kane-Mele model with inversion-symmetry breaking.1277

This is described by the three-dimensional space group P 6mm1278

(183). We will see how we can recover the full topological1279

phase diagram using the graph output files, and in so doing1280

give a consistency check on our data.1281

The relation between the topological phases of graphene1282

and the connectivity of elementary band representations was1283

computed first in Refs. [16,40]. Here we will show how to1284

recover these computations using the applications we have 1285

produced. The carbon atoms in graphene sit at the 2bWyckoff 1286

position of space group P 6mm (183). The site-symmetry 1287

group of this position is isomorphic to the point group C3v 1288

(3m), generated by a threefold rotation C3z about the z-axis 1289

(normal to the plane) and the vertical mirror my . By consulting 1290

the data presented in Refs. [16,19], we can see that spinful pz 1291

orbitals transform in the two-dimensional !̄6 representation 1292

of this group. Next, we consult the BANDREP program for 1293

FIG. 10. Minimal path and associated compatibility tables for SG I213 (199) without TR symmetry.
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2

tem exhibits a nontrivial Z2 index.
We were motivated to explore the non-symmorphic ex-

ample because, as part of their ground-breaking work on
the connectivity of energy bands, Michel and Zak con-
jectured that spinless EBRs in non-symmorphic space
groups cannot realize a gapped band structure.[31, 32] In
Ref 26, we explained where Michel and Zak’s proof fails.
Here, we pick a particular non-symmorphic space group,
P4232, and construct a tight-binding model to explicitly
show its gapped, topological nature. In doing so, we find
a novel feature: the two-dimensional “Wilson Hamilto-
nian” exhibits a topologically protected band crossing.

In each example, we derive a bulk topological invari-
ant. An essential tool is the “kk-directed” Wilson loop,
which describes the parallel transport of an isolated set
of bands:[4, 17, 33–42]

W(k?,k0) ⌘ Pei
R k0+2⇡
k0

dkkAk(k?,kk), (1)

where P indicates that the integral is path-ordered and
Ak(k)ij = ihui(k)|@kkuj(k)i is a matrix whose rows and
columns correspond to each eigenstate in the isolated
set of bands. The eigenvalues of W are gauge invari-
ant and of the form ei✓(k?), independent of the “base
point,” k0.[40] A quantized invariant derived from the
Wilson loop is invariant under any deformation of the
Hamiltonian that preserves the gap in the spectrum.

Spinless TCI on the honeycomb lattice We start with
spinless px,y orbitals on the honeycomb lattice, described
by the nearest-neighbor Hamiltonian: [43]

H0
k =

✓
0 hk

h†
k 0

◆
(2)

where non-zero blocks mix the A and B sublattices and
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+
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3
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�
e�ik·�2 � e�ik·�3

�
(t� � t⇡)�x (3)

The Pauli matrices, �x,y,z, act in the px,y subspace; t�,⇡
parameterize � and ⇡ bond strengths; and �1,2,3 are the
nearest-neighbor vectors (see Fig 1a). Previously this
model with t⇡ = 0 was studied for its flat bands.[44, 45]
The spectrum ofH0

k is shown in Fig 1b. The degeneracies
at K ⌘ 2

3g1 +
1
3g2 and � are symmetry-required.[46]

To open a gap, we add the following next-nearest
neighbor hopping term, which preserves the crystal sym-
metries of the honeycomb lattice:[47]

H1
k = sin( 12k·e1) sin(

1
2k·e2) sin(

1
2k·(e1�e2))⌧z⌦�y, (4)

where the matrices ⌧i act in the sublattice subspace. The
term in Eq. (4) changes the energy-ordering of the bands
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FIG. 1. (a) Lattice (e1,2) and reciprocal lattice (g1,2) ba-
sis vectors. The dotted arrows (�1,2,3) indicate the vectors
between nearest neighbor sites. A and B indicate the sublat-
tices. (b) Spectrum of H0

k with t� = 1, t⇡ = �.5 (c) Gapped
band structure of H0

k+xH
1
k with t� = .8, t⇡ = 1.0, x = .6 and

(d) the argument of its Wilson loop eigenvalues.

at K, while preserving the two-fold degeneracy. For large
enough |x|, H0

k + xH1
k can be gapped, as in Fig. 1c; see

Sec. S1A for a phase diagram.

The spectrum in Fig 1c represents a disconnected
EBR.[1, 2] We construct a non-trivial bulk topological
invariant from the g1-directed Wilson loop of the lower
two bands. Its eigenvalues are shown in Fig. 1d as a func-
tion of the base point. When the base point is � or M ,
the Wilson loop eigenvalues (�1 and +1, respectively[48])
are completely determined by the C2z eigenvalues[38, 42]
(the C2z operator is �⌧x⌦�0.[49] ) This forces the “Wil-
son bands” to wind in opposite directions. The quantized
eigenvalues at � and M prevent the Wilson spectrum
from being smoothly deformed to flat, which indicates
that the valence bands are topologically nontrivial.

The Wilson loop winding requires that both occupied
bands of H0

k+xH1
k at � have the same C2z eigenvalue, ⌘,

and that both occupied bands at M have the C2z eigen-
value �⌘. Consider the Wilson loop of three bands: the
two occupied bands and a third, trivial, band, not in
our model. If the C2z eigenvalues of the third band at
� and M are both equal to ⌘, then the eigenvalues of
the three-band Wilson loop will not be quantized at M
and it will fail to wind. Thus, the topological invariant
is not stable to adding a third band to the projector (al-
though the winding of the projector onto two bands is
invariant under adding a third band as long as the gap
between the third band and the existing bands does not
close.) The existence of a topological invariant that de-
pends on the number of bands is reminiscent of the “Hopf
insulator.”[50]
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at K, while preserving the two-fold degeneracy. For large
enough |x|, H0
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Sec. S1A for a phase diagram.
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are completely determined by the C2z eigenvalues[38, 42]
(the C2z operator is �⌧x⌦�0.[49] ) This forces the “Wil-
son bands” to wind in opposite directions. The quantized
eigenvalues at � and M prevent the Wilson spectrum
from being smoothly deformed to flat, which indicates
that the valence bands are topologically nontrivial.

The Wilson loop winding requires that both occupied
bands of H0
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k at � have the same C2z eigenvalue, ⌘,

and that both occupied bands at M have the C2z eigen-
value �⌘. Consider the Wilson loop of three bands: the
two occupied bands and a third, trivial, band, not in
our model. If the C2z eigenvalues of the third band at
� and M are both equal to ⌘, then the eigenvalues of
the three-band Wilson loop will not be quantized at M
and it will fail to wind. Thus, the topological invariant
is not stable to adding a third band to the projector (al-
though the winding of the projector onto two bands is
invariant under adding a third band as long as the gap
between the third band and the existing bands does not
close.) The existence of a topological invariant that de-
pends on the number of bands is reminiscent of the “Hopf
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Check	Topology

www.cryst.ehu.es/cryst/checktopologicalmat

1. A number of bands that is not a sum of EBRs is topological
2. A number of bands that does not satisfy the compatibility relations cannot be separated from other bands and describes a semimetal
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