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A d-dim GLS is a group of transformations !
that leave the theory invariant such that the minimum non!
empty set of fields that are changed under the symmetry!

operation occupies a d-dim region

Effective dimensional reduction-Symmetries

Given a D-dim theory:

d=0 (Gauge) d < D (Gauge-Like) d=D (Global)

d ≤ D

GdGroup:
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Intuitive Physical Picture
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Associated
with the symmetry, a

 soliton has
only a local energy

 cost for constrained 
motion 

along one direction.

Orbital Compass Model
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Symmetries
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Oµ|g�� = |g⇥�

d-GLSs and Topological Phases
There is a connection between Topological Phases and the 

group generators of d-GLSs and its Topological defects

Topological defect:
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Symmetries are linking operators:
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Lower dimensional bounds

The absolute value of the average of any quasi-local %
quantity      which is not invariant under d-GLS        is 
bounded from above by the absolute value of the %
mean of the same quantity when this quasi-local %
quantity is computed with a d-dim             that is %
globally invariant under         and preserves the range %
of the interactions in the original D-dim system

Gdf

Hd
Gd

HDD-dim system with Hamiltonian Gdand d-GLS group 

Dimensional reduction

|⇥f(⇥i)⇤HD | � |⇥f(�i)⇤Hd |�i
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To Break or not to Break

From the Generalized Elitzur’s Theorem:

d=0  SSB is forbidden

Can we spontaneously break a d-GLS in a D-dim system ?

For non-       -invariant quantitiesGd

(finite-range int.)

d=1  SSB is forbidden

d=2  (continuous) SSB is forbidden
d=2  (discrete) SSB may be broken

d=2  (continuous with a gap) SSB is forbidden %
                      even at T=0

Transitions and crossovers are signaled by %
symmetry-invariant string/brane or Wilson-like loops9



Example of application

Orbital Compass Model

Rotation by π 
around the y-axis

Lowest order allowed order parameter:
Nematic
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Physical Consequences
For a D-dim system, d < D GLSs lead to %

dimensional reduction

Conservation Laws within d-dim regions: %
Additional conserved currents

Topological terms that appear in d+1 also appear in D+1

Freely propagating d-dim topological defects

d=1 soliton in the D=2 orbital compass model
(Finite Energy cost)
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Elasticity in space-time 
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Elasticity in space-time 

Glide constraint on dislocation motion
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Exact dimensional reduction- dualities 
 The “X-cube model” and some of its generalizations are dual 
to classical Ising chains. (The same applies to the Toric Code.) 

4. General Elements of the X-Cube Model and its Partition Func-
tion

In this Section, we first briefly review the Hamiltonian of the X-Cube
model as introduced by Vijay, Haah, and Fu [22, 23]. We will then turn to
our main objective of analyzing the system at finite temperatures. Towards
that end, we will then formally write down its partition function invoking
the well known high temperature series expansion.
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Figure 1: Left: A simple 1⇥ 1⇥ 1 cube c. The qubits associated with its A
c

operator are
marked as red bullets. Right: A vertex v and its surrounding qubits, labeled to designate
the qubits associated with each B

µ

v

operator in equation (2).

X-Cube Model — Consider an L ⇥ L ⇥ L cubic lattice, with qubits (or
spin-1

2
’s) located at each edge n of the lattice (see figure 1). The total number

of qubits N in this lattice depends on the choice of boundary conditions, as
will be discussed in their respective sections. Each qubit is associated with a
two-dimensional Hilbert space Hn = C2. The total state space of the system
is then given by

NN
n=1 Hn with dimension 2N .

For each elementary cube c of the lattice, we define the operator Ac by:

Ac ⌘
Y

n2@c

�x
n, (1)

where �x
n is the x-Pauli operator acting on Hn. Ac is therefore a product of

twelve x-Pauli operators, each associated with a qubit on one of the twelve
edges of the simple cube shown in figure 1a.
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In addition, for each vertex v of the lattice, label the six surrounding
qubits as i, j, k, `, m, and n, as in figure 1b. The operators Bµ

v , µ 2 {x, y, z},
are then the four link “stars” defined by:

Bx
v ⌘ �z

j�
z
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z
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z
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z
n�

z
k�

z
m, Bz

v ⌘ �z
i �

z
j�

z
k�

z
` . (2)

Each Bµ
v is the product of the four z-Pauli operators surrounding v forming

a plane perpendicular to the direction µ. From (2), it is quickly seen that:

Bx
vB

y
vB

z
v = 1. (3)

Alternatively, using (�z
n)

2 = 1, this can be written as:

Bx
vB

y
v = Bz

v , Bx
vB

z
v = By

v , By
vB

z
v = Bx

v . (4)

First note that each of the operators Ac and Bµ
v commute. If the vertex

v is not a vertex of the simple cube c, then Ac and Bµ
v act on no common

qubits and therefore must commute. If v is a vertex of c, then Ac and Bµ
v

act on two common qubits. Since �x
n and �z

n anticommute, �x
n�

x
m and �z

n�
z
m

will commute, and therefore:

[Ac, B
µ
v ] = 0, 8 c, v, µ. (5)

It is also trivially verified that Ac and Bµ
v are Hermitian operators with

eigenvalues ±1, and that (Ac)2 = (Bµ
v )

2 = 1.
The X-Cube model is defined by the stabilizer Hamiltonian [22, 23]:

H = �a
X

c

Ac � b
X

µ,v

Bµ
v , (6)

where a > 0 and b > 0 are constant parameters. The first sum is performed
over all L3 simple cubes of the lattice, while the second sum is performed
over each vertex v and each of the three cardinal directions µ. The particular
vertices to be included in the sum will depend on the choice of boundary
conditions.

Symmetries — Hamiltonian (6) is host to several symmetries. H is
considered invariant under the symmetry transformation | i ! U | i if
U †HU = H. For instance, because each Ac and Bµ

v commutes, H is in-
variant under the local (gauge) symmetries defined by U = Ac or U = Bµ

v

for any Ac or Bµ
v . In addition, let Uµ

i =
Q

n2P̄µ

i

�y
n be the product of �y

n for
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X-cube model = Ising chains

 A “bond algebraic duality”:



The “X-cube model” and some of its generalizations are dual 
to classical Ising chains. (The same applies to the Toric Code.) 
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Figure 5: Under open boundary conditions, each set of three B

µ
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operators at a vertex v

are dual to two coupled Ising spins under a magnetic field, which are in turn dual to a
periodic Ising chain of three Ising spins.

This expression is easily summed directly to yield

ZOpen = 2N̄(2Ca)
L3

(e3�b + 3e��b)(L�1)3 . (23)

The value of N̄ is then determined to be 12L2 � 3L + 2 by taking the infi-
nite temperature (� ! 0) limit and demanding that ZOpen is equal to the
dimension of the total state space in this limit. Equation (23) is then quickly
verified to agree with (17) and therefore its free energy with (20). This fac-
tor of 2N̄ indicates that the two dual models have the same spectra, but
degeneracies at each energy level that di↵er by a global factor of 2N̄ .

We also note that the mapping (21) could also have been accomplished
by mapping each Bµ

v to the classical spins (see figure 5):

Bx
v ! sn1s

n
2 , By

v ! sn2s
n
3 , Bz

v ! sn3s
n
1 . (24)

These mappings and the corresponding partition function calculations show
that (6) under open boundary conditions is dual to the classical Hamiltonian
of a single open Ising chain of length L3+1 with bond variables rm and (L�1)3

two-site Ising chains under a magnetic field (or equivalently, (L�1)3 periodic
three-site Ising chains).
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n2@c

�x
n, (1)

where �x
n is the x-Pauli operator acting on Hn. Ac is therefore a product of

twelve x-Pauli operators, each associated with a qubit on one of the twelve
edges of the simple cube shown in figure 1a.
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In addition, for each vertex v of the lattice, label the six surrounding
qubits as i, j, k, `, m, and n, as in figure 1b. The operators Bµ

v , µ 2 {x, y, z},
are then the four link “stars” defined by:

Bx
v ⌘ �z

j�
z
n�

z
`�

z
m, By

v ⌘ �z
i �

z
n�

z
k�

z
m, Bz

v ⌘ �z
i �

z
j�

z
k�

z
` . (2)

Each Bµ
v is the product of the four z-Pauli operators surrounding v forming

a plane perpendicular to the direction µ. From (2), it is quickly seen that:

Bx
vB

y
vB

z
v = 1. (3)

Alternatively, using (�z
n)

2 = 1, this can be written as:

Bx
vB

y
v = Bz

v , Bx
vB

z
v = By

v , By
vB

z
v = Bx

v . (4)

First note that each of the operators Ac and Bµ
v commute. If the vertex

v is not a vertex of the simple cube c, then Ac and Bµ
v act on no common

qubits and therefore must commute. If v is a vertex of c, then Ac and Bµ
v

act on two common qubits. Since �x
n and �z

n anticommute, �x
n�

x
m and �z

n�
z
m

will commute, and therefore:

[Ac, B
µ
v ] = 0, 8 c, v, µ. (5)

It is also trivially verified that Ac and Bµ
v are Hermitian operators with

eigenvalues ±1, and that (Ac)2 = (Bµ
v )

2 = 1.
The X-Cube model is defined by the stabilizer Hamiltonian [22, 23]:

H = �a
X

c

Ac � b
X

µ,v

Bµ
v , (6)

where a > 0 and b > 0 are constant parameters. The first sum is performed
over all L3 simple cubes of the lattice, while the second sum is performed
over each vertex v and each of the three cardinal directions µ. The particular
vertices to be included in the sum will depend on the choice of boundary
conditions.

Symmetries — Hamiltonian (6) is host to several symmetries. H is
considered invariant under the symmetry transformation | i ! U | i if
U †HU = H. For instance, because each Ac and Bµ

v commutes, H is in-
variant under the local (gauge) symmetries defined by U = Ac or U = Bµ

v

for any Ac or Bµ
v . In addition, let Uµ

i =
Q

n2P̄µ

i

�y
n be the product of �y

n for

9

ZOpen = 2

3L3+6L2+3L
(cosh�a)L

3

[(cosh�b)3 + (sinh�b)3](L�1)3

https://arxiv.org/pdf/1812.04561.pdf



Duality mappings: Non-local

HK = −

∑

s

As −

∑

p

Bp

As =

∏

ij∈star(s)

σ
x
ij

Bp =

∏

ij∈boundary(p)

σ
z
ij

Kitaev’s toric code model:

Wen’s plaquette model:2 Ising chains:

HI = −

∑

s

σ
z
sσ

z
s+1 −

∑

p

σ
z
pσ

z
p+1

HW = −

∑

i

σ
x
i σ

y
i+êx

σ
x
i+êx+êy

σ
y
i+êy

(Identical spectra)

18

Other dualities to Ising chains

PNAS 106, 16944 (2009), Annals of Physics 324, 977 (2009)  
(on arXiv in 2006 and 2007: https://arxiv.org/pdf/cond-mat/0702377, https://arxiv.org/pdf/cond-mat/0605316.pdf)  
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2

Model D d Dual Model Universality Class

2D Toric Code [6, 14] 2 1 Two decoupled 1D Ising chains 1D Ising

2D Honeycomb Toric Code [18, 31] 2 1 Two decoupled 1D Ising chains 1D Ising

Color Codes [18, 32] 2 1 Two decoupled 1D Ising chains 1D Ising

3D Toric Code [14, 33] 3 0, 1 Decoupled 1D Ising and 3D Ising models 3D Ising

X-Cube* [8, 34] 3 1, 2 Decoupled L 1D Ising and L� 1 1D Ising-gauge 1D Ising

Haah’s Code** [12, 13, 30] 3 2 Two decoupled 1D Ising chains 1D Ising

4D Toric Code [7, 35] 4 2 Two decoupled 4D Ising models 4D Ising

Chamon’s XXYYZZ [18, 27, 36] 3 1 Four decoupled 1D Ising chains 1D Ising

TABLE I: Universality classes of stabilizer code Hamiltonians. D is the spatial dimension of the lattice model. d is the dimension
of the gauge-like symmetries. Dualities are defined as equivalence relations between partition functions: the 3DTC, for example,
has a partition function proportional to the product of a 1D Ising and a 3D Ising partition function. While Chamon’s XXYYZZ
model is not an stabilizer code, it can also be shown by duality to exhibit dimensional reduction. Additionally, while all listed
models above are constructed using Pauli operators, very similar results may be obtained for non-Pauli models, such as those
with Zp clock operators or U(1) operators. *: While the X-Cube model’s universality class does not depend on any choice of
boundary conditions, the particular duality chosen holds for the case of cylindrical boundary conditions. **: The duality given
below for Haah’s code holds explicitly for those values of L for which the Ground State Degeneracy (GSD) is 4.

Next, we define the operators Ar and Bs as:

Ar ⌘
Y

n2N
r

�x
n, 1  r  R,

Bs ⌘
Y

n2N
s

�z
n, 1  s  S,

(1)

where Nr and Ns are indexing sets used to generate R
operators Ar and S operators Bs respectively. We further
require that each Ar and Bs commute. The Hamiltonian
for this generic stabilizer model reads

H = �a
R
X

r=1

Ar � b
S
X

s=1

Bs. (2)

All operators in (2) commute and square to the identity
1. The partition function is then given by the following
high-temperature (� = 1/(kBT )) series expansion:

Z = Tr e��H = Tr

"

R
Y

r=1

(1Ca +ArSa)
S
Y

s=1

(1Cb +BsSb)

#

= 2NCR
a C

S
b TaTb.

(3)

Here, Ca ⌘ cosh(�a), Sa ⌘ sinh(�a), and Ta ⌘ tanh(�a),
with Cb, Sb, and Tb similarly defined. In the above, Ta
(and analogously Tb) are given by

R
Y

r=1

[1+ArTa] = Ta1+ t.t. ,with Ta =
X

P2A
T|P |
a . (4)

P 2 A (B) denotes operators Ar (Bs) multiplying to 1,

Y

`2P

A` = 1 8P 2 A. (5)

Each P corresponds to a constraint on the stabilizer al-
gebra. The only terms contributing to the trace in (3)
are those proportional to the identity (2N = Tr[1]). The
traceless terms (t.t.) in (4) and those corresponding to Tb
cannot combine to yield the identity – by construction in
(1), there are no nontrivial constraints between Ar and
Bs operators. We have thus reduced the problem of solv-
ing each model’s partition function to identifying which
and how many constraints exist among Ar or Bs oper-
ators separately. From the partition function, we may
then compute the thermodynamic free energy density,

f(�) = lim
L!1

�1

�LD
logZ. (6)

This means of describing the thermodynamics of spin
models is particularly e↵ective for stabilizer Hamiltoni-
ans. The algebra of a stabilizer Hamiltonian has three
important properties: (i) each element of the stabilizer
commutes with one another; (ii) each element of the sta-
bilizer is usually composed of either entirely �x or �z

operators (these stabilizer codes are known as CSS codes
[29], and most stabilizer code Hamiltonians fall into this
category); (iii) each element has eigenvalues ±1. This
implies that the stabilizer algebras that we investigate
factor into two classical Ising algebras. As a result, these
stabilizer Hamiltonians are dual [25–27] to classical Ising-
like Hamiltonians using bond-algebraic dualities [27].
4D Toric Code – As befits its name, the 4DTC [7]

is defined on a D = 4 dimensional lattice. Qubits are
associated with all (6L4) plaquettes p. For each link `,
the operator A` is defined by

A` ⌘
Y

`2@p

�x
p , (7)

where the above product is over the six plaquettes whose
boundary contains the link `. The operator Bc is defined

!
https://arxiv.org/pdf/1907.04180.pdf
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Dependence of degeneracy of classical systems 
on topology 

7

relative to the original lattice (Fig. 2). The spins are
located at the vertices of the rotated square lattice ⇤

0
.

In order to describe the symmetries and constraints of
this system, let us denote the two (standard) sublattices
of the square lattice ⇤

0
by ⇤±. That is, both ⇤+ and ⇤�

are, on their own, square lattices with ⇤
0
= ⇤+[⇤� and

⇤+ \⇤� = ;. Let us furthermore denote the sites of ⇤±
by ı±, respectively.

With these preliminaries, it is trivial to verify that

T x
+ =

Y

ı+2⇤+

�x
ı+ ,

T x
� =

Y

ı�2⇤�

�x
ı� , (21)

are, universally, both symmetries of the classical (µ =
⌫ = z) version of the Hamiltonian of Eq. (6). Most
square lattices (those of Type I in Eq. (20)) will only
exhibit the two symmetries of Eq. (21). The more com-
mensurate Type II lattices admit diagonal contours (con-
necting nearest neighbors of sites ı of ⇤

0
) that close on

themselves before threading all of the lattice sites of ⇤
0
.

That is, in Type II lattices, it is possible to find diagonal
loops �m at a constant 45� angle (or a more non-trivial
alternating contour) that contain only a subset of all sites
of ⇤

0
(or, equivalently, a subset of all edges (ij) of the

original square lattice ⇤). Associated with each such in-
dependent contour �m, there is a symmetry operator,

T x
m =

Y

ı2�
m

�x
ı , (22)

augmenting the symmetries of Eq. (21).
The form of the symmetries suggests the distinction

between Type I and Type II lattices on general surfaces.
On Type II lattices, it is possible to find, at least, one
diagonal contour �m that contains a subset of all edges
(ij) of the lattice ⇤. Conversely, due to the lack of the
requisite lattice commensurability, on Type I lattices, it
is impossible to find any such contour.

We now turn to the constraints associated with Type
I and II lattices. These are in one-to-one correspondence
with the symmetries of Eqs. (21) and (22). Specifically
for Type I lattices, the only universal constraints present
are those of Eq. (12) which we rewrite again for clarity,

C+ :
Y

s

Az
s = 1,

C� :
Y

p

Bz
p = 1. (23)

These two constraints match the two symmetries of Eq.
(21). In the case of the more commensurate lattices ⇤,
additional constraints appear. In order to underscore
the similarities to the symmetries of Eq. (22), we will
now aim to briefly use the same notation concerning the
lattice ⇤

0
. Within the framework highlighted in earlier

sections, the spin products {Az
s} and {Bz

p} of Eq. (7)

are associated with geometrical objects that look quite
di↵erent (i.e., “stars” and “plaquettes”), see Fig. 1. If
we now label the plaquettes of ⇤

0
by P then, we may, of

course, trivially express Eq. (6) as a sum of local terms,

H = �J
X

P
WP � J 0

X

P0

WP0 , (24)

where WP =
Q

ı2P �z
ı are the products of all Ising spins

at sites ı belonging to plaquette P. This trivial descrip-
tion renders the original star and plaquette terms of Eq.
(6) on a more symmetric footing, see Fig. 2.

Associated with each of the symmetries of Eq. (22)
there is a corresponding constraint,

Cm :
Y

ı2�
m

Wm = 1. (25)

In accordance with our earlier maxim, insofar as count-
ing is concerned, we have the following correspondence
between the symmetries and the associated constraints,

8
><

>:

T x
+ $ C+,

T x
� $ C�,

T x
m $ Cm.

(26)

In Type I systems, wherein only the C⇤
g = 2 universal

constraints appear, the degeneracy of the spectrum is
exactly 4g. In Type II lattices, C⇤

g > 2 (with the dif-
ference of (C⇤

g � 2) equal to the number of additional
independent contours �m that do not contain all edges
of the original lattice ⇤) and, as Eq. (14) dictates, the
ground state degeneracy exceeds the minimal value of 4g

multiplied by two raised to the power of the number of
the additional independent loops.

1 2

3 4 3

5 6
7 8
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7

1

3 45

6 8

2

7
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), ),)-
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FIG. 3. A square lattice with 8 spins along with its embed-
ding on a torus. Because of periodic boundary conditions,
spins on boundary edges (dashed-blue) display numbers iden-
tical to those in the bulk. In this figure A

s

= Az

s

and B
p

= Bz

p

.
In the right panel, each edge has been labeled according to
the left panel, and the solid red squares represent the vertices
labeled by A

s

. Since B3 and B4 are respectively behind B1

and B2, we cannot see them here.
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relative to the original lattice (Fig. 2). The spins are
located at the vertices of the rotated square lattice ⇤

0
.

In order to describe the symmetries and constraints of
this system, let us denote the two (standard) sublattices
of the square lattice ⇤

0
by ⇤±. That is, both ⇤+ and ⇤�

are, on their own, square lattices with ⇤
0
= ⇤+[⇤� and

⇤+ \⇤� = ;. Let us furthermore denote the sites of ⇤±
by ı±, respectively.

With these preliminaries, it is trivial to verify that

T x
+ =

Y

ı+2⇤+

�x
ı+ ,

T x
� =

Y

ı�2⇤�

�x
ı� , (21)

are, universally, both symmetries of the classical (µ =
⌫ = z) version of the Hamiltonian of Eq. (6). Most
square lattices (those of Type I in Eq. (20)) will only
exhibit the two symmetries of Eq. (21). The more com-
mensurate Type II lattices admit diagonal contours (con-
necting nearest neighbors of sites ı of ⇤

0
) that close on

themselves before threading all of the lattice sites of ⇤
0
.

That is, in Type II lattices, it is possible to find diagonal
loops �m at a constant 45� angle (or a more non-trivial
alternating contour) that contain only a subset of all sites
of ⇤

0
(or, equivalently, a subset of all edges (ij) of the

original square lattice ⇤). Associated with each such in-
dependent contour �m, there is a symmetry operator,

T x
m =

Y

ı2�
m

�x
ı , (22)

augmenting the symmetries of Eq. (21).
The form of the symmetries suggests the distinction

between Type I and Type II lattices on general surfaces.
On Type II lattices, it is possible to find, at least, one
diagonal contour �m that contains a subset of all edges
(ij) of the lattice ⇤. Conversely, due to the lack of the
requisite lattice commensurability, on Type I lattices, it
is impossible to find any such contour.

We now turn to the constraints associated with Type
I and II lattices. These are in one-to-one correspondence
with the symmetries of Eqs. (21) and (22). Specifically
for Type I lattices, the only universal constraints present
are those of Eq. (12) which we rewrite again for clarity,

C+ :
Y

s

Az
s = 1,

C� :
Y

p

Bz
p = 1. (23)

These two constraints match the two symmetries of Eq.
(21). In the case of the more commensurate lattices ⇤,
additional constraints appear. In order to underscore
the similarities to the symmetries of Eq. (22), we will
now aim to briefly use the same notation concerning the
lattice ⇤

0
. Within the framework highlighted in earlier

sections, the spin products {Az
s} and {Bz

p} of Eq. (7)

are associated with geometrical objects that look quite
di↵erent (i.e., “stars” and “plaquettes”), see Fig. 1. If
we now label the plaquettes of ⇤

0
by P then, we may, of

course, trivially express Eq. (6) as a sum of local terms,

H = �J
X

P
WP � J 0

X

P0

WP0 , (24)

where WP =
Q

ı2P �z
ı are the products of all Ising spins

at sites ı belonging to plaquette P. This trivial descrip-
tion renders the original star and plaquette terms of Eq.
(6) on a more symmetric footing, see Fig. 2.

Associated with each of the symmetries of Eq. (22)
there is a corresponding constraint,

Cm :
Y

ı2�
m

Wm = 1. (25)

In accordance with our earlier maxim, insofar as count-
ing is concerned, we have the following correspondence
between the symmetries and the associated constraints,
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>:

T x
+ $ C+,

T x
� $ C�,

T x
m $ Cm.

(26)

In Type I systems, wherein only the C⇤
g = 2 universal

constraints appear, the degeneracy of the spectrum is
exactly 4g. In Type II lattices, C⇤

g > 2 (with the dif-
ference of (C⇤

g � 2) equal to the number of additional
independent contours �m that do not contain all edges
of the original lattice ⇤) and, as Eq. (14) dictates, the
ground state degeneracy exceeds the minimal value of 4g

multiplied by two raised to the power of the number of
the additional independent loops.
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FIG. 3. A square lattice with 8 spins along with its embed-
ding on a torus. Because of periodic boundary conditions,
spins on boundary edges (dashed-blue) display numbers iden-
tical to those in the bulk. In this figure A

s

= Az
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and B
p

= Bz
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.
In the right panel, each edge has been labeled according to
the left panel, and the solid red squares represent the vertices
labeled by A

s

. Since B3 and B4 are respectively behind B1

and B2, we cannot see them here.
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of its excitations is linked to the entanglement properties
of those ground states [35, 36]. As mentioned above, the
model can be trivially related, by duality, to two decou-
pled classical Ising chains so that in the dual language
the mapped ground states are unentangled [35, 36].

For a Riemann surface of genus g, we may write down
trivial extensions of Eqs. (16) for the (2g) cycles circum-
navigating the g handles of that surface. That is, instead
of the four operators of Eq. (16), we may construct 2g
operators pairs with each of these pairs associated with
a particular handle h (where 1  h  g), containing the
four operators {Zq

�,h} and {Xq
�,h} with � = 1, 2. A gen-

eralization of Eqs. (17) leads to an algebra amongst the
2g independent pairs of symmetry operators. The multi-
plicity of independent symmetries leads to the first factor
in Eq. (14). The number of constraints is, in the quan-
tum case, lattice independent and given by C⇤

g�1 = 2
(there are no constraints beyond those in Eq. (12)). It is
rather straightforward to establish that when g = 0 (i.e.,
for topologically trivial surfaces), the ground state of the
quantum model is unique. Putting all of these pieces
together, the well known degeneracy of Eq. (2) follows.

IV. GROUND STATES OF THE CLASSICAL
TORIC CODE MODEL

We now finally turn to the examination of the ground
states of the classical rendering of Eq. (6) in which only
a single component µ = ⌫ = z of all spins appears. We
will explain how the degeneracy of Eqs. (13) and (14)

emerges. The upshot of our analysis, already implicitly
alluded to above, consists of two main results:

• In the most frequent lattice realization of this clas-
sical model, its degeneracy will still be given by Eq. (2),
i.e., 4g. That is, in the most common of geometries, the
number of ground states will depend on topology alone
(i.e., the genus number g of the embedding manifold).
For arbitrary square lattice or graph, as our considera-
tions universally mandate, the minimal possible ground
state degeneracy will be given by the topological figure
of merit of Eq. (2).

• In the remaining lattice realizations, the degeneracy

of the system will typically be holographic. That is, in
these slightly rarer lattices, the ground state degeneracy
will scale as O(2L) where L is the length of one of the
sides of the two-dimensional lattice.

As will be seen, for the square lattice, depending on
the parity of the length of the lattice sides, the num-
ber of constraints C⇤

g may exceed its typical value of
two. This will then lead to an enhanced degeneracy
vis a vis the minimal possible value of 4g. In the next
subsection we first broadly sketch the constraints and
symmetries of the classical system. As it will be conve-
nient to formulate our main result via the “correspon-
dence maxim”, we will then proceed to explicitly relate

the constraints and symmetries to one another. The
symmetry $ constraint consonance, along with Eqs.
(13) and (14), will then rationalize all of the degeneracies
found for general square lattices embedded on Riemann
surfaces of arbitrary genus number. Exhaustive calcula-
tions for these degeneracies will then be reported in the
subsections that follow.

A. Symmetries and constraints

We next list the general symmetries and constraints
of the classical Toric Code model in square lattices of
varying sizes. Consider first a lattice ⇤ of size Lx⇥Ly on
a torus (i.e., having V = LxLy vertices and E = 2LxLy

edges). We will then examine more general lattices of
arbitrary genus g. The square lattice on the torus will
be categorized as being one of two types:

8
><

>:

Type I, Lx 6= Ly where at least

one of Lx or Ly is odd

Type II, otherwise.

(20)

Type I lattices, as defined for the g = 1 case above
and their generalizations for higher genus numbers g > 1,
only admit two constraints C⇤

g and thus by the correspon-
dence maxim only two symmetries. For these lattices, we
will show that the ground state degeneracy is 4g. By con-
trast, Type II lattices have a larger wealth of constraints,
C⇤

g > 2, and therefore a larger number of symmetries and
a degeneracy higher than 4g.

x x x

WP

WP 0

~�ı+

~�ı�

2 ⇤+ 2 ⇤�

FIG. 2. Dotted lines represent the rotated lattice ⇤0. The
spin degrees of freedom ~� reside on the vertices of the rotated
bipartite lattice ⇤0, formed out of two sublattices ⇤+ and ⇤�.

The centers of all nearest neighbor edges on the square
lattice (of lattice constant a) form yet another square
lattice ⇤

0
(of lattice constant a/

p
2) at an angle of 45�

5

original variables – the spins on each of the E edges –
{�µ

ij} to new basic degrees of freedom – all Nind. bonds

independent “bonds” {Aµ
s 6=s0}, {B⌫

p 6=p0} that appear in
the Hamiltonian and Nredundant = (E � Nind. bonds) re-
maining redundant spins of the original form {�µ

ij} on
which the energy does not depend (and thus relate to
symmetries). If the bonds Aµ

s and B⌫
p do not adhere

to any constraint apart from that in Eq. (12) then
Nind. bonds = (V+F�2) of the (V+F ) bonds in the Hamil-
tonian of Eq. (6) will be independent of one another.
Correspondingly, Nredundant = [E � (V + F � 2)] = 2g.
As all bonds must satisfy the constraint of Eq. (12) and
thus Nind. bonds  (V + F � 2), the number of redun-
dant spin degrees of freedom Nredundant � 2g. In the
general case, if there are (C⇤

g � 2) constraints that aug-
ment the two restrictions already present in Eq. (12),
then we may map the original system of E spins to
Nind. bonds = (V + F � C⇤

g ) independent bonds in Eq.
(6) and Nredundant = (E � Nind. bonds) = 2(g � 1) + C⇤

g

spins that have no impact on the energy. Thus, for genus
g � 1 surfaces, the degeneracy of each energy level is an
integer multiple of the minimal degeneracy possible,

min(ng.s.) = 2Nredundant = nmin
g.s. ⇥ 2C

⇤
g

�2, (13)

with nmin
g.s. = 4g. Equation (13) will lead to a

global redundancy factor in the partition function Z =
Tr exp(��Hµ,⌫) with � the inverse temperature.

We now focus on the ground state sector. If there are
no constraints apart from Eq. (12), then to obtain the
ground states it su�ces to make certain that Nind. bonds

of the bonds are unity in a given state. Once that oc-
curs, we are guaranteed a ground state in which each
bond in the Hamiltonian of Eq. (6) is maximized (i.e.,
Eqs. (11) are satisfied). A smaller number of bonds fixed
to one will not ensure that only ground states may be
obtained. Thus the values of all Nind. bonds independent
bonds need to be fixed in order to secure a minimal value
of the energy. The lower bound of the degeneracy on each
level (Eq. (13)) is saturated for the ground state sector
where it becomes an equality. That is, very explicitly,
the ground state degeneracy is given by

nGeneral Toric�Code
g.s. = 4g ⇥ 2C

⇤
g

�2. (14)

The equalities of Eqs. (13) and (14) are basic facts that
will be exploited in the present article. The degeneracy
of Eq. (14) is in accord with the general result

ng�1
g.s. = d

��+(C⇤
g

�C⇤
1 )

Q ng=1
g.s. , (15)

and di↵ers from that of Kitaev’s Toric Code model [3]

(Eq. (2)) by a factor of 2C
⇤
g

�2. As each of the C⇤
g con-

straints as well as increase in genus number leads to a
degeneracy of the spectrum, a simple “correspondence
maxim” follows: it must be that we may associate a cor-

responding independent set of symmetries with any indi-

vidual constraint. Similarly, as Eqs. (13, 14) attest, ele-
vating the genus number g must introduce further sym-

metries. Thus, the global degeneracy of Eq. (13) is a
consequence of all of these symmetries.
Given Eq. (6) it is readily seen that the system has

a gap of magnitude � = 4(J + J 0) between the ground
state E0 and the lowest lying excited state E1. All energy
levels E`, defining the spectrum of Hµ,⌫ , are quantized
in integer multiples of J and J 0.

III. GROUND STATES OF THE QUANTUM
TORIC CODE MODEL

In Kitaev’s Toric Code model [3] the symmetries as-
sociated with the constraints of Eq. (12) are rather
straightforward, and cogently relate to the topology of
the surface on which the lattice is embedded. An illustra-
tion for the square lattice is depicted in Fig. 1. For such
a model on a simple torus (i.e., one with genus g = 1),
the four canonical symmetry operators are

Zq
1,2 =

Y

(ij)2C1,2

�z
ij , Xq

1,2 =
Y

(ij)2C0
1,2

�x
ij . (16)

These two sets of non-commuting operators [3]

{Xq
1 , Z

q
1} = 0 = {Xq

2 , Z
q
2},

[Xq
1 , X

q
2 ] = 0 = [Zq

1 , Z
q
2 ] ,

[Xq
1 , Z

q
2 ] = 0 = [Xq

2 , Z
q
1 ] , (17)

realize a Z(2) ⇥ Z(2) symmetry and ensure a four-fold
degeneracy (or, more generally a degeneracy that is an
integer multiple of four) of the whole spectrum.
To see this, we may, for instance, seek mutual eigen-

states of the Hamiltonian Hx,z along with the two sym-
metries Zq

1 and Zq
2 with which it commutes. Noting the

algebraic relations amongst the above operators, a mo-
ment’s reflection reveals that a possible candidate for a
normalized ground state is given by

|g1i =
1p
2

Y

s

✓
1 +Ax

sp
2

◆
|Fi, (18)

where �z
ij |Fi = |Fi, for all E edges, and hF|Fi = 1. This

corresponds to Zq
1,2|g1i = |g1i. Now, because Xq

1,2 are
symmetries, by the algebraic relations of Eq. (17), the
three additional orthogonal states

|g2i = Xq
1 |g1i , |g3i = Xq

2 |g1i , |g4i = Xq
1X

q
2 |g1i, (19)

are the remaining ground states. That is, the C⇤
g=1 = 2

lattice (⇤) independent constraints of the quantum model
(Eq. (12)) correspond to the 2 sets of symmetry opera-
tors associated with the � = 1, 2 toric cycles ({Zq

� , X
q
�})

of Eq. (16). This correspondence is in agreement with
the simple maxim highlighted above. The symmetry op-
erators Xq

1 and Zq
1 are independent (and trivially com-

mute) with the symmetry operators Xq
2 and Zq

2 . Notice
that in the spin (�µ

ij) language the ground states above
are entangled, and they are connected by d = 1 symme-
try operators [35, 36]. Moreover, the anyonic statistics

8

B. Ground state degeneracy on g = 1 surfaces

Thus far, our discussion has been quite general and,
admittedly, somewhat abstract. We now turn to simple
concrete examples. We first consider the classical Toric
Code model on a simple torus (i.e., a surface with genus
g = 1), and examine small specific square lattices of di-
mension Lx⇥Ly. We find that for general lattices ⇤ (with
reference to Eq. (20)), the total number of independent
constraints is

C⇤
g=1 =

8
><

>:

2, ⇤ is a Type I lattice

2min{Lx, Ly}, ⇤ is a Type II lattice.

(27)

Thus, from Eq. (14), our two earlier stated main results
follow: while for the more “incommensurate” Type I lat-

tices, the degeneracy will be “topological” (i.e., given

by 4g), for Type II lattices, the degeneracy will be “holo-

graphic” (viz., the degeneracy will be exponential in the

smallest of the edges along the system boundaries). As
discussed in Section IVA, the additional constraints in
Type II lattices are of the form of Eq. (25). Expressed
in terms of the four spin interaction terms Az

s and Bz
p of

Eq. (6), a constraint of the form of Eq. (25) states that
there is a subset �m ⇢ ⇤ for which

Q
s,p2�

m

Az
sB

z
p = 1.

An illustration of a constraint of such a type is provided,
e.g. in Fig. 3. Here, by virtue of the defining relations
of Eq. (7), the product,

Az
1B

z
1A

z
4B

z
4 = 1. (28)

Similarly, in panel a) of Fig. 4, colored arrows are drawn
along the diagonals. These colors code the constraints on
the specific Az

s and Bz
p interaction terms. For example,

along the green arrows,

Az
1B

z
1A

z
4B

z
4 = 1 green (dashed), (29)

and the constraints associated with the other diagonals

Az
2B

z
2A

z
3B

z
3 = 1 brown (dashed-dotted),

Az
2B

z
1A

z
3B

z
4 = 1 red (dashed-doubled-dotted),

Az
1B

z
2A

z
4B

z
3 = 1 black (dotted). (30)

We provide another example in panel b) of Fig. 4.
The simplest visually appealing realization of Eq. (25)
is that of the subset �m being a trivial closed diagonal
loop. Composites (i.e., products) of independent con-
straints of the form of Eq. (25) are, of course, also con-
straints. We aim to find the largest number (C⇤

g � 2)
of such independent constraints. Non-trivial constraints
formed by the product of bonds along real-space diagonal
lines may appear. For example, in Fig. 3, the product
Az

1B
z
1A

z
3B

z
2 = 1 is precisely such a constraint. These

constraints are more di�cult to determine due to the pe-
riodic boundary conditions. Generally, not all constraints
are independent of each other (e.g., multiplying any two
constraints yield a new constraint). The number of in-
dependent constraints, C⇤

g may be generally found by

a)

b)

!" !# !"!" !# !"

!" !# !" !" !# !"

!$ !$ !$ !$!% !%

!" !# !$ !"
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FIG. 4. a) Lattice of size L
x

= 2, L
y

= 2, E = 8 and b)
L

x

= 2, L
y

= 3, E = 12. Diagonal lines with arrows represent
possible paths realizing constraints on A

s

= Az

s

and B
p

= Bz

p

.

calculating the “modular rank” of the linear equations
formed by taking the logarithm of all constraints found.
The qualified “modular” appears here as the Az

s and Bz
p

eigenvalues may only be (±1) and thus, correspondingly,
their phase is either 0 or ⇡. Many, yet generally, not all,
of the C⇤

g independent constrains are naturally associ-
ated with products along the 45� lattice diagonals (as it
appears on the torus). Table I lists the numerically com-
puted ground state degeneracies for numerous lattices of
genus g = 1. All of these are concomitant with Eq. (27).

C. Construction of ground states

Given the symmetry operators of Eqs. (21) and (22),
we may rather readily write down all ground states of the
system. Denote the ferromagnetic ground state (i.e., one
with all spins up (|"i(ij)) on all edges (ij)) by

|Fi ⌘
Y

(ij)

| "i(ij); (31)
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Local order parameters

In a ferromagnet, a local expectation value is different 
for different orthogonal ground states (GSs)

Applying different boundary conditions can lead, at sufficiently 
low temperatures to spontaneous symmetry breaking

Local Measurements can distinguish the GSs

⟨gα|M̂ |gα⟩ ≠ ⟨gβ |M̂ |gβ⟩

⟨M̂⟩α ̸= ⟨M̂⟩β

T = 0

T ̸= 0
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Concepts involved in TQO

TQO

Degeneracy

Symmetry

Fractionalization Maximal %
Strings/Branes

Entanglement%
Entropy

In this “web”, none of these features rigorously imply another. For instance, a system may have topological entanglement entropy yet not display 
topological order in the sense of stability. Similarly, string orders%

and fractionalization appear in systems displaying conventional symmetry breaking  (e.g., the AKLT spin chain exhibits nematic order). 

22
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Concepts involved in TQO

TQO

Degeneracy

Symmetry

Fractionalization Maximal %
Strings/Branes

Entanglement%
Entropy

It is important to establish %
what is needed to display TQO
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Topological Quantum Order
Colloquially, TQO is often very loosely referred to as order whose 
GS degeneracy depends on the surface topology of the manifold 
on which the physical system is embedded.

Working definition: Robustness

⟨gα|V̂
m|gβ⟩ = c δαβ , ∀ α, β ∈ S0,

Non-Distinguishability: Given a quasi-local operator V̂ m

Order is evident only in non-local (topological) 

24

Kitaev:



 A first definition of Finite Temperature Topological Quantum Order
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Su�cient symmetry conditions for Topological Quantum Order

Zohar Nussinov1 and Gerardo Ortiz2
1Department of Physics, Washington University, St. Louis, MO 63160, USA and

2Department of Physics, Indiana University, Bloomington, IN 47405, USA
(Dated: September 10, 2019)

We prove su�cient conditions for Topological Quantum Order (TQO). The crux of the proof
hinges on the existence of low-dimensional Gauge-Like Symmetries (GLSs), thus providing a unify-
ing framework based on a symmetry principle. All known examples of TQO display GLSs. Other
systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin exchange
and Jahn-Teller e↵ects in transition metal orbital compounds, short-range frustrated Klein spin mod-
els, and p+ip superconducting arrays. We analyze the physical consequences of GLSs (including
topological terms and charges) and, most importantly, show the insu�ciency of the energy spec-
trum, (recently defined) entanglement entropy, maximal string correlators, and fractionalization in
establishing TQO. Duality mappings illustrate that not withstanding the existence of spectral gaps,
thermal fluctuations can impose restrictions on suggested TQO computing schemes. Our results
allow us to go beyond standard topological field theories and engineer new systems with TQO.

PACS numbers: 05.30.-d, 11.15.-q, 71.10.-w, 71.10.Pm

The Landau theory of phase transitions is a landmark
in physics [1]. Essential is an order parameter character-
izing the thermodynamic phases of the system. A new
paradigm, Topological Quantum Order (TQO), [2] ex-
tends the Landau symmetry-breaking framework. At its
core, TQO is intuitively associated with insensitivity to
local perturbations. As such, TQO cannot be described
by local order parameters. Interest is catalyzed by the
prospect of fault-tolerant quantum computation [3].

Several inter-related concepts are typically invoked in
connection to TQO: symmetry, degeneracy, fractional-
ization of quantum numbers, maximal string correlations
(non-local order), among others. The main issue is what
is needed to have a system with TQO. But a real prob-
lem is that there is no unambiguous definition of TQO.
The current article aims to show relations between these
di↵erent concepts, by rigorously defining and establish-
ing the equivalence between some of them and more lax
relations amongst others. Most importantly, we (i) prove
that systems harboring generalized d-dimensional (with
d = 0, 1, 2) Gauge-Like Symmetries (d-GLSs) exhibit
TQO; (ii) analyze the resulting conservation laws and
the emergence of topological terms in the action of theo-
ries in high space dimensions; (iii) a�rm that the struc-
ture of the energy spectrum is irrelevant for the existence
of TQO (the devil is in the state itself); (iv) establish
that, fractionalization, string correlators, and entangle-
ment entropy are insu�cient criteria for TQO; (v) report
on a general algorithm for the construction of string cor-
relators; (vi) suggest links between TQO and problems
in graph theory. Our goal is to provide a unifying frame-
work allowing the creation of new physical models dis-
playing TQO. A very detailed review and derivation of
the results presented here is available in [4].

We focus on quantum lattice systems (and their contin-

uum extension) having N
s

=
Q

D

µ=1 Lµ

sites, with L
µ

the
number of sites along each space direction µ, and D the

dimensionality of the lattice ⇤. Associated to each lattice
site (or mode, or bond, etc) i 2 ZNs there is a Hilbert
space Hi of finite dimension D. The Hilbert space is the
tensor product of the local state spaces, H =

N
i Hi, in

the case of distinguishable subsystems, or a proper sub-
space in the case of indistinguishable ones. Statements
about local order, TQO, fractionalization, entanglement,
etc., are relative to the particular decomposition used to
describe the physical system. Typically, the most natural
local language [5] is physically motivated.
To determine what is needed for TQO, we start by

defining it. Given a set of N orthonormal ground states
(GSs) {|g

↵

i}
↵=1,...,N and a (uniform) gap to excited

states, TQO exists i↵ for any bounded operator V with
compact support (i.e. any quasi-local operator),

hg
↵

|V |g
�

i = v �
↵�

+ c, (1)

where v is a constant and c is a correction that it is ei-
ther zero or vanishes exponentially in the thermodynamic
limit. We will also examine a finite temperature (T > 0)
extension for the diagonal elements of Eq. (1),

hV i
↵

⌘ tr (⇢
↵

V ) = v + c (independent of ↵), (2)

with ⇢
↵

= exp[�H
↵

/(k
B

T )] a density matrix correspond-
ing to the Hamiltonian H endowed with an infinitesimal
symmetry-breaking field favoring order in the state |g

↵

i.
A system displays finite-T TQO if it satisfies both Eqs.
(1), and (2).
A d-GLS of a theory given by H (or action S) is a

group of symmetry transformations G
d

such that the min-
imal non-empty set of fields �i changed by the group
operations spans a d-dimensional subset C ⇢ ⇤. These
transformations can be expressed as [6]: Ulk =

Q
i2Cl

gik,
where Cl denotes the subregion l, and ⇤ =

S
l Cl. (The

extension of this definition to the continuum is straight-
forward.) Gauge (local) symmetries correspond to d = 0,

PNAS 106, 16944 (2009), Annals of Physics 324, 977 (2009)  
(on arXiv in 2006 and 2007: https://arxiv.org/pdf/cond-mat/0702377, https://arxiv.org/pdf/cond-mat/0605316.pdf)  

Robustness:



T̂µ

P̂0 =
�

�

|g�⇥�g�|

V

[H, T̂µ] = 0

Error detection

Propagation of errors
Logical operators%
(non-commuting 

braiding operations)

Protected subspace:

(quasi-local)

[P̂0V P̂0, T̂µ] = 0As long as: Causes no harm to T̂µ

 Non-distinguishability condition implies  

[P̂0V P̂0, T̂µ] = 0
26
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Theorem 
Linking TQO and GLSs

Any physical system which displays T=0 TQO, and 
interactions of finite range and strength, in which all 
GSs (satisfying the non-distinguishability condition) 
can be linked by discrete d < 2 or continuous d <3 
GLSs, has TQO at all temperatures. 

(d-GLSs with d < D can mandate the absence of SSB)

27

PNAS 106, 16944 (2009), Annals of Physics 324, 977 (2009)  
(on arXiv in 2006 and 2007: https://arxiv.org/pdf/cond-mat/0702377, https://arxiv.org/pdf/cond-mat/0605316.pdf)  



As long as d-GLSs are

Case I: (Exact result)  Continuous d < 2 emergent symmetry%
                                      in a gapped system, TQO is protected

Case II: Numerous systems with exact discrete d-GLSs %
               are adiabatically connected to TQO states where %
                  d-GLSs are emergent, i.e. TQO is protected

Stability and Protection of TQO
What happens when the d-GLSs       %

        are not exact symmetries of the full H ?
Gd

(i.e., effect of perturbations)
Emergent Symmetries

TQO is protected

28



Thermal Fragility
In TQO systems, which have a gap, %

does temperature preclude protection of information?

H = −

∑

s

As −

∑

p

Bp

Bp =

∏

ij∈plaquette(p)

σ
z
ijAs =

∏

ij∈star(s)

σ
x
ij

Z1,2 =

∏

ij∈C1,2

σ
z
ijX1,2 =

∏

ij∈C′

1,2

σ
x
ij

{Xi, Zi} = 0 , [Xi, Zj ] = 0Free-energy is analytic

No thermodynamic phase transition!
29



Thermal Fragility
For a finite size: By Symmetry

⟨Z1⟩ = ⟨Z2⟩ = ⟨X1⟩ = ⟨X2⟩ = 0

Partition function (2 Ising chains):
Z = tr

[

exp[−β(H −

∑

i=1,2

(hx,iXi + hz,iZi))]
]

= [(2 coshβ)Ns + (2 sinhβ)Ns ]2 cosh βh1 cosh βh2

⟨Zi⟩= lim
hz,i→0+

∂

∂(βhz,i)
lnZ = lim

hz,i→0+

hz,i

hi

tanh(βhi)

⟨Xi⟩= lim
hx,i→0+

∂

∂(βhx,i)
lnZ = lim

hx,i→0+

hx,i

hi

tanh(βhi)

= 0

hi =

√

h2
x,i + h2

z,i
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Ns � ⇥ =
1

ln coth�J
���⇥

e2�J

2

kBT � � 2J

ln 2Ns

Thermal Fragility: Energy-Entropy budget
From a Physics standpoint: 

⟨Z1⟩ = ⟨Z2⟩ = ⟨X1⟩ = ⟨X2⟩ = 0

Energy penalty for excitations: Independent of system size

Entropy: Log in the system size Proliferation of defects
From loss of order:

Crossover Temperature:

(similarly from energy-entropy%
considerations) 31
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GXµ(t) � ⇤Xµ(0)Xµ(t)⌅ ⇥ e�(|t|/⇥)�

� = 1

� = 1/2

Thermal Fragility: Dynamical aspects
Time autocorrelation functions: Toric code with heat bath

|t|⇥ ⇥ =
const.

1� tanh 2�J
⇤��⇥ e��1) Long-times:

const.⇥ |t|⇥ ⇥ =
const.

1� tanh 2�J
2) Intermediate-times:

� is independent of system size
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Low dimensional dynamics in topological systems

33

Similar results for the autocorrelation functions apply to other 
stabilizers, fracton models, etc. 

!

The X-cube model and the Haah code exhibit Ising chain type 
dynamics assuming a Glauber heat bath in the dual model 

https://arxiv.org/pdf/1907.04180.pdf
https://arxiv.org/pdf/1812.04561.pdf



Z3D = Z3D Ising gauge � Z1D Ising

(�c = 0.761423)

Thermal Fragility and Phase Transitions
What is the relation between the existence of a%

phase transition and TQO?
(Phase transitions are signaled by non-analyticities in the Free Energy)

Kitaev’s toric in 3D

It has a thermodynamic phase transition:

It displays TQO

However, e.g.

�ZCµ⇥ = �
�

(ij)�Cµ

�z
ij⇥ = 0

Loops around Toric cycles
34 Physical Review B 77, 064302 (2008)	
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