

FUNCTIONAL RENORMALIZATION GROUP AS AN APPROACH TO FRUSTRATED MAGNETISM

Johannes Reuther Freie Universität Berlin, Helmholtz Zentrum Berlin

Santa Barbara, September 24, 2019

Motivation

We apply the functional renormalization group (FRG) method to spin models of the form

$$H = \sum_{ij} J_{ij} \ \vec{S}_i \vec{S}_j$$

- on 2D and 3D lattices (with sites labeled *i*, *j*)
- frustrated and longer-range interactions J_{ij} possible
- anisotropic interactions $J_{ii}^{xx} \neq J_{ii}^{yy} \neq J_{ii}^{zz}$, $J_{ii}^{xy} \neq 0$, etc. possible (*)
- spin magnitudes S = 1/2, 1, 3/2, ...

\implies Pseudofermion functional renormalization group (PFFRG)

*terms and conditions apply (but relatively few)

Johannes Reuther

Motivation

Why magnetic spin systems?

• Exotic quantum phases

spin liquid

• Interesting spin textures

skyrmion

• Topological properties

fractional quasiparticles

• Material realizations

Herbertsmithite (ZnCu₃(OH)₆Cl₂)

Johannes Reuther

FRG for frustrated magnetisr

Santa Barbara, Sep 24, 2019 3 / 35

Outline

Pseudo fermions

- 2 Functional renormalization group
- 3 Applications and benchmarks: 2D kagome lattice
- 4 Ca₁₀Cr₇O₂₈
- 5 Extensions/Outlook

Pseudo fermions

Pseudo fermions

Introduce two fermionic operators $f_{i\uparrow}$, $f_{i\downarrow}$ for each lattice site *i*. Rewrite:

$$S_i^{\mu} = rac{1}{2} \sum_{lpha,eta} f_{i,lpha}^{\dagger} \sigma_{lphaeta}^{\mu} f_{i,eta}$$

with $\{f_{i\alpha}, f_{i\beta}^{\dagger}\} = \delta_{\alpha\beta}$ and $\sigma^{\mu} =$ Pauli matrices

Enlarged Hilbert space

Basis set $|n_{i\uparrow}, n_{i\downarrow}\rangle$ for one lattice site *i*:

 \implies pseudo fermions come along with an enlarged Hilbert space.

Enlarged Hilbert space

Basis set $|n_{i\uparrow}, n_{i\downarrow}\rangle$ for one lattice site *i*:

 \implies pseudo fermions come along with an enlarged Hilbert space.

Constraint $f_{i\uparrow}^{\dagger}f_{i\uparrow} + f_{i\downarrow}^{\dagger}f_{i\downarrow} = 1$ needs to be fulfilled!

Enlarged Hilbert space

Basis set $|n_{i\uparrow}, n_{i\downarrow}\rangle$ for one lattice site *i*:

 \implies pseudo fermions come along with an enlarged Hilbert space.

Constraint
$$f_{i\uparrow}^{\dagger}f_{i\uparrow} + f_{i\downarrow}^{\dagger}f_{i\downarrow} = 1$$
 needs to be fulfilled!

Convenient way to enforce the constraint: Level repulsion terms: (0,0) (1,1)

$$H \rightarrow H - A \sum_{i} (\mathbf{S}_{i})^{2} = H - A \sum_{i} S_{i}(S_{i}+1)$$

.....

 $|0,1\rangle$ $|1,0\rangle$

$$H = \sum_{ij} J_{ij} \ \vec{S}_i \vec{S}_j \longrightarrow \frac{1}{4} \sum_{\alpha\beta\gamma\delta} \sum_{ij} J_{ij} \left(f^{\dagger}_{i,\alpha} \sigma^{\mu}_{\alpha\beta} f_{i\beta} \right) \left(f^{\dagger}_{j,\gamma} \sigma^{\mu}_{\gamma\delta} f_{j,\delta} \right)$$

Diagrammatics in the fermions:

$$H = \sum_{ij} J_{ij} \ \vec{S}_i \vec{S}_j \longrightarrow \frac{1}{4} \sum_{\alpha \beta \gamma \delta} \sum_{ij} J_{ij} \left(f^{\dagger}_{i,\alpha} \sigma^{\mu}_{\alpha\beta} f_{i\beta} \right) \left(f^{\dagger}_{j,\gamma} \sigma^{\mu}_{\gamma \delta} f_{j,\delta} \right)$$

Diagrammatics in the fermions:

Magnetic susceptibility, spin-spin correlations:

$$H = \sum_{ij} J_{ij} \ \vec{S}_i \vec{S}_j \longrightarrow \frac{1}{4} \sum_{\alpha \beta \gamma \delta} \sum_{ij} J_{ij} \left(f^{\dagger}_{i,\alpha} \sigma^{\mu}_{\alpha\beta} f_{i\beta} \right) \left(f^{\dagger}_{j,\gamma} \sigma^{\mu}_{\gamma \delta} f_{j,\delta} \right)$$

Diagrammatics in the fermions:

Magnetic susceptibility, spin-spin correlations:

$$H = \sum_{ij} J_{ij} \ \vec{S}_i \vec{S}_j \longrightarrow \frac{1}{4} \sum_{\alpha \beta \gamma \delta} \sum_{ij} J_{ij} \left(f^{\dagger}_{i,\alpha} \sigma^{\mu}_{\alpha\beta} f_{i\beta} \right) \left(f^{\dagger}_{j,\gamma} \sigma^{\mu}_{\gamma \delta} f_{j,\delta} \right)$$

Diagrammatics in the fermions:

Magnetic susceptibility, spin-spin correlations:

Since there is no small parameter, self-consistent infinite order diagrammatic summations need to be performed:

Functional renormalization group (FRG)

Introduce infrared frequency cutoff in the propagator:

$$G_0(i\omega) = \frac{1}{i\omega} \longrightarrow G_0^{\Lambda}(i\omega) = \frac{\Theta(|\omega| - \Lambda)}{i\omega} \longrightarrow \int_{-\Lambda}^{+} \int_{0}^{+} \int_{-\Lambda}^{+} \int_{0}^{+} \int_{0}^{$$

Then all vertex functions become Λ -dependent:

$$\Sigma = \longrightarrow \Sigma^{\Lambda}$$
, $\Gamma = \prod {} \longrightarrow \Gamma^{\Lambda}$, $\Gamma_3 = \longrightarrow \Gamma^{\Lambda}_3$

FRG formulates flow equations for all *m*-particle vertex functions:

FRG formulates flow equations for all *m*-particle vertex functions:

FRG formulates flow equations for all *m*-particle vertex functions:

Flow starts with $\bigwedge^{\Lambda \to \infty} \stackrel{\Lambda \to \infty}{\longrightarrow} \sim J$ and ends at $\Lambda = 0$.

Calculate magnetic susceptibility $\frac{\partial M}{\partial B}$: $\chi^{\Lambda}(\mathbf{k}) = \langle \mathbf{k} \rangle$

FRG sums up diagrammatic contributions in infinite order in J.

FRG sums up diagrammatic contributions in infinite order in J.

Here: spin- $\frac{1}{2}$, SU(2) representation

Generalization: spin-S, SU(N) representation

Here: spin- $\frac{1}{2}$, SU(2) representation

Generalization: spin-S, SU(N) representation

• ladder diagrams are the leading contributions in a $\frac{1}{N}$ expansion \implies non-magnetic states (F. L. Buessen et al., PRB 97, 064415 (2018))

Here: spin- $\frac{1}{2}$, SU(2) representation Generalization: spin-S, SU(N) representation

- ladder diagrams are the leading contributions in a $\frac{1}{N}$ expansion \implies non-magnetic states (F. L. Buessen et al., PRB 97, 064415 (2018))
- RPA diagrams are the leading contributions in a $\frac{1}{5}$ expansion \implies magnetic order (M. L. Baez, JR, PRB **96**, 045144 (2017))

Here: spin- $\frac{1}{2}$, SU(2) representation Generalization: spin-S, SU(N) representation

- ladder diagrams are the leading contributions in a $\frac{1}{N}$ expansion \implies non-magnetic states (F. L. Buessen et al., PRB 97, 064415 (2018))
- RPA diagrams are the leading contributions in a $\frac{1}{5}$ expansion \implies magnetic order (M. L. Baez, JR, PRB **96**, 045144 (2017))
- the neglected three-particle vertices are subleading in $\frac{1}{N}$ and $\frac{1}{S}$

Here: spin- $\frac{1}{2}$, SU(2) representation Generalization: spin-S, SU(N) representation

- ladder diagrams are the leading contributions in a $\frac{1}{N}$ expansion \implies non-magnetic states (F. L. Buessen et al., PRB 97, 064415 (2018))
- RPA diagrams are the leading contributions in a $\frac{1}{5}$ expansion \implies magnetic order (M. L. Baez, JR, PRB **96**, 045144 (2017))
- the neglected three-particle vertices are subleading in $\frac{1}{N}$ and $\frac{1}{S}$

Order and disorder tendencies are equally included in the one-loop FRG

FRG equations are solved in real space with the full frequency dependence of the vertex functions. System sizes of \sim 2000 lattice sites are possible.

Applications and benchmarks: 2D kagome lattice

temperature T = 0

non-magnetic ground state!

- R. Suttner, JR, et al., PRB 89, 020408 (2014)
- M. Hering, JR, PRB 95, 054418 (2017)

temperature T = 0

non-magnetic ground state!

R. Suttner, JR, et al., PRB 89, 020408 (2014)
M. Hering, JR, PRB 95, 054418 (2017)

Comparison: DMRG

S. Depenbrock et al., PRL **109**, 067201 (2012)

Phase transition at $D/J_1 = 0.11 \dots 0.12$

Comparison with ED: $D/J_1 \approx 0.1$ (O. Cepas, et al., PRB **78**, 140405(R) (2008))

$Ca_{10}Cr_7O_{28}$

 $Ca_{10}Cr_7O_{28}$ consists of stacked spin-1/2 bilayer Kagome planes:

C. Balz, B. Lake, JR et al., Nature Physics (2016)

 $Ca_{10}Cr_7O_{28}$ consists of stacked spin-1/2 bilayer Kagome planes:

Moun spin relaxation measurements rule out static magnetic order down to 19mK:

Nature Physics (2016)

$Ca_{10}Cr_7O_{28}$

Insights from inelastic neutron scattering:

Inelastic neutron scattering finds very broad (spinon-like) spin excitations with ring-shaped features in momentum space.

Determination of exchange couplings J: Spin waves have been measured by neutron scattering in a magnetic field and fitted to spin wave theory.

Result: Each Kagome layer consists of ferromagnetic and antiferromagnetic nearest neighbor couplings.

— ferro — antiferro

Top layer: $J_{FM} = -0.27 meV$, $J_{AF} = 0.09 meV$ Bottom layer: $J_{FM} = -0.76 meV$, $J_{AF} = 0.11 meV$

Determination of exchange couplings J: Spin waves have been measured by neutron scattering in a magnetic field and fitted to spin wave theory.

Result: Each Kagome layer consists of ferromagnetic and antiferromagnetic nearest neighbor couplings.

ferroantiferro

Top layer: $J_{FM} = -0.27 meV$, $J_{AF} = 0.09 meV$ Bottom layer: $J_{FM} = -0.76 meV$, $J_{AF} = 0.11 meV$

 \implies effective spin-3/2 system would form 120°-Néel order!?

Where does the frustration come from?

- FM triangles lie on top of AF triangles
- FM coupling of $J_{\perp} = -0.08 meV$ between the layers

 \implies Very strong frustration mechanism!

$Ca_{10}Cr_7O_{28}$: Previous theory works

- C. Balz, B. Lake, JR et al., Nature Physics **12**, 942 (2016) Experiment + theory (functional renormalization)
- R. Pohle, H. Yan, and N. Shannon, arXiv:1711.03778 MD simulations, spin-3/2 honeycomb mapping

- S. Biswas and K. Damle, Phys. Rev. B **97**, 115102 (2018) Semiclassical analysis, spin-3/2 honeycomb mapping
- A. Kshetrimayum, C. Balz, B. Lake, and J. Eisert, arXiv:1904.00028 Tensor network approach

Comparison of neutron scattering versus FRG:

120°-Néel order is destroyed, yielding broad rings in momentum space.

25 / 35

-0.5

[h, h, 0]

0.0

0.5

Comparison of neutron scattering versus FRG:

120°-Néel order is destroyed, yielding broad rings in momentum space.

Flowing FRG-susceptibility is smooth showing no indication of a magnetic instability:

Johannes Reuther

-1.0

0.5

0.0

-1.5

Origin of ring-like response

Mapping onto spin-3/2 honeycomb Heisenberg model with FM J_1 and AFM J_2

$$J_2/J_1\approx-3.1,\ldots,-0.6$$

R. Pohle, H. Yan, and N. Shannon, arXiv:1711.03778

Johannes Reuther

Varying the exchange couplings

Remarkable stability of the SL phase, asymmetric interactions important!

Johannes Reuther

 Possible nature of spin liquid in Ca₁₀Cr₇O₂₈? Almost perfect linear heat capacity below 0.5 K! Spinon Fermi surface?
 Spinon band structure

J. Sonnenschein, C. Balz, B. Lake, JR et al. arXiv:1905.06761 (2019)

Determine spinon bands directly from PFFRG:

M. Hering, J. Sonnenschein, Y. Iqbal, and JR, Phys. Rev. B 99, 100405(R) (2019)

Johannes Reuther

FRG for frustrated magnetis

• 3D systems: Example: nn pyrochlore Heisenberg antiferromagnet $H = J_1 \sum_{ij} \vec{S}_i \vec{S}_j$ (Y. lqbal, JR, H. O. Jeschke, et al., PRX 9, 011005 (2019))

• higher-loop PFFRG:

Two-loop already implemented (M. Rück and JR, PRB 97, 144404 (2018)).

• higher-loop PFFRG:

Two-loop already implemented (M. Rück and JR, PRB 97, 144404 (2018)).

• Majorana PFFRG (\longrightarrow Kitaev models, in progress)

Conclusion

Conclusion

PFFRG allows to investigate a large class of spin systems (Heisenberg, Dzyaloshinskii-Moriya, Γ, Kitaev, XXZ, long-range J).
 2D and 3D lattices.
 Large systems with ~ 2000 sites.
 Higher spins S > 1/2 possible.

Conclusion

Collaborators

Theory:

- M. Hering (Berlin)
- J. Sonnenschein (Berlin)
- M. Lützner (Berlin)
- V. Noculak (Berlin)
- M. L. Baez (Berlin)
- M. Rößner (Berlin)
- N. Niggemann (Berlin)
- E. Seabrook (Berlin)
- P. Koll (Berlin)
- N. Beck (Berlin)
- M. Nissen (Berlin)

Theory:

- S. Trebst (Cologne)
- F. L. Buessen (Cologne)
- Y. Iqbal (Chennai)
- R. Thomale (Würzburg)
- H. O. Jeschke (Okayama)
- B. Sbirski (Berkeley)
- S. Rachel (Melbourne)
- M. Gingras (Waterloo)

Experiment:

- B. Lake (Berlin)
- S. Chillal (Berlin)
- S. Nagler (Oakridge)
- C. Balz (Oakridge)

Thank you for your attention!

