Topological spin liquids in honeycomb iridates and **RuCl**₃?

Jeroen van den Brink

Leibniz Institute for Solid State and Materials Research Dresden

Ravi Yadav Mohamed Eldeeb Raajyavardhan Ray Satoshi Nishimoto Liviu Hozoi

Topoquant19 KITP Santa Barbara 28.08.2019

SFB 1143

Chain of hydrogen atoms

U>>tMott-Hubbard InsulatorAntiferromagnetismHeisenberg
Hamiltonian
$$H_{Heis} = J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j$$
 $[S^x, S^y] = iS^z$

$$\vec{\bullet} \quad \vec{B} = \frac{\vec{v} \times \vec{E}}{c^2}, \quad \vec{E} = -\nabla V$$

$$Zeeman : \vec{B} \cdot \vec{S} \sim \vec{L} \cdot \vec{S} \quad \text{spin-orbit coupling}$$

$$\vec{\bullet} \quad \vec{B} = \frac{\vec{v} \times \vec{E}}{c^2}, \quad \vec{E} = -\nabla V$$

$$Zeeman : \vec{B} \cdot \vec{S} \sim \vec{L} \cdot \vec{S} \quad \text{spin-orbit coupling}$$

1. When $c \to \infty$ anisotropy $\to 0$

$$\vec{\bullet} \quad \vec{B} = \frac{\vec{v} \times \vec{E}}{c^2}, \quad \vec{E} = -\nabla V$$

$$Zeeman : \vec{B} \cdot \vec{S} \sim \vec{L} \cdot \vec{S} \quad \text{spin-orbit coupling}$$

1. When $c \to \infty$ anisotropy $\to 0$

2. Total angular momentum $\vec{J} = \vec{L} + \vec{S}$

$$\vec{\bullet} \quad \vec{B} = \frac{\vec{v} \times \vec{E}}{c^2}, \quad \vec{E} = -\nabla V$$

$$Zeeman: \vec{B} \cdot \vec{S} \sim \vec{L} \cdot \vec{S} \quad \text{spin-orbit coupling}$$

1. When $c \to \infty$ anisotropy $\to 0$

2. Total angular momentum $\vec{J} = \vec{L} + \vec{S}$

3. ∇V large when Z large \rightarrow heavy elements \rightarrow 4d, 5d

$$\vec{\bullet} \quad \vec{B} = \frac{\vec{v} \times \vec{E}}{c^2}, \quad \vec{E} = -\nabla V$$

$$Zeeman : \vec{B} \cdot \vec{S} \sim \vec{L} \cdot \vec{S} \quad \text{spin-orbit coupling}$$

1. When $c \to \infty$ anisotropy $\to 0$

2. Total angular momentum $\vec{J} = \vec{L} + \vec{S}$

3. ∇V large when Z large \rightarrow heavy elements \rightarrow 4d, 5d Ru, Mo

$$\vec{\bullet} \quad \vec{B} = \frac{\vec{v} \times \vec{E}}{c^2}, \quad \vec{E} = -\nabla V$$

$$Zeeman : \vec{B} \cdot \vec{S} \sim \vec{L} \cdot \vec{S} \quad \text{spin-orbit coupling}$$

1. When $c \to \infty$ anisotropy $\to 0$

2. Total angular momentum $\vec{J} = \vec{L} + \vec{S}$

3. ∇V large when Z large \rightarrow heavy elements \rightarrow 4d, 5d

Ru, Mo

lr,

4. \vec{J} has direction & breaks rotational invariance of H

$$\vec{O} \quad \vec{B} = \frac{\vec{v} \times \vec{E}}{c^2}, \quad \vec{E} = -\nabla V$$

$$Zeeman : \vec{B} \cdot \vec{S} \sim \vec{L} \cdot \vec{S} \quad \text{spin-orbit coupling}$$
1. When $c \to \infty$ anisotropy $\to 0$
2. Total angular momentum $\vec{J} = \vec{L} + \vec{S}$
3. ∇V large when Z large \to heavy elements $\to 4d$, 5d
4. \vec{J} has direction & breaks rotational invariance of H

$$\vec{S}_i^z S_j^z \text{ instead of } \vec{S}_i \cdot \vec{S}_j$$
(for $S = 1/2$ we have $(S_i^z)^2 = 1/4$)

214 Magnetic Iridium Oxides

 Sr_2IrO_4 : equivalent of cuprate La_2CuO_4

hole hopping in s=1/2 AFM creates string of spin flips

hole hopping in s=1/2 AFM creates string of spin flips

Electron/hole propagation in Sr2lrO4

hole hopping in s=1/2 AFM creates string of spin flips

Electron/hole propagation in Sr2lrO4

hole hopping in s=1/2 AFM creates string of spin flips

hole hopping in s=1/2 AFM creates string of spin flips

Strong electron-hole asymmetry

Pärschke, Wohlfeld, Foyevtsova & JvdB, Nature Comm. 8, 686 (2017) see also PRB 99, 121114(R)

Strong electron-hole asymmetry

Pärschke, Wohlfeld, Foyevtsova & JvdB, Nature Comm. 8, 686 (2017) see also PRB 99, 121114(R)

Strong electron-hole asymmetry

Pärschke, Wohlfeld, Foyevtsova & JvdB, Nature Comm. 8, 686 (2017) see also PRB 99, 121114(R)

Exchange between edge-sharing j=1/2 moments

*Na*₂*IrO*₃: honeycomb structure

Jackeli & Khaliullin, PRL 102, 017205 (2009)

Exchange between edge-sharing j=1/2 moments

*Na*₂*IrO*₃: honeycomb structure

Honeycomb α-RuCl₃

Plumb, Clancy, Sandilands, Shankar, Hu, Burch, H-Y Kee & Y-J Kim, PRB 90, 041112 (2014)

Honeycomb α-RuCl₃

Plumb, Clancy, Sandilands, Shankar, Hu, Burch, H-Y Kee & Y-J Kim, PRB 90, 041112 (2014)

(perturbative in B/K)
$$H_{Kitaev} = \sum_{\langle ij \rangle_{\gamma}} K_{\gamma} S_i^{\gamma} S_j^{\gamma}$$

$$H_{Kitaev} = \sum_{\langle ij \rangle_{\gamma}} K_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}$$

$$H_{Kitaev} = \sum_{\langle ij \rangle_{\gamma}} K_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}$$

$$H = K \sum_{\langle ij \rangle_{\gamma}} S_i^{\gamma} S_j^{\gamma} + J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + \dots$$

$$H_{Kitaev} = \sum_{\langle ij \rangle_{\gamma}} K_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}$$

$$H = K \sum_{\langle ij \rangle_{\gamma}} S_{i}^{\gamma} S_{j}^{\gamma} + J \sum_{\langle ij \rangle} \vec{S}_{i} \cdot \vec{S}_{j} + \dots$$
$$\mathcal{H}_{i,j} = J \tilde{\mathbf{S}}_{i} \cdot \tilde{\mathbf{S}}_{j} + K \tilde{S}_{i}^{z} \tilde{S}_{j}^{z} + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_{i}^{\alpha} \tilde{S}_{j}^{\beta} + \tilde{S}_{i}^{\beta} \tilde{S}_{j}^{\alpha})$$

$$H_{Kitaev} = \sum_{\langle ij \rangle_{\gamma}} K_{\gamma} S_{i}^{\gamma} S_{j}^{\gamma}$$

$$H = K \sum_{\langle ij \rangle_{\gamma}} S_i^{\gamma} S_j^{\gamma} + J \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j + \dots$$

$$\mathcal{H}_{i,j} = J \tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

 $S_i^z S_j^z$

J₃

 $S_i^y S_j^y$

 $S_i^x S_j^x$

Fully ab initio for ground and excited states

Fully ab initio for ground and excited states

Fully correlated: multi-configuration wave-functions

Fully ab initio for ground and excited states

Fully correlated: multi-configuration wave-functions

Heavy machinery

Fully ab initio for ground and excited states

Fully correlated: multi-configuration wave-functions

Heavy machinery

Excellent for systems with localized electrons

Fully ab initio for ground and excited states

Fully correlated: multi-configuration wave-functions

Heavy machinery

Excellent for systems with localized electrons

Approximations tested in molecular systems since half century

Fully ab initio for ground and excited states

Fully correlated: multi-configuration wave-functions

Heavy machinery

Excellent for systems with localized electrons

Our scheme : direct-space multireference CI, finite embedded clusters

The infinite solid-state environment: one-electron embedding potential

- simplest: point-charge array
- more advanced: based on prior periodic Hartree-Fock

honeycomb Kitaev materials to consider

Na ₂ IrO ₃
Li ₂ IrO ₃
H ₃ LiIr ₂ O ₆
K ₂ IrO ₃
RuCl ₃

$$\mathcal{H}_{ij}^{\mathrm{D}_{2\mathrm{h}}} = J\,\tilde{\mathbf{S}}_{i}\cdot\tilde{\mathbf{S}}_{j} + K\,\tilde{S}_{i}^{z}\tilde{S}_{j}^{z} + J_{xy}\left(\tilde{S}_{i}^{x}\tilde{S}_{j}^{y} + \tilde{S}_{i}^{y}\tilde{S}_{j}^{x}\right)$$

TABLE II. Energy splittings and effective parameters (meV) for the four lowest magnetic states of two NN IrO₆ octahedra in the C2/m structure of 4. The weight of $(\uparrow \downarrow + \downarrow \uparrow)/\sqrt{2}$ and $(\uparrow\uparrow + \downarrow\downarrow)/\sqrt{2}$ in Ψ'_1 and Ψ'_2 , respectively, is $\approx 98\%$, see text.

Method	CAS+SOC	MRCI+SOC
∡(Ir-O-Ir)=99.45°, a	$d(Ir_1-Ir_2)=3.138$	$\dot{A} (\times 1)^{a}$:
Ψ_2'	0.0	0.0
$\Psi_3 = (\uparrow\uparrow - \downarrow\downarrow)/\sqrt{2}$	0.2	0.5
$\Psi_{\rm S} = (\uparrow \downarrow - \downarrow \uparrow) / \sqrt{2}$	4.4	5.5
Ψ_1'	6.3	10.5
$(J,\!K,\!J_{xy})$	(1.9, -12.4, 0.2)	(5.0, -20.5, 0.5)
\measuredangle (Ir-O-Ir)=97.97°, o	$d(Ir_2-Ir_3)=3.130$	$(\times 2)^{b}$:
Ψ_2'	0.0	0.0
$\Psi_3 = (\uparrow\uparrow - \downarrow\downarrow)/\sqrt{2}$	0.3	1.2
$\Psi_{\rm S} = (\uparrow \downarrow - \downarrow \uparrow) / \sqrt{2}$	4.6	6.7
Ψ_1'	5.8	8.2
(J,K,J_{xy})	(1.2, -11.3, 0.3)	(1.5, -15.2, 1.2)

^a $d(\text{Ir-O}_{1,2})=2.056$ Å. ^b $d(\text{Ir-O}_1)=2.065$ Å, $d(\text{Ir-O}_2)=2.083$ Å.

$$\mathcal{H}_{ij}^{\mathrm{D}_{2\mathrm{h}}} = J\,\tilde{\mathbf{S}}_{i}\cdot\tilde{\mathbf{S}}_{j} + K\,\tilde{S}_{i}^{z}\tilde{S}_{j}^{z} + J_{xy}\left(\tilde{S}_{i}^{x}\tilde{S}_{j}^{y} + \tilde{S}_{i}^{y}\tilde{S}_{j}^{x}\right)$$

TABLE II. Energy splittings and effective parameters (meV) for the four lowest magnetic states of two NN IrO₆ octahedra in the C2/m structure of 4. The weight of $(\uparrow\downarrow + \downarrow\uparrow)/\sqrt{2}$ and $(\uparrow\uparrow + \downarrow\downarrow)/\sqrt{2}$ in Ψ'_1 and Ψ'_2 , respectively, is $\approx 98\%$, see text.

^a $d(\text{Ir-O}_{1,2})=2.056$ Å. ^b $d(\text{Ir-O}_1)=2.065$ Å, $d(\text{Ir-O}_2)=2.083$ Å.

$$\mathcal{H}_{ij}^{\mathrm{D}_{2\mathrm{h}}} = J\,\tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K\,\tilde{S}_i^z\tilde{S}_j^z + J_{xy}\left(\tilde{S}_i^x\tilde{S}_j^y + \tilde{S}_i^y\tilde{S}_j^x\right)$$

TABLE II. Energy splittings and effective parameters (meV) for the four lowest magnetic states of two NN IrO₆ octahedra in the C2/m structure of 4. The weight of $(\uparrow\downarrow + \downarrow\uparrow)/\sqrt{2}$ and $(\uparrow\uparrow + \downarrow\downarrow)/\sqrt{2}$ in Ψ'_1 and Ψ'_2 , respectively, is $\approx 98\%$, see text.

$$\mathcal{H}_{ij}^{\mathrm{D}_{2\mathrm{h}}} = J\,\tilde{\mathbf{S}}_{i}\cdot\tilde{\mathbf{S}}_{j} + K\,\tilde{S}_{i}^{z}\tilde{S}_{j}^{z} + J_{xy}\left(\tilde{S}_{i}^{x}\tilde{S}_{j}^{y} + \tilde{S}_{i}^{y}\tilde{S}_{j}^{x}\right)$$

Klarge and FM, J small and AFM substantial anisotropy between links

$$\mathcal{H}_{ij}^{\mathbf{D}_{2\mathbf{h}}} = J\,\tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K\,\tilde{S}_i^z\tilde{S}_j^z + J_{xy}\left(\tilde{S}_i^x\tilde{S}_j^y + \tilde{S}_i^y\tilde{S}_j^x\right)$$

+ longer range Heisenberg J₂ and J₃

Method	CASSCF+SOC	MRCI+SOC						
<i>B1</i> , \measuredangle (Ir-O-Ir)=95.3°, <i>d</i> (Ir-Ir)=2.98 Å (×1) ^a :								
Ψ_2	0.0	0.0						
$\Psi_3 = \Phi_3 = (\uparrow\uparrow - \downarrow\downarrow)/\sqrt{2}$	1.6	3.2						
Ψ_1	5.4	7.7						
$\Psi_{\rm S} = \Phi_{\rm S} = (\uparrow \downarrow - \downarrow \uparrow) / \sqrt{2}$	25.5	24.8						
$(J, K, \Gamma_{xy}, \Gamma_{zx} = -\Gamma_{yz})^{\mathrm{b}}$		(-19.2,-6.0,-1.1,-4.8)						
<i>B</i> 2, ∡(Ir-O-Ir)=94.7°, <i>d</i> (Ir-Ir	$=2.98 \text{ Å} (\times 2)^{\circ}$:							
$\Psi_3 = \Phi_3 = (\uparrow\uparrow - \downarrow\downarrow)/\sqrt{2}$	0.0	0.0						
Ψ_2	2.8	3.7						
$\Psi_{\rm S} = \Phi_{\rm S} = (\uparrow \downarrow - \downarrow \uparrow) / \sqrt{2}$	5.9	7.1						
Ψ_1	5.7	8.4						
$(J, K, \Gamma_{xy}, \Gamma_{zx} = -\Gamma_{yz})^{\mathrm{d}}$		(0.8, -11.6, 4.2, -2.0)						

Nishimoto, Katukuri, Yushankhai, Stoll, Rößler, Rousochatzakis, Hozoi & JvdB, Nat. Comm. 7, 10273 (2016)

Method	CASSCF+SOC	MRCI+SOC
$B1, \measuredangle$ (Ir-O-Ir)=95.3°, d (Ir-In	$(\times 1) = 2.98 \text{ Å} (\times 1)^{\text{a}}$:	
Ψ_2	0.0	0.0
$\Psi_3 = \Phi_3 = (\uparrow\uparrow - \downarrow\downarrow)/\sqrt{2}$	1.6	3.2
Ψ_1	5.4	7.7
$\Psi_{\rm S} = \Phi_{\rm S} = (\uparrow \downarrow - \downarrow \uparrow)/\sqrt{2}$	25.5	24.0
$(J, K, \Gamma_{xy}, \Gamma_{zx} = -\Gamma_{yz})^{b}$		(-19.2, -6.0, -1.1, -4.8)
B2, ∠(Ir-O-Ir)=94.7°, d (Ir-In	:)=2.98 Å (×2) [°] :	
$\Psi_3 = \Phi_3 = (\uparrow\uparrow - \downarrow\downarrow)/\sqrt{2}$	0.0	0.0
Ψ_2	2.8	3.7
$\Psi_{\rm S} = \Phi_{\rm S} = (\uparrow \downarrow - \downarrow \uparrow)/\sqrt{2}$	5.9	7.1
Ψ_1	5.7	0.4
$(J, K, \Gamma_{xy}, \Gamma_{zx} = -\Gamma_{yz})^{d}$		(0.8, -11.6, 4.2, -2.0)
-	· · · · · · · · · · · · · · · · · · ·	

• bond with large FM J

• bond with substantial FM K

Nishimoto, Katukuri, Yushankhai, Stoll, Rößler, Rousochatzakis, Hozoi & JvdB, Nat. Comm. 7, 10273 (2016)

Method	CASSCF+SOC	MRCI+SOC
B1, ∠(Ir-O-Ir)=95.3°, d (Ir-Ir	$=2.98 \text{ Å} (\times 1)^{\text{a}}$:	
Ψ_2	0.0	0.0
$\Psi_3 = \Phi_3 = (\uparrow\uparrow - \downarrow\downarrow)/\sqrt{2}$	1.6	3.2
Ψ_1	5.4	7.7
$\Psi_{\rm S} = \Phi_{\rm S} = (\uparrow \downarrow - \downarrow \uparrow)/\sqrt{2}$	25.5	24.0
$(J, K, \Gamma_{xy}, \Gamma_{zx} = -\Gamma_{yz})^{b}$		(-19.2, -6.0, -1.1, -4.8)
B2, \measuredangle (Ir-O-Ir)=94.7°, d(Ir-Ir)=2.98 Å (×2) [°] :	
$\Psi_3 = \Phi_3 = (\uparrow\uparrow - \downarrow\downarrow)/\sqrt{2}$	0.0	0.0
Ψ_2	2.8	3.7
$\Psi_{\rm S} = \Phi_{\rm S} = (\uparrow \downarrow - \downarrow \uparrow) / \sqrt{2}$	5.9	7.1
Ψ_1	5.7	0.4
$(J, K, \Gamma_{xy}, \Gamma_{zx} = -\Gamma_{yz})^{\mathrm{d}}$		(0.8, -11.6, 4.2, -2.0)

- bond with large FM J
- bond with substantial FM K
- triplet dimer formation!

Nishimoto, Katukuri, Yushankhai, Stoll, Rößler, Rousochatzakis, Hozoi & JvdB, Nat. Comm. 7, 10273 (2016)

honeycomb H₃LiIr₂O₆

A spin–orbital-entangled quantum liquid on a honeycomb lattice

K. Kitagawa, T. Takayama, Y. Matsumoto, A. Kato, R. Takano, Y. Kishimoto, S. Bette, R. Dinnebier, G. Jackeli & H. Takagi 🏁

Nature 554, 341-345 (15 February 2018)

Received: 18 July 2017

		Experime	ntal cryst	al stru	cture	
honeycomb H ₃ LiIr ₂ O ₆	Bond	∠Ir-O-Ir	K	J	Γ_{xy}	$\Gamma_{yz} = -\Gamma_{zx}$
	B2 (3.10Å)	99.8°	-12.0	1.8	-0.2	-3.2
	B1 (3.05Å)	99.0°	-12.6	1.5	-1.8	-0.65
a - b						

• FM K, weak AFM J, large K/J

• weak bond anisotropy

honeycomb H₃LiIr₂O₆

		Experime	ntal cryst	al stru	cture	
	Bond	∠Ir-O-Ir	K	J	Γ_{xy}	$\Gamma_{yz} = -\Gamma_{zx}$
	B2 (3.10Å)	99.8°	-12.0	1.8	-0.2	-3.2
Li H	B1 (3.05Å)	99.0°	-12.6	1.5	-1.8	-0.65
0						
Ir						

Remove H from Ir-O-Ir links

& smear out the + charge

Bond	K	J	Γ_{xy}	$\Gamma_{yz} = -\Gamma_{zx}$
B2 (3.10Å)	-38.1	5.9	5.0	-11.1
B1 $(3.05Å)$	-40.0	4.6	7.9	-14.0

Yadav, Ray, Eldeeb, Nishimoto, Hozoi & JvdB, PRL 121, 197203 (2018) Yadav, Eldeeb, Ray, Aswartham, Sturza, Nishimoto, JvdB & Hozoi, Chemical Science 10,1866 (2019)

	honeycoml	b H ₃ LiIr ₂ O ₆
--	-----------	---

		Experime	ntal cryst	al stru	cture	
	Bond	∠Ir-O-Ir	K	J	Γ_{xy}	$\Gamma_{yz} = -\Gamma_{zx}$
	B2 (3.10Å)	99.8°	-12.0	1.8	-0.2	-3.2
Li H	B1 (3.05\AA)	99.0°	-12.6	1.5	-1.8	-0.65
0						
Ir	Rei	move H	from	Ir_O	Ir link	

& smear out the + charge

Bond	K	J	Γ_{xy}	$\Gamma_{yz} = -\Gamma_{zx}$
B2 (3.10Å)	-38.1	5.9	5.0	-11.1
B1 $(3.05Å)$	-40.0	4.6	7.9	-14.0

Yadav, Ray, Eldeeb, Nishimoto, Hozoi & JvdB, PRL 121, 197203 (2018) Yadav, Eldeeb, Ray, Aswartham, Sturza, Nishimoto, JvdB & Hozoi, Chemical Science 10,1866 (2019)

			Experime	ntal crysta	al structure	
	honeycomb H ₃ L11r ₂ O ₆	Bond	∠Ir-O-Ir	K	$J = \Gamma_{xy}$, $\Gamma_{yz} = -\Gamma_{zx}$
		B2 (3.10\AA)	99.8°	-12.0	1.8 -0.	2 -3.2
		B1 $(3.05A)$	99.0	-12.6	1.5 -1.	8 -0.65
		Rer	move H	l from l	lr-O-Ir lii	nks
~		&	smear	out the	e + char	ge
	• •		V	7	<u></u>	
		Bond	K	J	Γ_{xy}	$\Gamma_{yz} \equiv -\Gamma_{zx}$
		B2 (3.10\AA)	-38.1	L 5.9	5.0	-11.1
		B1 (3.05Å)	-40.0) 4.6	7.9	-14.0

• *H polarizes oxygen orbital relevant for superexchange*

• very strong effect of hydrogen disorder - affects QSL?

Yadav, Ray, Eldeeb, Nishimoto, Hozoi & JvdB, PRL 121, 197203 (2018) Yadav, Eldeeb, Ray, Aswartham, Sturza, Nishimoto, JvdB & Hozoi, Chemical Science 10,1866 (2019)

- C₃ symmetry
- Defect structure K_xIr_yO₂
- Magnetic disorder above 2K

Johnson, Broeders, Mehlawat, Li, Singh, Valenti, Coldea arXiv:1908.04584 (2019)

Mehlawat & Singh, arXiv:1908.08475 (2019)

- C₃ symmetry
- Defect structure K_xIr_yO₂
- Magnetic disorder above 2K

Johnson, Broeders, Mehlawat, Li, Singh, Valenti, Coldea arXiv:1908.04584 (2019)

Mehlawat & Singh, arXiv:1908.08475 (2019)

A ₂ IrO ₃	∠Ir-O-Ir	K	J	Γ_{xy}	$\Gamma_{yz} = -\Gamma_{zx}$
$\mathbf{A}=\mathbf{K}$	$95.0^{\circ}(\times 3)$	-6.3	1.3	5.2	-8.9
A = Na	$99.5^{\circ}(\times 1)$ $98.0^{\circ}(\times 2)$	-20.8 -15.6	5.2 <mark>2.2</mark>	$-0.7 \\ -1.1$	$\begin{array}{c} -0.8 \\ 0.8 \end{array}$

Yadav, Nishimoto, Richter Jvdb, Ray, preprint (2019)

- C₃ symmetry
- Defect structure K_xIr_yO₂
- Magnetic disorder above 2K

Johnson, Broeders, Mehlawat, Li, Singh, Valenti, Coldea arXiv:1908.04584 (2019)

Mehlawat & Singh, arXiv:1908.08475 (2019)

	A ₂ IrO ₃	∠Ir-O-Ir	K	J	Γ_{xy}	$\Gamma_{yz} = -\Gamma_{zx}$
($\mathbf{A}=\mathbf{K}$	$95.0^{\circ}(\times 3)$	-6.3	1.3	5.2	-8.9
	A = Na	$99.5^{\circ}(\times 1)$	-20.8	5.2	-0.7	-0.8
		$98.0^{\circ}(\times 2)$	-15.6	2.2	-1.1	0.8

Yadav, Nishimoto, Richter Jvdb, Ray, preprint (2019)

- C₃ symmetry
- Defect structure K_xIr_yO₂
- Magnetic disorder above 2K

Johnson, Broeders, Mehlawat, Li, Singh, Valenti, Coldea arXiv:1908.04584 (2019)

Mehlawat & Singh, arXiv:1908.08475 (2019)

A ₂ IrO ₃	∠Ir-O-Ir	K	J	Γ_{xy}	$\Gamma_{yz} = -\Gamma_{zx}$
$\mathbf{A}=\mathbf{K}$	$95.0^{\circ}(\times 3)$	-6.3	1.3	5.2	-8.9
A = Na	$99.5^{\circ}(\times 1)$	-20.8	5.2	-0.7	-0.8
	$98.0^{\circ}(\times 2)$	-15.6	2.2	-1.1	0.8

• MRCI: large off-diagonal magnetic interactions $\rightarrow C_3$

Yadav, Nishimoto, Richter Jvdb, Ray, preprint (2019)

- C₃ symmetry
- Defect structure K_xIr_yO₂
- Magnetic disorder above 2K

Johnson, Broeders, Mehlawat, Li, Singh, Valenti, Coldea arXiv:1908.04584 (2019)

Mehlawat & Singh, arXiv:1908.08475 (2019)

Electronic & magnetic structure of α-RuCl₃
Quantum chemistry calculations

$$\mathcal{H}_{i,j} = J \tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

Structure	∠Ru-Cl-Ru	K	J	Γ_{xy}	$\Gamma_{zx} = -\Gamma_{yz}$
C2/m [30]	94°	-5.6	1.2	-1.2	-0.7
C2/m [29]					
$Link 1 (\times 2)$	94°	-5.3	1.2	-1.1	-0.7
$\operatorname{Link} 2$ (×1)	93°	-4.8	-0.3	-1.5	-0.7
$P3_112$ [28]	89°	-1.2	-0.5	-1.0	-0.4

Sears, Songvilay, Plumb, Clancy, Qiu, Zhao, Parshall & Y-J Kim, PRB 91, 144420 (2015) Yadav, Bogdanov, Katukuri, Nishimoto, JvdB & Hozoi, Sci. Rep. 6, 37508 (2016)

Quantum chemistry calculations

$$\mathcal{H}_{i,j} = J \tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

Structure	∠Ru-Cl-Ru	K	J	Γ_{xy}	$\Gamma_{zx} = -\Gamma_{yz}$
C2/m [30]	94°	-5.6	1.2	-1.2	-0.7
C2/m [29]					
$\operatorname{Link} 1 (\times 2)$	94°	-5.3	1.2	-1.1	-0.7
$\operatorname{Link} 2$ (×1)	93°	-4.8	-0.3	-1.5	-0.7
$P3_112$ [28]	89°	-1.2	-0.5	-1.0	-0.4

K large FM, J small AFM

|K/J| ~ 5

Winter, Tsirlin, Daghofer, JvdB, Singh, Gegenwart & Valenti, JPCM 29, 493002 (2017) Sears, Songvilay, Plumb, Clancy, Qiu, Zhao, Parshall & Y-J Kim, PRB 91, 144420 (2015) Yadav, Bogdanov, Katukuri, Nishimoto, JvdB & Hozoi, Sci. Rep. 6, 37508 (2016)

Exact diagonalization calculations

$$\mathcal{H}_{i,j} = J \tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

+ longer range Heisenberg J₂ and J₃

Exact diagonalization calculations

$$\mathcal{H}_{i,j} = J \,\tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

+ longer range Heisenberg J₂ and J₃

Local electronic structure of α-RuCl₃

Quantum

chemistry

calculations

$\mathrm{Ru}^{3+} 4d^5$ splittings	CASSCF	CASSCF +SOC	MRCI	MRCI +SOC
${}^{2}T_{2} \left(t_{2g}^{5} ight)$	0 0.066	0 0.193	0 0.067	0 0.195
$^{4}T_{1}(t_{2g}^{4}e_{g}^{1})$	1.08 1.12	0.232 1.25 	1.28 1.30	0.234 1.33
${}^{4}T_{2} (t_{2g}^{4}e_{g}^{1})$	1.13 1.76 1.81	1.37 1.90	1.31 1.97 2.01	1.48 2.09
${}^6\!A_1 (t^3_{2g}e^2_g)$	1.83 1.01	1.98 $1.09 (\times 6)$	2.03 1.51	2.17 1.74 (×6)

 $g_{xx} = g_{yy} = 2.51; g_{zz} = 1.09$

Local electronic structure of α-RuCl₃

Quantum
chemistry
calculations

$\mathrm{Ru}^{3+} 4d^5$	CASSCF	CASSCF	MRCI	MRCI
splittings		+SOC		+SOC
$^{2}T_{2} (t_{2g}^{5})$	0 0.066 0.069	0 0.193 0.232	0 0.067 0.071	$0 \\ 0.195 \\ 0.234$
${}^{4}T_{1} \ (t_{2g}^{4}e_{g}^{1})$	1.08 1.12 1.13	1.25 1.37	$1.28 \\ 1.30 \\ 1.31$	1.33 1.48
${}^{4}T_{2} \left(t_{2g}^{4}e_{g}^{1} ight)$	$1.76 \\ 1.81 \\ 1.83$	1.90 1.98	$1.97 \\ 2.01 \\ 2.03$	$2.09 \\ \\ 2.17$
${}^{6}\!A_1 \ (t_{2g}^3 e_g^2)$	1.01	1.09 (×6)	1.51	1.74 (×6)

 $g_{xx} = g_{yy} = 2.51; g_{zz} = 1.09$

Local electronic structure of α-RuCl₃

2 5				
$\mathrm{Ru}^{3+} 4d^{5}$	CASSCF	CASSCF	MRCI	MRCI
splittings		+SOC		+SOC
$^{2}T_{2} \ (t_{2g}^{5})$	0	0	0	0
	0.066	0.193	0.067	0.195
	0.069	0.232	0.071	0.234
$^{4}T_{1}(t_{2g}^{4}e_{g}^{1})$	1.08	1.25	1.28	1.33
	1.12		1.30	
	1.13	1.37	1.31	1.48
${}^{4}T_{2} \; (t_{2g}^{4} e_{g}^{1})$	1.76	1.90	1.97	2.09
	1.81		2.01	
	1.83	1.98	2.03	2.17
${}^6\!A_1 \ (t_{2g}^3 e_g^2)$	1.01	$1.09(\times 6)$	1.51	$1.74(\times 6)$
	$\frac{\text{splittings}}{^{2}T_{2}} (t_{2g}^{5})$ $^{4}T_{1} (t_{2g}^{4}e_{g}^{1})$ $^{4}T_{2} (t_{2g}^{4}e_{g}^{1})$ $^{6}A_{1} (t_{2g}^{3}e_{g}^{2})$	$\begin{array}{c} \text{splittings} \\ \begin{array}{c} {}^{2}T_{2} \ (t_{2g}^{5}) \\ {}^{2}T_{2} \ (t_{2g}^{5}) \\ {}^{2}T_{2} \ (t_{2g}^{5}) \\ {}^{0} \\ 0.066 \\ 0.069 \\ \end{array} \\ \begin{array}{c} {}^{4}T_{1} \ (t_{2g}^{4}e_{g}^{1}) \\ {}^{1.12} \\ {}^{1.13} \\ \end{array} \\ \begin{array}{c} {}^{4}T_{2} \ (t_{2g}^{4}e_{g}^{1}) \\ {}^{1.13} \\ \end{array} \\ \begin{array}{c} {}^{4}T_{2} \ (t_{2g}^{4}e_{g}^{1}) \\ {}^{1.81} \\ {}^{1.83} \\ \end{array} \\ \begin{array}{c} {}^{6}A_{1} \ (t_{2g}^{3}e_{g}^{2}) \\ \end{array} \\ \begin{array}{c} {}^{6}A_{1} \ (t_{2g}^{3}e_{g}^{2}) \\ \end{array} \\ \begin{array}{c} {}^{1.01} \end{array} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Quantum chemistry calculations

$$\mathcal{H}_{i,j} = J \,\tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

Sears, Songvilay, Plumb, Clancy, Qiu, Zhao, Parshall & Y-J Kim, PRB 91, 144420 (2015) Yadav, Bogdanov, Katukuri, Nishimoto, JvdB & Hozoi, Sci. Rep. 6, 37508 (2016)

Quantum chemistry calculations

$$\mathcal{H}_{i,j} = J \,\tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

Structure	∠Ru-Cl-Ru	K	J	Γ_{xy}	$\Gamma_{zx}=-\Gamma_{yz}$
C2/m [30]	94°	-5.6	1.2	-1.2	-0.7
C2/m [29]					
$Link 1 (\times 2)$	94°	-5.3	1.2	-1.1	-0.7
$\operatorname{Link} 2$ (×1)	93°	-4.8	-0.3	-1.5	-0.7
$P3_112$ [28]	89°	-1.2	-0.5	-1.0	-0.4

Sears, Songvilay, Plumb, Clancy, Qiu, Zhao, Parshall & Y-J Kim, PRB 91, 144420 (2015)

Quantum chemistry calculations

$$\mathcal{H}_{i,j} = J \,\tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

Structure	∠Ru-Cl-Ru	K	J	Γ_{xy}	$\Gamma_{zx} = -\Gamma_{yz}$
C2/m [30]	94°	-5.6	1.2	-1.2	-0.7
C2/m [29]					
Link 1 (×2)	94°	-5.3	1.2	-1.1	-0.7
$\operatorname{Link} 2$ (×1)	93°	-4.8	-0.3	-1.5	-0.7
$P3_112$ [28]	89°	-1.2	-0.5	-1.0	-0.4

K large FM, J small AFM

|K/J| ~ 5

Winter, Tsirlin, Daghofer, JvdB, Singh, Gegenwart & Valenti, JPCM (2018)

1

Sears, Songvilay, Plumb, Clancy, Qiu, Zhao, Parshall & Y-J Kim, PRB 91, 144420 (2015)

Quantum chemistry calculations

$$\mathcal{H}_{i,j} = J \,\tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

Structure	∠Ru-Cl-Ru	K	J	Γ_{xy}	$\Gamma_{zx}=-\Gamma_{yz}$
C2/m [30]	94°	-5.6	1.2	-1.2	-0.7
C2/m [29]					
$Link 1 (\times 2)$	94°	-5.3	1.2	-1.1	-0.7
$\operatorname{Link} 2$ (×1)	93°	-4.8	-0.3	-1.5	-0.7
$P3_112$ [28]	89°	-1.2	-0.5	-1.0	-0.4

K large FM, J small AFM

|K/J| ~ 5

Winter, Tsirlin, Daghofer, JvdB, Singh, Gegenwart & Valenti, JPCM (2018) However INS: KAFM

Banerjee et al., Nat. Mater. 4604 (2016)

Sears, Songvilay, Plumb, Clancy, Qiu, Zhao, Parshall & Y-J Kim, PRB 91, 144420 (2015)

Sears, Songvilay, Plumb, Clancy, Qiu, Zhao, Parshall & Y-J Kim, PRB 91, 144420 (2015) Yadav, Bogdanov, Katukuri, Nishimoto, JvdB & Hozoi, Sci. Rep. 6, 37508 (2016)

Exact diagonalization calculations

$$\mathcal{H}_{i,j} = J \,\tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

+ longer range Heisenberg J₂ and J₃

Exact diagonalization calculations

$$\mathcal{H}_{i,j} = J \tilde{\mathbf{S}}_i \cdot \tilde{\mathbf{S}}_j + K \tilde{S}_i^z \tilde{S}_j^z + \sum_{\alpha \neq \beta} \Gamma_{\alpha\beta} (\tilde{S}_i^\alpha \tilde{S}_j^\beta + \tilde{S}_i^\beta \tilde{S}_j^\alpha)$$

+ longer range Heisenberg J₂ and J

Static spin structure factor S(Q) from ED

Observation of B-induced spin liquid in RuCl₃

gapped spin liquid

Frequency (MHz)

Baek, Do, Choi, Kwon, Wolter, Nishimoto, JvdB & Büchner, PRL 119, 037201 (2017)

Observation of B-induced spin liquid in RuCl₃

gapped spin liquid

Banerjee et al., Quantum Mat. 3, 8 (2018)

Baek, Do, Choi, Kwon, Wolter, Nishimoto, JvdB & Büchner, PRL 119, 037201 (2017)

Based on quantum chemistry & cluster ED:

Based on quantum chemistry & cluster ED:

213 honeycomb iridates: *K* ~ -15 meV (ballpark)

interactions beyond Kitaev

strong bond anisotropies

Based on quantum chemistry & cluster ED:

213 honeycomb iridates: *K* ~ -15 meV (ballpark)

interactions beyond Kitaev strong bond anisotropies

honeycomb H₃LiIr₂O₆ $K \sim -12 \text{ meV}, |K/J| > 6$

very strong effect of H disorder on magnetism

Based on quantum chemistry & cluster ED:

213 honeycomb iridates: *K* ~ -15 meV (ballpark)

interactions beyond Kitaev strong bond anisotropies

honeycomb H₃LiIr₂O₆ $K \sim -12 \text{ meV}, |K/J| > 6$

very strong effect of H disorder on magnetism

honeycomb K₂IrO₃ $K \sim -6 \text{ meV}, |K/J| \sim 5, |K| \sim |\Gamma|$

Based on quantum chemistry & cluster ED:

213 honeycomb iridates: *K* ~ -15 meV (ballpark)

interactions beyond Kitaev strong bond anisotropies

honeycomb H₃LiIr₂O₆ $K \sim -12 \text{ meV}, |K/J| > 6$

very strong effect of H disorder on magnetism

honeycomb K₂IrO₃ $K \sim -6$ meV, $|K/J| \sim 5$, $|K| \sim |\Gamma|$

ruthenium trichloride: $K \sim -5 \text{ meV}, |K/J| \sim 5$

residual interactions weak, anisotropy weak

in-plane field above $B = \sim 8$ T: gapped spin liquid