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A. Kitaev, Ann. Phys. 321, 2 (2006)

honeycomb S=1/2 model with bond-dependent interactions

strongly frustrated, but exactly solvable  
→ quantum spin liquid in the ground state

Spins are fractionalized into  
itinerant Majorana fermions 

and localized Z2 fluxes
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Fractional excitations
A. Kitaev, Ann. Phys. 321, 2 (2006)

itinerant Majorana fermions  
on flux-free background 

(all Wp=+1)

ground state

formally similar to Dirac electrons 
on the honeycomb lattice

๏ localized flux excitation (Wp=+1→-1) 
is always gapped and q independent

๏ Dirac-like dispersion for itinerant 
Majorana fermion excitations

~O(JKitaev)

excitations

Δflux ~ 0.06 JKitaev



Thermal fractionalization

J. Nasu, M. Udagawa, and YM, PRB 92, 115122 (2015) 
for review, see YM and J. Nasu, preprint (arXiv:1909.02234)
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Fractional spin dynamics 
dynamical spin structure factor S(q,ω)

J. Yoshitake, J. Nasu, and YM, Phys. Rev. Lett. 117, 157203 (2016) 
J. Yoshitake, J. Nasu, Y. Kato, and YM, Phys. Rev. B 96, 024438 (2017) 

J. Yoshitake, J. Nasu, and YM, Phys. Rev. B 96, 064433 (2017)
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dichotomy of spin excitation: 
- growth of high-energy continuum at ω~J in the fractional PM region 

- growth of quasi-elastic response toward the asymptotic QSL region

conventional paramagnetfractional paramagnetasymptotic QSL

cf. T=0 result: J. Knolle et al., 
PRL 112, 207203 (2014) 



Comparison with experiment

 356 

Figure 4 | Evolution of the two Majorana fermion excitations. a. Magnetic scattering function 357 

GLMN J, K  at T = 16, 75, 125, and 240 K. The two data sets with an incoming neutron energy of Ei = 358 

22 meV (upper panel) and 10 meV (down panel) are combined together. The white regions mark the 359 

lack of detector coverage. b. Calculated GLMN J, K 	at T = 0.09, 0.375, 0.69, and 1.32 #$  with #$ = 360 

-16.5 meV for comparison with the experimental data. c-d. Comparison of contour plot of the 361 

experimental GLMN K  and the calculated GLMN K  at the Γ-point in the temperature-energy plane. e. 362 

GLMN Γ, K  at T = 16 K (black circles), 75 K (yellow circles), 125 K (green circles), and 240 K (blue 363 

circles) as a function of energy. The calculated GLMN Γ, K  (the solid lines) are presented together for 364 

comparison. f-g. Temperature dependence of the integrated GLMN Γ, K  over the energy range K{ = 365 

[1.5, 3] meV (grey circles) and Kd = [8, 14.5] meV (blue circles). Both energy ranges are marked with 366 

grey and blue areas in e, respectively. The cross symbols represent the calculated results of the 367 

integrated GLMN Γ, K , and the dashed lines represent the linear interpolations. The areas of diagonal 368 

stripes in c-d and f-g indicate the high-T crossover at TH. The color bars in a and c are represented in 369 

the unit of mbarn×sr-1×meV-1 per Ru. The calculations presented in b and d are dimensionless, with the 370 

scale given by the color bar. In e-g, measured and calculated GLMN refer to the left and right y-axes, 371 

respectively. 372 

good agreement in T,q,ω dependence ➡ strong signature of fractional excitations
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Figure 5 | Disagreements with classical SWT and agreement with QSL calculations. a, Scattering from mode M1 measured using INS at T =5 K using
Ei =8 meV. Lower panel shows constant-energy cuts over the energy ranges shown, centred at the locations labelled (G,H) in the upper panel. The absence
of structured scattering below 2 meV confirms the gap in the magnetic excitation spectrum. b, Constant-E cuts of the data through the upper mode at four
di�erent temperatures, of which one curve at T =5 K is below TN (red squares) and rest above TN. The lines are guides to the eye. c, A constant-Q cut of
the Ei =25 meV, T =5 K data in the Q range shown. The blue triangles show the M2 portion of the cut B in Fig. 3c, but with the linear background term
subtracted, and the blue line is a fit to a Gaussian peak. As discussed in the text, the red line shows simulated SWT scattering and the green line shows the
scattering calculated from a Kitaev QSL response function. The shaded area represents magnetic scattering that is not captured by the SWT. The
double-ended arrow marked ‘R’ shows the full-width at half-maximum (FWHM) of the instrumental resolution of 0.5 meV at 6.5 meV. In panels a–c, the
error bars represent 1� (see Methods). d, The powder-averaged scattering calculated from a 2D isotropic Kitaev model, with antiferromagnetic K, using the
results of ref. 10, including the magnetic form factor. The upper feature is broad in energy and decreases in strength largely monotonically as Q increases.

non-dispersing high-energy band appears, centred at an energy
that corresponds approximately to the Kitaev exchange scale, K .
(For a similar calculation on the ferromagnetic Kitaev model, and
a general discussion, see Supplementary Fig. 6 and Supplementary
Information) The intensity of the upper band is strongest at Q=0,
and decreases with increasing Q.

With the Kitaev interaction dominant it is reasonable to expect
that ↵-RuCl3 is proximate to the QSL phase. The additional non-
Kitaev interactions lead to long-range order at low temperatures,
and strongly a�ect the low-energy excitations, which then exhibit
spin wave behaviour. Conversely, the high-energy spin fluctuations
native to the proximate quantum ground state are more immune,
and can persist even in the ordered state. This behaviour is well
known in coupled S= 1/2 antiferromagnetic Heisenberg chains6,
where at energies large compared to the interchain coupling the

spectrum of fractionalized excitations (spinons) of the pure chain
dominates the response above and below the magnetic ordering
temperature. This leads to a natural interpretation of the M2 mode
as having the same origin as the upper mode of the Kitaev QSL.
The broad width of the M2 mode as seen in the measurements
can be naturally explained in terms of the fractionalized Majorana
fermion excitations. The green line in Fig. 5c shows the calculated
powder-averaged QSL scattering, including the e�ects of instru-
mental resolution, with the value K =5.5meV chosen to match the
experimental peak position of M2 and the overall height chosen to
match the observed scattering. The calculatedQSL scattering profile
is wellmatched to the observed additional width of theM2 scattering
on the high-energy side. This value of K is slightly smaller than
that inferred from SWT, but it is very reasonable to expect that the
quantum description requires a renormalized parameter. The large

6
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Figure 3 | Collective magnetic modes measured with inelastic neutron scattering using 25 meV incident neutrons. a, False colour plot of the data at
T =5 K showing magnetic modes (M1 and M2) with band centres near E=4 and 6 meV. M1 shows an apparent minimum near Q=0.62 Å�1, close to the
magnitude of the M point of the honeycomb reciprocal lattice. The white arrow shows the concave lower edge of the M1 mode. The yellow ‘P’ denotes a
phonon that contributes to the scattering at an energy near that of M2, but at higher wavevectors of Q>2 Å�1. b, The corresponding plot above TN at
T = 15 K shows that M1 has disappeared, leaving strong quasi-elastic scattering at lower values of Q and E. c, Constant-Q cuts through the scattering
depicted in a and b centred at wavevectors indicated by the dashed lines. The cuts A and C are summed over the range [0.5, 0.8] Å�1, which includes the
M point of the 2D reciprocal lattice, whereas B and D span [1.0, 1.5] Å�1. The data from 2–8 meV in cut B is fitted (solid blue line) to a linear background
plus a pair of Gaussians, yielding peak energies E1 =4.1(1) meV and E2 =6.5(1) meV. d, Constant-E cuts integrated over the energy range [2.5, 3.0] meV, at
4 K (E) and 15 K (F). See text for detail. The intensity in all four panels, including the colour bars, is reported in the same arbitrary units. In c,d, the solid lines
through all the cuts A–F are guides to the eye. The error bars represent 1� (see Methods).

quantum fluctuations are weak. Although strictly speaking it is
inapplicable for strongly quantum fluctuating systems, it provides
a first starting point for estimating the approximate and relative
strengths of the couplings. In the honeycomb lattice appropriate for
↵-RuCl3, SWT predicts four branches, two of which disperse from
zero energy at the M point (1/2, 0) to doubly degenerate energies
!1 = p

K (K + J ) and !2 = |J |
p
2, respectively, at the 0 point

(0,0) (ref. 34). A large density of states in the form of van Hove
singularities is expected near !1 and !2. Figure 4a shows the SWT
and Fig. 4b the calculated powder-averaged neutron scattering.
Equating !1 and !2 with the peaks E1 and E2 yields K and J values
of (K =7.0, J =�4.6) meV (shown in Fig. 4) or (K =8.1, J =�2.9)
meV (shown in Supplementary Fig. 5), depending on whether !1
corresponds to E1 or E2. These two possibilities lie on either side
of the symmetric point K = �2J , where !1 = !2. The inset of
Fig. 4d shows each of these possibilities on theH–Kphase diagram34.
Either way, the Kitaev term is stronger and antiferromagnetic,
whereas theHeisenberg term is ferromagnetic; again consistent with
ab initio calculations26.

We note that the M1 mode has a gap of at least 1.7meV near
the M point (see Fig. 5a) that is not exhibited in the above SWT

calculations. Although such a gapless spectrum is a known artefact
of linear SWT for theH–Kmodel34, the experimentally observed gap
is too large to be accounted for within systematic 1/S corrections.
Extending the Hamiltonian to include further terms can lead to a
gap formingwithin SWT.However, calculations of the SWspectrum
(see Supplementary Fig. 5 and Supplementary Information) with
additional terms in theHamiltonian (such as0 and/or0’ terms35–39),
when su�cient to generate the observed gap, show features in
the powder-averaged scattering that are inconsistent with the
observations. Within the SW approximation, a gap can also be
generated by adding an additional Ising-like anisotropy, perhaps
at the level of 15% of J , which is also equivalent to an anisotropic
Kitaev interaction. As discussed below, the resulting SWT is still
incompatible with the data.

Although the SWTcalculation reproducesmany of the features of
the observed dynamical response, crucial qualitative disagreements
remain.Most importantly, the observed dependence of theM2 mode
on temperature and energy is incompatible with linear SWT. The
constant-wavevector cuts shown in Fig. 3c show thatM2 maintains
a totally consistent peak shape and intensity above and below TN.
Moreover, for temperatures well above TN, to at least 40K, the

736
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Question
๏ Fractional excitations in the Kitaev QSL have been identified in 

both theory and experiment at zero magnetic field.

๏ Recently, many interesting aspects have been revealed in 

experiments in an applied magnetic field.

• collapse of antiferromagnetic order and field-induced spin liquid state 
• half-quantization of the thermal conductivity, etc.

even theoretically challenging since the exact solvability is lost in the field

What happens to the Kitaev QSL and fractional excitations 
in an applied magnetic field?



Magnetic field opens a mass gap in the Majorana cones: 

“Chern insulator” with a chiral Majorana edge mode

Perturbation theory

lowest-order contribution from the Zeeman coupling to h=(hx, hy, hz)

is impossible, even if we introduce new terms in the Hamiltonian. On the other hand, the
eight copies of each phase (corresponding to different sign combinations of Jx,Jy,Jz) have
the same translational properties. It is unknown whether the eight copies of the gapless
phase are algebraically different.

We now consider the zeros of the spectrum that exist in the gapless phase. The momen-
tum q is defined modulo the reciprocal lattice, i.e., it belongs to a torus. We represent the
momentum space by the parallelogram spanned by (q1,q2)—the basis dual to (n1,n2). In
the symmetric case (Jx = Jy = Jz) the zeros of the spectrum are given by

ð34 Þ

If |Jx| and |Jy| decrease while |Jz| remains constant, q* and # q* move toward each other
(within the parallelogram) until they fuse and disappear. This happens when
|Jx| + |Jy| = |Jz|. The points q* and # q* can also effectively fuse at opposite sides of the par-
allelogram. (Note that the equation q* = # q* has three nonzero solutions on the torus.)

At the points ±q* the spectrum has conic singularities (assuming that q* „ # q*)

ð35Þ

7. Properties of the gapped phases

In a gapped phase, spin correlations decay exponentially with distance, therefore spa-
tially separated quasiparticles cannot interact directly. That is, a small displacement or
another local action on one particle does not influence the other. However, the particles

Jx Jz= =0Jy Jz= =0

=1,Jx =1,Jy

=1,Jz Jx Jy= =0

gapless

gappedAz

Ax Ay

B

Fig. 5. Phase diagram of the model. The triangle is the section of the positive octant (Jx, Jy, Jz P 0) by the plane
Jx + Jy + Jz = 1. The diagrams for the other octants are similar.

20 A. Kitaev / Annals of Physics 321 (2006) 2–111

Here (‹) is just another notation for ustd, i.e., the matrix whose entry (‹)jk is equal to 1 if
there is a solid arrow from k to j in the figure, !1 if an arrow goes from j to k, and 0 other-
wise. (<- - -) is defined similarly.

8.3. The spectrum and the Chern number

The fermionic spectrum e (q) of the Hamiltonian (48) is given by the eigenvalues of a
modified matrix ieAðqÞ (cf. Eq. (32)):

ieAðqÞ ¼
DðqÞ if ðqÞ

!if ðqÞ% !DðqÞ

! "
; eðqÞ ¼ &

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf ðqÞj2 þ DðqÞ2

q
; ð49Þ

where f ðqÞ ¼ 2Jðeiðq;n1Þ þ eiðq;n2Þ þ 1Þ andD (q)=4j (sin(q,n1) + sin(q,!n2) + sin(q,n2 ! n1)).
Actually, the exact form of the function D (q) does not matter; the important parameter is

D ¼ Dðq%Þ ¼ !Dð!q%Þ ¼ 6
ffiffiffi
3

p
j ( hxhyhz

J 2 ð50Þ

which determines the energy gap. The conic singularities are resolved as follows:

ð51Þ

Remark 8.1. The magnetic field also gives nontrivial dispersion to vortices. Indeed, the
operators Wpare no longer conserved, therefore a vortex can hop to an adjacent hexagon.
Thus the vortex energy depends on the momentum. This effect is linear inh, but it is not so
important as the change in the fermionic spectrum.

Let us also find the fermionic spectral projector, which determines the ground state. The
global spectral projector P is defined by Eq. (27); we now consider its Fourier component:

eP ðqÞ ¼ 1
2ð1! sgnðieAðqÞÞÞ ¼ 1

2ð1þ m xðqÞrx þ m yðqÞry þ m zðqÞrzÞ; ð52Þ

mðqÞ )
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðdqxÞ
2þðdqy Þ

2þD2=ð3J2Þ
p !dqy ;!dqx;! Dffiffi

3
p

J

$ %
if q ) q%;

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdqxÞ

2þðdqy Þ
2þD2=ð3J2Þ

p !dqy ; dqx;
Dffiffi
3

p
J

$ %
if q ) !q%.

8
><

>:
ð53Þ

The function m maps the torus to the unit sphere. If D > 0, then this map has degree 1.
Indeed, the neighborhood of q* is mapped onto the lower hemisphere, the neighborhood
of !q* is mapped onto the upper hemisphere; in both cases the orientation is preserved.
(The rest of the torus is mapped onto the equator.) For negative D the map has degree !1.

An important topological quantity characterizing a two-dimensional system of nonin-
teracting (or weakly interacting) fermions with an energy gap is the spectral Chern number.
It plays a central role in the theory of the integer quantum Hall effect [43,44,1]. In our
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h = (hx, hy, hz)

8.2. Derivation of an effective Hamiltonian

What if the perturbation does not respect the time-reversal symmetry? We will now
show that the simplest perturbation of this kind

V ¼ "
X

j

ðhxrx
j þ hyr

y
j þ hzrz

jÞ; ð45Þ

does open a spectral gap. (Physically, the vector h = (hx,hy,hz) is an external magnetic field
acting on all spins.) For simplicity, we will assume that Jx = Jy = Jz = J.

Let us use the perturbation theory to construct an effective Hamiltonian Heff acting on
the vortex-free sector. One can easily see that H ð1Þ

eff ¼ 0. Although the second-order term
H ð2Þ

eff does not vanish, it preserves the time-reversal symmetry. Therefore, we must consider
the third-order term, which can be written as follows:

H ð3Þ
eff ¼ P0VG 0

0ðE0ÞVG 0
0ðE0ÞVP0;

where P0 is the projector onto the vortex-free sector, and G 0
0 is the unperturbed Green

function with the vortex-free sector excluded. In principle, the Green function can be com-
puted for each gauge sector using the formula G 0ðEÞ ¼ "i

R1
0 eiðE"H 0þ idÞtdt (where d is an

infinitely small number). For fixed values of the field variables ujk the unperturbed Ham-
iltonian may be represented in the form (18) and exponentiated implicitly by exponentiat-
ing the corresponding matrix A; the final result may be written as a normal-ordered
expansion up to the second order. However, it is a rather difficult calculation, so we will
use a qualitative argument instead.

Let us assume that all intermediate states involved in the calculation have energy
DE &j J j above the ground state. (Actually, DE ' 0:27 j J j for the lowest energy state
with two adjacent vortices, see Appendix A.) Then G 0

0ðE0Þ can be replaced by
"ð1"P0Þ= j J j. The effective Hamiltonian becomes

H ð3Þ
eff & " hxhyhz

J 2

X

j;k;l

rx
jr

y
kr

z
l; ð46Þ

where the summation takes place over spin triples arranged as follows:

ð47Þ
Configuration (a) corresponds to the term rx

jr
y
kr

z
l ¼ "iDlûjlûklcjck (where Dl may be omit-

ted as we work in the physical subspace), or simply "icj ck in the standard gauge. Config-
uration (b) corresponds to a four-fermion term and therefore does not directly influence
the spectrum. Thus, we arrive at this effective Hamiltonian:

ð48Þ

26 A. Kitaev / Annals of Physics 321 (2006) 2–111



Beyond perturbation
The topological QSL survives up to nonzero field, but different 
behaviors appear between the ferro and antiferro Kitaev models.

H.-C. Jiang, Z.-C. Gu, X.-L. Qi, and S. Trebst, Phys. Rev. B 83, 245104 (2011), …
Z. Zhu, I. Kimchi, D. N. Sheng, and L. Fu, Phys. Rev. B 97, 241110(R) (2018)  
M. Gohlke, R. Moessner, and F. Pollmann, Phys. Rev. B 98, 014418  (2018)

J. Nasu, Y. Kato, Y. Kamiya, and YM, Phys. Rev. B 98,  060416(R) (2018)

S. Liang, M.-H. Jiang, W. Chen, J.-X. Li, and Q.-H. Wang, Phys. Rev. B 98, 054433 (2018)

C. Hickey and S. Trebst, Nat. Commun. 10, 530 (2019)

D. C. Ronquillo, A. Vengal, and N. Trivedi, Phys. Rev. B 99, 140413(R) (2019), …

ferro case: 

antiferro case: 



Anticipated phase diagram
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Fig. 14. Schematic phase diagrams while changing temperature T , magnetic field, and non-Kitaev interactions for the cases with (a) FM and (b) AFM Kitaev
couplings. The yellow circle at the origin represents the exact QSL ground state for the Kitaev model.

phase. Note that the scale of the magnetic field is almost ten
times larger compared to the FM case (this is also indicated
by the large difference in the magnitude of the magnetic sus-
ceptibility in Sec. 5.3). Although no realistic compounds with
the AFM Kitaev coupling are at hand thus far, the peculiar
phase diagram is worth investigating and will stimulate fur-
ther material exploration.

3. Thermal fractionalization
In this section, we discuss a distinguished thermodynamic

property of the Kitaev model, which we call thermal frac-
tionalization.29) As discussed in Sec. 2.5, the exact QSL
ground state hosts two types of quasiparticles, itinerant Ma-
jorana fermions and localized Z2 fluxes, which have largely
separated energy scales. The two energy scales show up in
the thermodynamic behavior as two characteristic tempera-
tures. The higher characteristic temperature TH is related with
the itinerant Majorana fermions, which is roughly set by the
COM of the Majorana DOS (see Fig. 7). At T ≃ TH , the sys-
tem exhibits a crossover irrespective of the spatial dimensions
as well as the details of the model. Meanwhile, the lower one
TL is related with the localized Z2 fluxes, which is roughly set
by the Z2 flux gap [see Fig. 8(b)]. In contrast to the universal
crossover at TH , the behavior at T ≃ TL depends on the na-
ture of the localized Z2 flux excitations in each system; it can
be either a crossover or a phase transition. Thus, the Kitaev
model, in general, exhibits three distinct states: a conventional
paramagnetic (PM) state for T ! TH , an unconventional PM
state for TL " T " TH , and the (asymptotic) QSL state for
T " TL. We call the intermediate T region the fractional PM
state, where the thermal fractionalization makes the system
distinct from the conventional PM state.

We discuss these intriguing behaviors by the thermal frac-
tionalization in this section. They have been unveiled by the
recently-developed numerical methods based on the Majorana
representation of the Kitaev model at zero field. In Sec. 3.1,
we present the results for the 2D Kitaev model on the honey-
comb structure, which provides a canonical example of two
successive crossovers at TH and TL. We also discuss a vari-
ant of the Kitaev model in two dimensions in Sec. 3.2, which
exhibits a phase transition to a chiral spin liquid (CSL), in-
stead of the low-T crossover at TL. In Sec. 3.3, we present

the results for the Kitaev models defined on several 3D trico-
ordinate lattices, in which various types of the phase transi-
tions take place between three states of matter in terms of the
spin degree of freedom. Finally, in Sec. 3.4, we summarize
the phase diagrams for the crossovers and phase transitions
found in the 2D and 3D Kitaev models.

3.1 Successive crossovers in the 2D honeycomb case
3.1.1 Crossovers caused by thermal fractionalization

Let us begin with the original Kitaev model defined on the
honeycomb structure. Figure 15 shows the T dependences of
the internal energy E, specific heat Cv, and entropy S per site
for the isotropic Kitaev coupling Jx = Jy = Jz = J29) (the re-
sults are common to the FM and AFM Kitaev couplings). The
calculations were performed by using the QMC simulations
based on the Majorana representation for the clusters with
N = 2L2 spins (see Appendix A.1). As shown in Fig. 15(a)
and its inset, the internal energy E decreases rapidly at two
temperatures, TH ≃ 0.375J and TL ≃ 0.012J, while the de-
crease at TL is much smaller than that at TH . Correspondingly,
the specific heat Cv exhibits two peaks as shown in Fig. 15(b),
both of which show no significant system-size dependence,
suggesting that these are crossovers. Interestingly, as plotted
in Fig. 15(c), the entropy S is released successively by half
ln 2 at each crossover. This peculiar behavior is considered
to originate from the thermal fractionalization in which the
original spin degree of freedom carrying the entropy of ln 2 is
fractionalized into the two types of quasiparticles each carry-
ing the entropy of half ln 2. This is confirmed by the decompo-
sition of Cv and S into the contributions from the itinerant Ma-
jorana fermions and the localized Z2 fluxes [see Eqs. (A·16)
and (A·17) in Appendix A.1], as shown in Figs. 15(b) and
15(c).

The role of the two fractional quasiparticles in the two
crossovers is shown in more explicit way by calculating the
quantities associated with each quasiparticle. Figure 16(a)
plots the measure of the kinetic energy of the itinerant Ma-
jorana fermions, Kx = −i⟨γiγ j⟩x, where the thermal aver-
age ⟨· · · ⟩x is calculated on the x bond. Note that this quan-
tity is related with the internal energy as E = − 3

2 Kx in the
isotropic case. Also, it is equivalent to the spin correlation
on the x bonds, 4⟨S x

i S x
j⟩x. The result indicates that the mea-
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phase. Note that the scale of the magnetic field is almost ten
times larger compared to the FM case (this is also indicated
by the large difference in the magnitude of the magnetic sus-
ceptibility in Sec. 5.3). Although no realistic compounds with
the AFM Kitaev coupling are at hand thus far, the peculiar
phase diagram is worth investigating and will stimulate fur-
ther material exploration.

3. Thermal fractionalization
In this section, we discuss a distinguished thermodynamic

property of the Kitaev model, which we call thermal frac-
tionalization.29) As discussed in Sec. 2.5, the exact QSL
ground state hosts two types of quasiparticles, itinerant Ma-
jorana fermions and localized Z2 fluxes, which have largely
separated energy scales. The two energy scales show up in
the thermodynamic behavior as two characteristic tempera-
tures. The higher characteristic temperature TH is related with
the itinerant Majorana fermions, which is roughly set by the
COM of the Majorana DOS (see Fig. 7). At T ≃ TH , the sys-
tem exhibits a crossover irrespective of the spatial dimensions
as well as the details of the model. Meanwhile, the lower one
TL is related with the localized Z2 fluxes, which is roughly set
by the Z2 flux gap [see Fig. 8(b)]. In contrast to the universal
crossover at TH , the behavior at T ≃ TL depends on the na-
ture of the localized Z2 flux excitations in each system; it can
be either a crossover or a phase transition. Thus, the Kitaev
model, in general, exhibits three distinct states: a conventional
paramagnetic (PM) state for T ! TH , an unconventional PM
state for TL " T " TH , and the (asymptotic) QSL state for
T " TL. We call the intermediate T region the fractional PM
state, where the thermal fractionalization makes the system
distinct from the conventional PM state.

We discuss these intriguing behaviors by the thermal frac-
tionalization in this section. They have been unveiled by the
recently-developed numerical methods based on the Majorana
representation of the Kitaev model at zero field. In Sec. 3.1,
we present the results for the 2D Kitaev model on the honey-
comb structure, which provides a canonical example of two
successive crossovers at TH and TL. We also discuss a vari-
ant of the Kitaev model in two dimensions in Sec. 3.2, which
exhibits a phase transition to a chiral spin liquid (CSL), in-
stead of the low-T crossover at TL. In Sec. 3.3, we present

the results for the Kitaev models defined on several 3D trico-
ordinate lattices, in which various types of the phase transi-
tions take place between three states of matter in terms of the
spin degree of freedom. Finally, in Sec. 3.4, we summarize
the phase diagrams for the crossovers and phase transitions
found in the 2D and 3D Kitaev models.

3.1 Successive crossovers in the 2D honeycomb case
3.1.1 Crossovers caused by thermal fractionalization

Let us begin with the original Kitaev model defined on the
honeycomb structure. Figure 15 shows the T dependences of
the internal energy E, specific heat Cv, and entropy S per site
for the isotropic Kitaev coupling Jx = Jy = Jz = J29) (the re-
sults are common to the FM and AFM Kitaev couplings). The
calculations were performed by using the QMC simulations
based on the Majorana representation for the clusters with
N = 2L2 spins (see Appendix A.1). As shown in Fig. 15(a)
and its inset, the internal energy E decreases rapidly at two
temperatures, TH ≃ 0.375J and TL ≃ 0.012J, while the de-
crease at TL is much smaller than that at TH . Correspondingly,
the specific heat Cv exhibits two peaks as shown in Fig. 15(b),
both of which show no significant system-size dependence,
suggesting that these are crossovers. Interestingly, as plotted
in Fig. 15(c), the entropy S is released successively by half
ln 2 at each crossover. This peculiar behavior is considered
to originate from the thermal fractionalization in which the
original spin degree of freedom carrying the entropy of ln 2 is
fractionalized into the two types of quasiparticles each carry-
ing the entropy of half ln 2. This is confirmed by the decompo-
sition of Cv and S into the contributions from the itinerant Ma-
jorana fermions and the localized Z2 fluxes [see Eqs. (A·16)
and (A·17) in Appendix A.1], as shown in Figs. 15(b) and
15(c).

The role of the two fractional quasiparticles in the two
crossovers is shown in more explicit way by calculating the
quantities associated with each quasiparticle. Figure 16(a)
plots the measure of the kinetic energy of the itinerant Ma-
jorana fermions, Kx = −i⟨γiγ j⟩x, where the thermal aver-
age ⟨· · · ⟩x is calculated on the x bond. Note that this quan-
tity is related with the internal energy as E = − 3

2 Kx in the
isotropic case. Also, it is equivalent to the spin correlation
on the x bonds, 4⟨S x
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j⟩x. The result indicates that the mea-
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How do these phase diagrams really look like?
➡ We study the pure Kitaev case as the first step.



Numerical methods

free from biased approximations: 
numerically exact within the statistical errors 
systematic analysis of finite-size effects: 
applicable to large enough clusters up to several 102 sites

• Majorana-based quantum Monte Carlo 

• Majorana-based cluster DMFT + continuous-time QMC (CTQMC) 

• Majorana-QMC + CTQMC

J. Nasu, M. Udagawa, and YM, PRL 113, 197205 (2014); P. A. Mishchenko, Y. Kato, and YM, PRB 96, 125124 (2017)

J. Yoshitake, J. Nasu, and Y. Motome, PRB 96, 064433 (2017)

J. Yoshitake, J. Nasu, and YM, PRL 117, 157203 (2016); J. Yoshitake, J. Nasu, Y. Kato, and YM, PRB 96, 024438 (2017)

for finite T at zero field

J. Yoshitake, J. Nasu, Y. Kato, and YM, arXiv:1907.07299spin-cluster-based CTQMC

for finite T at nonzero field
NEW



Magnetization and specific heat 
in the [111] field (ferro Kitaev case)

J. Yoshitake, J. Nasu, Y. Kato, and YM, preprint (arXiv:1907.07299)
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FIG. S2. T dependences of the specific heat per site, Cv, under the magnetic field h. The results for h > 0 are calculated by
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On the other hand, Fig. S5(b) shows the energy scales of the magnon bands obtained by the linear spin-wave theory
for the forced ferromagnetic state. The magnon bands are split into two branches, as shown in Figs. 3(d) and 3(h)
in the main text. We plot the COM of the upper and lower branches in Fig. S5(b). The results show that the COM
of the upper branch is rather insensitive to h, whereas the lower one increases rapidly as h. For comparison, we also
plot the Zeeman splitting energy h, which shows a similar increase to the COM of the lower magnon branch.
From comparison between Fig. S5(a) and S5(b), we find that the COM of the Majorana band in the perturbative

regime is in the same energy scale for the COM of the upper magnon band. Meanwhile, the COM of the lower magnon
branch increases and becomes larger than the energy scale of the Z2 flux gap as increasing h. These behaviors are
discussed in the main text for the confinement-deconfinement crossover found in the dynamical spin structure factor
S(q,ω).
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[3] A. Kitaev, Ann. Phys. (N. Y.) 321, 2 (2006).
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On the other hand, Fig. S5(b) shows the energy scales of the magnon bands obtained by the linear spin-wave theory
for the forced ferromagnetic state. The magnon bands are split into two branches, as shown in Figs. 3(d) and 3(h)
in the main text. We plot the COM of the upper and lower branches in Fig. S5(b). The results show that the COM
of the upper branch is rather insensitive to h, whereas the lower one increases rapidly as h. For comparison, we also
plot the Zeeman splitting energy h, which shows a similar increase to the COM of the lower magnon branch.
From comparison between Fig. S5(a) and S5(b), we find that the COM of the Majorana band in the perturbative

regime is in the same energy scale for the COM of the upper magnon band. Meanwhile, the COM of the lower magnon
branch increases and becomes larger than the energy scale of the Z2 flux gap as increasing h. These behaviors are
discussed in the main text for the confinement-deconfinement crossover found in the dynamical spin structure factor
S(q,ω).
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~0.018
H.-C. Jiang et al., PRB 83, 245104 (2011)

cf. experimental data for the specific heat in the field: S. Widmann et al., Phys. Rev. B 99, 094415 (2019) 



J. Yoshitake, J. Nasu, Y. Kato, and YM, preprint (arXiv:1907.07299)

S(q,ω) 
in the [111] field

- almost unchanged up to h~0.06J, where the Kitaev QSL is retained at T=0 

- spin-wave like dispersions develop gradually above h~0.06J 
- crossover from fractional Majorana to magnon: confinement-deconfinement

TL ' 0.012 < T = 0.05 < TH ' 0.375
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Majorana-magnon crossover

almost unchanged in the fractional paramagnetic region, but rapidly 
approaching the linear spin-wave dispersion in the forced ferromagnetic region
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Inelastic neutron scattering
incoherent spin excitation in the field-induced paramagnetic state, 
dispersive magnon-like excitation in the higher-field region

C. Balz et al., Phys. Rev. B 100, 060405(R) (2019) 
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- increase below TH down to slightly above TL 
- exponential suppression around and below TL: flux gap opening 
➡ distinct behavior from static spin correlations: dichotomy
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NMR relaxation rate 1/T1 
in [111] field

J. Yoshitake, J. Nasu, Y. Kato, and YM, preprint (arXiv:1907.07299)

While the peak is reduced and shifted to high T, the enhancement 
of 1/T1 remains in the fractional paramagnetic region in the field.



NMR 1/T1: experiment

NB. further lower-T data are available in Y. Nagai, T. Jinno, Y. Yoshitake, J. Nasu, YM, M. Itoh, and Y. Shimizu, preprint (arXiv:1810.05379)

good agreement with our theory in the field-induced quantum 
disordered region where the antiferromagnetic order is suppressed

S.-H. Baek et al., Phys. Rev. Lett. 119, 037201 (2017)

LETTERSNATURE PHYSICS

To obtain Δ as a function of Bab in Fig. 1c, the −T T( )1
1  datasets 

in Fig. 3 taken in magnetic fields of different directions and mag-
nitudes are fitted to equation (1) in the temperature range of the 
Kitaev paramagnetic phase. As the curve ∝− −T T1

1 1 defined by Δ =  0 
is steeper than any dataset in this range or, equivalently, as the datas-
ets in the insets of Fig. 3 all exhibit a negative slope in this range, the 
obtained excitation gaps are obviously all finite. The inset of Fig. 1c 
showing the symmetric Δ(ϑ) dependence around 90° in 9.4 T, where 
ϑ traverses non-equivalent directions with respect to the Ising axes 
on both sides (inset of Fig. 1a), demonstrates that the g-tensor is 
indeed the only source of anisotropy as assumed when introduc-
ing Bab. The obtained Δ(Bab) in Fig. 1c can be perfectly reproduced 
as a sum of two terms: the two-flux gap Δ0 =  0.065JK (refs 2,6) and 
the gap acquired by Majorana fermions in a weak magnetic field, 
theoretically predicted to be proportional to the cube of the field2,4,5 
(see Methods)

Δ Δ α
Δ

= +
∼B (2)0

3

0
2

where μ= ∕∼B g B kab abB B is the field in kelvin units, kB is the 
Boltzmann constant, μB is the Bohr magneton and α accounts for 
the sum over the excited states in the third-order perturbation the-
ory, which is the origin of the ∼B 3 term2. The fitting procedure leads 
to α =  1.2 and JK =  183 ±  10 K, in perfect agreement with the value of 
190 K determined by inelastic neutron scattering17. This result dem-
onstrates that a spin-flip excitation in α -RuCl3 indeed fractionalizes 
into a gauge flux pair and a Majorana fermion.

Focusing on the low-field Kitaev paramagnetic region in the 
phase diagram of α -RuCl3 in Fig. 1b is essential for our identification 
of two types of anyon. Instead, other recent experimental studies 
focused on the low-temperature region above Bc, observing the spin 
excitation continuum30 with either a gapless behaviour31 or the gap 

opening linearly32–35 or sublinearly36 with B −   Bc, but without definite 
conclusions about the identity of the involved quasiparticles. These 
contradictory conclusions probably originate from the presence of 
additional, non-Kitaev interactions between the spins15,26,29,37, whose 
role should be pronounced particularly at low temperatures. Our 
result shows that spin fractionalization into two types of anyon is 
robust against these interactions in a broad range of temperatures 
and magnetic fields. This is the main practical advantage of α -RuCl3 
with respect to all other anyon realizations such as the fractional 
quantum Hall effect in 2D heterostructures7 or hybrid nanowire 
devices38 where anyons are observed only at extremely low temper-
atures and for certain field values. Our discovery thus establishes  
α -RuCl3 as a unique platform for future investigations of anyons.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0129-5.
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Real-time dynamics of fractional excitations 
by field quench



Majorana MF theory 
based on the Jordan-Wigner transformation

๏ well reproduce the ground-state phase diagrams in the [001] field 

๏ time-dependent version to study real-time dynamics 

๏ As a first step, we consider a quench of the magnetic field.
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early stage, as shown in Fig. 3(c). The frequency of the long-
lived component appears at ∼ 0.25|J| and shows different time
evolution from that of K; while the intensity of K is gradu-
ally suppressed by the elapse of time, that of K̄ is enhanced.
The distinct time dependence between the Majorana fermions
{a, b} and {ā, b̄} is interpreted as a consequence of the spin
fractionalization observed in the time domain. The difference
of the frequencies in K and K̄ will be discussed in Sec. IV B 2.

For comparison, we compute the time evolution for the
quench from the forced-FM state. Figures 3(d), 3(e), and 3(f)
display the time evolutions of Mz, K, and K̄, respectively, at
h/|J| = 0.15 well above hc. All the results show damped os-
cillations, where the amplitude decreases and the frequency is
almost constant. The damping occurs because the total S z is
not a good quantum number in the Kitaev model. The impor-
tant point is that the time evolutions in K and K̄ are identical
except for the sign, indicating that the dynamics of the Majo-
rana fermions {a, b} and {ā, b̄} is indistinguishable. The same
behavior is also observed for the quench from the forced-FM
state in the AFM case (not shown) [84]. These imply that the
spin fractionalization is not observed in the field quench from
the forced-FM state, where there is no fractionalization in the
equilibrium state, as shown in Sec. IV A 1. The transient dy-
namics is understood simply by the spin precession. This is
in sharp contrast to the fractional dynamics observed in the
quench from the QSL in Figs. 3(b) and 3(c).

3. Antiferromagnetic case: Kitaev QSL

Next, we study the time evolution in the AFM Kitaev
model, which exhibits two different QSLs before entering the
forced-FM phase in the static magnetic field, as described
in Sec. IV A 1. In this section, we focus on the results for
the field quench from the low-field Kitaev QSL state below
hc1/|J| ≃ 0.417.

Figures 4(a)–4(c) show the time evolutions in the field
quench from h/|J| = 0.3. As shown in Fig. 4(a), the mag-
netization damps rapidly for t/|J|−1 ! 10. The early-stage
dynamics has a board spectrum for 1 ! ω/|J| ! 3 as observed
in the wavelet scalogram. Similar behavior is found in the
time evolution of K shown in Fig. 4(b). This result implies
that the dynamics of the magnetization is predominantly as-
cribed to the excitation of the Majorana fermions {a, b}. On
the other hand, K̄ shows a long-lived quasi-coherent oscilla-
tion, as shown in Fig. 4(c). These results suggest that the dy-
namics of the Majorana fermions {a, b} and {ā, b̄} are well sep-
arated and exhibit distinct characteristics; the former emerges
as higher-energy excitations with a short lifetime, whereas the
latter as low-energy but long-lived excitations.

The distinct behavior is qualitatively understood in the orig-
inal spin picture. As shown in Eq. (13), K represents the NN
correlation for the interacting spin component, whereas K̄ cor-
responds to that for the noninteracting one. Before quench-
ing, the magnetic field renders spins aligned against the AFM
interactions. After the forced alignment is released by the
quench, the energy accumulated in the interacting spin com-
ponent is transferred to the noninteracting ones, which can
fluctuate more freely. Such behavior is indeed seen in the
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FIG. 3. Time evolutions of (a) Mz, (b) K, and (c) K̄, and their wavelet scalograms in the FM Kitaev model for the field quench from h/J = 0.03
(Kitaev QSL state). (d)–(f) Corresponding plots from h/J = 0.15 (forced-FM state). The dotted lines represent the long-time average of the
quantities.

broad structure [see Fig. 9(a) in Appendix B]. This results
in the quick damp of the high-energy component observed in
Fig. 4(a).

3. Antiferromagnetic case: intermediate QSL

More conspicuous time evolution is found in the case of
h/|J| = 0.45, corresponding to the quench from the intermedi-
ate QSL state. Figures 4(d)–4(f) show the results. As shown
in Fig. 4(d), the magnetization exhibits two-step transient dy-
namics: a high-frequency oscillation in the early-time stage
for t/|J|−1 ! 10 and a slower oscillation in the longer-time
range of t/|J|−1 " 10. This peculiar time evolution is also
observed in the wavelet scalogram. The high-energy broad
structure exists around ω/|J| = 1.5, which quickly decays at

t/|J|−1 ∼ 10. This is attributed to the Majorana fermions {a, b}
because similar scalogram is observed for K in Fig. 4(e). [改
段落なし] On the other hand, the scalogram in Fig. 4(d) in-
dicates the enhancement of the low-energy component with
a narrow peak at ω/|J| ∼ 0.2 caused by the elapse of time.
Similar behavior is observed in K̄ [see in Fig. 4(f)], suggest-
ing that this is ascribed to the Majorana fermions {ā, b̄}.

[改段落] The results indicate that two kinds of dynamics
are separated more clearly compared to those in the case of
the low-field QSL in Figs. 4(a)–4(c). This might be attributed
to the suppression of the interaction between the two kinds
of the Majorana fermions in the intermediate QSL phase. As
presented in Eq. (3), the exchange interaction on the z bonds
are rewritten as the interaction between the Majorana fermions
{a, b} and {ā, b̄}. The previous study showed that the effective
spin interaction on the z bonds is suppressed in the interme-
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broad structure [see Fig. 9(a) in Appendix B]. This results
in the quick damp of the high-energy component observed in
Fig. 4(a).

3. Antiferromagnetic case: intermediate QSL

More conspicuous time evolution is found in the case of
h/|J| = 0.45, corresponding to the quench from the intermedi-
ate QSL state. Figures 4(d)–4(f) show the results. As shown
in Fig. 4(d), the magnetization exhibits two-step transient dy-
namics: a high-frequency oscillation in the early-time stage
for t/|J|−1 ! 10 and a slower oscillation in the longer-time
range of t/|J|−1 " 10. This peculiar time evolution is also
observed in the wavelet scalogram. The high-energy broad
structure exists around ω/|J| = 1.5, which quickly decays at

t/|J|−1 ∼ 10. This is attributed to the Majorana fermions {a, b}
because similar scalogram is observed for K in Fig. 4(e). [改
段落なし] On the other hand, the scalogram in Fig. 4(d) in-
dicates the enhancement of the low-energy component with
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ing that this is ascribed to the Majorana fermions {ā, b̄}.

[改段落] The results indicate that two kinds of dynamics
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the low-field QSL in Figs. 4(a)–4(c). This might be attributed
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of the Majorana fermions in the intermediate QSL phase. As
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are rewritten as the interaction between the Majorana fermions
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broad structure [see Fig. 9(a) in Appendix B]. This results
in the quick damp of the high-energy component observed in
Fig. 4(a).

3. Antiferromagnetic case: intermediate QSL

More conspicuous time evolution is found in the case of
h/|J| = 0.45, corresponding to the quench from the intermedi-
ate QSL state. Figures 4(d)–4(f) show the results. As shown
in Fig. 4(d), the magnetization exhibits two-step transient dy-
namics: a high-frequency oscillation in the early-time stage
for t/|J|−1 ! 10 and a slower oscillation in the longer-time
range of t/|J|−1 " 10. This peculiar time evolution is also
observed in the wavelet scalogram. The high-energy broad
structure exists around ω/|J| = 1.5, which quickly decays at

t/|J|−1 ∼ 10. This is attributed to the Majorana fermions {a, b}
because similar scalogram is observed for K in Fig. 4(e). [改
段落なし] On the other hand, the scalogram in Fig. 4(d) in-
dicates the enhancement of the low-energy component with
a narrow peak at ω/|J| ∼ 0.2 caused by the elapse of time.
Similar behavior is observed in K̄ [see in Fig. 4(f)], suggest-
ing that this is ascribed to the Majorana fermions {ā, b̄}.

[改段落] The results indicate that two kinds of dynamics
are separated more clearly compared to those in the case of
the low-field QSL in Figs. 4(a)–4(c). This might be attributed
to the suppression of the interaction between the two kinds
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broad structure [see Fig. 9(a) in Appendix B]. This results
in the quick damp of the high-energy component observed in
Fig. 4(a).

3. Antiferromagnetic case: intermediate QSL

More conspicuous time evolution is found in the case of
h/|J| = 0.45, corresponding to the quench from the intermedi-
ate QSL state. Figures 4(d)–4(f) show the results. As shown
in Fig. 4(d), the magnetization exhibits two-step transient dy-
namics: a high-frequency oscillation in the early-time stage
for t/|J|−1 ! 10 and a slower oscillation in the longer-time
range of t/|J|−1 " 10. This peculiar time evolution is also
observed in the wavelet scalogram. The high-energy broad
structure exists around ω/|J| = 1.5, which quickly decays at

t/|J|−1 ∼ 10. This is attributed to the Majorana fermions {a, b}
because similar scalogram is observed for K in Fig. 4(e). [改
段落なし] On the other hand, the scalogram in Fig. 4(d) in-
dicates the enhancement of the low-energy component with
a narrow peak at ω/|J| ∼ 0.2 caused by the elapse of time.
Similar behavior is observed in K̄ [see in Fig. 4(f)], suggest-
ing that this is ascribed to the Majorana fermions {ā, b̄}.

[改段落] The results indicate that two kinds of dynamics
are separated more clearly compared to those in the case of
the low-field QSL in Figs. 4(a)–4(c). This might be attributed
to the suppression of the interaction between the two kinds
of the Majorana fermions in the intermediate QSL phase. As
presented in Eq. (3), the exchange interaction on the z bonds
are rewritten as the interaction between the Majorana fermions
{a, b} and {ā, b̄}. The previous study showed that the effective
spin interaction on the z bonds is suppressed in the interme-

6

(a) FM h/ | J| = 0.0420, Mz(t)

0 20 40 60 80 100 120
t/ | J|�1

0

1

2

3

�
/|

J|

0.0

0.2

0.4

0.6

0.8

1.0

�0.1
0.0
0.1

(b) FM h/ | J| = 0.0420, K(t)

0 20 40 60 80 100 120
t/ | J|�1

0

1

2

3

�
/|

J|

0.0000
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0.0040

0.1250

0.1275

(c) FM h/ | J| = 0.0420, K̄(t)

0 20 40 60 80 100 120
t/ | J|�1

0

1

2

3

�
/|

J|

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

�0.025

0.000

(d) FM h/ | J| = 0.1500, Mz(t)

0 20 40 60 80 100 120
t/ | J|�1

0

1

2

3

�
/|

J|

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0.35

0.40

(e) FM h/ | J| = 0.1500, K(t)

0 20 40 60 80 100 120
t/ | J|�1

0

1

2

3
�

/|
J|

0.000

0.005

0.010

0.015

0.020

0.025

0.100

0.125

(f) FM h/ | J| = 0.1500, K̄(t)

0 20 40 60 80 100 120
t/ | J|�1

0

1

2

3

�
/|

J|

0.000

0.005

0.010

0.015

0.020

0.025

�0.125

�0.100

FIG. 3. Time evolutions of (a) Mz, (b) K, and (c) K̄, and their wavelet scalograms in the FM Kitaev model for the field quench from h/J = 0.03
(Kitaev QSL state). (d)–(f) Corresponding plots from h/J = 0.15 (forced-FM state). The dotted lines represent the long-time average of the
quantities.

broad structure [see Fig. 9(a) in Appendix B]. This results
in the quick damp of the high-energy component observed in
Fig. 4(a).

3. Antiferromagnetic case: intermediate QSL

More conspicuous time evolution is found in the case of
h/|J| = 0.45, corresponding to the quench from the intermedi-
ate QSL state. Figures 4(d)–4(f) show the results. As shown
in Fig. 4(d), the magnetization exhibits two-step transient dy-
namics: a high-frequency oscillation in the early-time stage
for t/|J|−1 ! 10 and a slower oscillation in the longer-time
range of t/|J|−1 " 10. This peculiar time evolution is also
observed in the wavelet scalogram. The high-energy broad
structure exists around ω/|J| = 1.5, which quickly decays at

t/|J|−1 ∼ 10. This is attributed to the Majorana fermions {a, b}
because similar scalogram is observed for K in Fig. 4(e). [改
段落なし] On the other hand, the scalogram in Fig. 4(d) in-
dicates the enhancement of the low-energy component with
a narrow peak at ω/|J| ∼ 0.2 caused by the elapse of time.
Similar behavior is observed in K̄ [see in Fig. 4(f)], suggest-
ing that this is ascribed to the Majorana fermions {ā, b̄}.

[改段落] The results indicate that two kinds of dynamics
are separated more clearly compared to those in the case of
the low-field QSL in Figs. 4(a)–4(c). This might be attributed
to the suppression of the interaction between the two kinds
of the Majorana fermions in the intermediate QSL phase. As
presented in Eq. (3), the exchange interaction on the z bonds
are rewritten as the interaction between the Majorana fermions
{a, b} and {ā, b̄}. The previous study showed that the effective
spin interaction on the z bonds is suppressed in the interme-

Real-time evolution 
magnetization and spin correlations

magnetization

kinetic energy of itinerant Majorana

kinetic energy of localized Majorana

magnetization

itinerant Majorana

localized Majorana

forced FMKitaev QSL

hSx
i S

x
j ix bond

hSx
i S

x
j iy bond

Kitaev QSL forced FM

h
Kitaev QSL forced FM

h

J. Nasu and YM, preprint (arXiv:1905.10984), to appear in Phys. Rev. Research

conventional spin precession
distinct dynamics between  

two types of Majorana



J. Nasu and YM, preprint (arXiv:1905.10984), to appear in Phys. Rev. Research

Majorana band structure 
Transient Majorana “Fermi surfaces”

11

0.00

0.10

0.05

w
k

0.25

0.20

0.15

(a)

FM h/|J|=0.042

t/|J|-1=0 (b) t/|J|-1=4.0 (c)

AFM h/|J|=0.3

t/|J|-1=0 (d) t/|J|-1=4.0

(e)

AFM h/|J|=0.45

t/|J|-1=0 (f) t/|J|-1=2.0 (g) t/|J|-1=4.0 (h) t/|J|-1=6.0

Γ K

K
M

M’

FIG. 9. Three-dimensional plots of the time evolution of the dispersion Ekµ [Eq. (14)] in the first Brillouin zone for the field quench from
(a),(b) h/|J| = 0.0420 (Kitaev QSL) in the FM case, (c),(d) h/|J| = 0.3 (Kitaev QSL) in the AFM case, and (e)–(h) h/|J| = 0.45 (intermediate
QSL) in the AFM case. The color represents the hybridization between two kinds of Majorana fermions wk [Eq. (19)] (see also Fig. 6). The
gray hexagons represent the first Brillouin zone, and the black curves on them indicate the zero-energy level corresponding to the “Fermi
surfaces” (see also Fig. 10).

appears immediately along the ky direction centered around
the M point, and a small pocket also appears around the M’
point. The latter is an open Fermi surface on the Brillouin
zone boundary, but change the topology into a closed one at
t/|J|−1 ∼ 5. This is regarded as a dynamical version of the
“Lifshitz transition” of the Majorana fermion system.

C. Time evolution of Majorana density of states

In the previous section, we found the appearance of the
transient Fermi surfaces by the magnetic-field quench. The
corresponding time evolutions of the DOS were shown in the
right panels of Fig. 6. In this section, we discuss the longer-
time dynamics of the DOS. In Fig. 11, we show the time evo-
lution of the DOS at the Fermi level, D0 = Docc(ω = 0), up
to t/|J|−1 = 100. In the FM case [Fig. 11(a)], before quench-
ing, D0 is zero for all h because the system is “semimetal”
with the point nodes in the Kitaev QSL phase for h < hc
and it is gapped in the forced-FM phase for h > hc (hc/|J| ≃
0.0421). After quenching, D0 suddenly becomes nonzero by
the quench for h < hc. In the wider time range, D0 stays al-
most constant with a slow fluctuation, as plotted in Fig. 11(a).
The overall value of D0 increases with an increase of the ini-
tial magnetic field h, as shown in Fig. 11(a). On the other
hand, in the case of the field quench from h > hc, D0 remains
zero, as exemplified at h/|J| = 0.15 in Fig. 11(a). This is
due to the presence of the gap persisting in the time evolution
from the forced-FM state. The contrasting results are explic-
itly shown by plotting the long-time average of the DOS, Dave

0 ,

as a function of the initial field in Fig. 12(a); here we compute
the average in the time range of 50 < t/|J|−1 < 200. As shown
in Fig. 12(a), Dave

0 becomes nonzero for h > 0 and monotoni-
cally increases while increasing h, but it vanishes above hc.

Figure 11(b) shows the time dependence of D0 in the AFM
case. After the field quench, large changes are observed com-
pared to the FM case, particularly in the case of the quench
from the intermediate QSL state between hc1/|J| ≃ 0.417 and
hc2/|J| ≃ 0.503, as discussed in the previous section. While
D0 is strongly enhanced in the early-time stage, it quickly con-
verges to almost constant for the longer time t/|J|−1 ! 10. Fig-
ure 12(b) shows the long-time average of the DOS, Dave

0 , in
the AFM case. As in the FM case in Fig. 12(a), Dave

0 increases
while increasing h, but suddenly jumps to a larger value at
hc1. We also find that Dave

0 shows a nonmonotonic change for
hc1 < h < hc2 [87].

In Fig. 12(b), we find that Dave
0 changes discontinuously at

hc1 despite the continuous transition in the equilibrium state
[see Fig. 2(c)]. This suggests that the time evolution enhances
the instability inherent to the equilibrium system and yields
the large difference in the long-time behavior. This is one of
the significant features originating from the nonequilibrium
dynamics.

V. DISCUSSION

In this section, we discuss the results obtained in the pre-
vious section, with a focus on the possibilities of the exper-
imental observation. In the transient dynamics of the mag-
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magnetization,asseeninFig.4(d).
Correspondingtothedrastictimeevolution,thereappears

thepositive-energybandinmanyportionsoftheBrillouin
zone,suchasaroundtheMpointandalongtheΓ-KandΓ-
M’lines,asshowninFig.6(c).Thisleadstothetransient
Fermisurfaces,whosetimedependenceismoreconspicuous
comparedtothepreviouscases,asshowninFig.9(c)[see
alsoFigs.7(e)–7(h)].Afterquenching,alargeFermisurface
appearsimmediatelyalongthekydirectioncenteredaround
theMpoint,andasmallpocketalsoappearsaroundtheM’
point.ThelatterisanopenFermisurfaceontheBrillouin
zoneboundary,butchangesitstopologyintoaclosedoneat
t/|J|−1∼5.Thisisregardedasadynamicalversionofthe
“Lifshitztransition”oftheMajoranafermionsystem.

C.TimeevolutionofMajoranadensityofstates

Intheprevioussection,wefoundtheappearanceofthe
transientFermisurfacesbythemagnetic-fieldquench.The
correspondingtimeevolutionsoftheDOSwereshowninthe
rightpanelsofFig.6.Inthissection,wediscussthelonger-
timedynamicsoftheDOS.InFig.10,weshowthetimeevo-
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t/|J|−1=100.IntheFMcase[Fig.10(a)],beforequenching,
D0iszeroforallhbecausethesystemis“semimetal”with
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gappedintheforced-FMphaseforh>hc(hc/|J|≃0.0421)
[seeFigs.5(a)–5(c)].Afterquenching,D0suddenlybecomes
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widertimerange,D0staysalmostconstantwithaslowfluc-
tuation,asplottedinFig.10(a).TheoverallvalueofD0in-
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FIG. 5. Time evolution of the dispersion Ekµ [Eq. (14)], the hybridization between two kinds of Majorana fermions, wk [Eq. (19)], and the
occupied DOS Docc [Eq. (16)] for (a) the Kitaev QSL in the FM case at h/|J| = 0.042, (b) the Kitaev QSL in the AFM case at h/|J| = 0.3, and
(c) the intermediate QSL in the AFM case at h/|J| = 0.45. The dispersions are shown along the red line in the Brillouin zone depicted in the
upper right. [Brillouin zoneの図は Fig. 1に一緒にしてしまって、ここは (a)-(c)を縦に並べてはどうでしょうか] [wk のプロットはもう
少し縦幅があった方が見やすいかもしれません]

state of the two bands, whose energy is given by

Eg =
∑

k

∑

µ=−1,−2

Ekµ

2
. (15)

[1/2の factorについて一言コメントがあった方が良い?] The
density of states (DOS) of the occupied bands is defined as

Docc(ω) =
1
N

∑

k

∑

µ=−1,−2

δ(ω − Ekµ). (16)

[下添字 occはなくても良いかもしれない]
[改段落] In the time-dependent Majorana MF method, the

filled bands evolve adiabatically, and therefore, the two bands
remain to be fully occupied in the time development after the
field quench. The excitations are represented by the annihila-
tion of the fermions in these time-dependent bands. To track
the hybridization after the field quench, we introduce the oc-
cupancy ratios for two kinds of Majorana fermions {a, b} and
{ā, b̄} as

nkµ = ⟨φkµ|
(
a†kak + b†kbk

)
|φkµ⟩ (17)

and

n̄kµ = 1 − nkµ = ⟨φkµ|
(
ā†kāk + b̄†kb̄k

)
|φkµ⟩, (18)

respectively, where ck (c = a, b, ā, b̄) is the Fourier transform
of c j (see Appendix A). When the Majorana fermions are hy-
bridized, nkµ and n̄kµ take values between 0 and 1. Therefore,
as a measure of the hybridization, we compute

wkµ = nkµ(1 − n̄kµ). (19)

Note that this quantity does not depend on the band, and
hence, we drop the band index µ and denote it as wk hereafter.

1. Ferromagnetic case

First, we discuss the time evolution of the Majorana
fermionic states in the FM case. Figure 5(a) shows the time
evolution of the band structure after the field quench from the
Kitaev QSL state at h/|J| = 0.042, which is just below hc
[see Fig. 2(a)]. Before quenching, there is a point node be-
tween the K′ and M′ points in the Brillouin zone [see the
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filled bands evolve adiabatically, and therefore, the two bands
remain to be fully occupied in the time development after the
field quench. The excitations are represented by the annihila-
tion of the fermions in these time-dependent bands. To track
the hybridization after the field quench, we introduce the oc-
cupancy ratios for two kinds of Majorana fermions {a, b} and
{ā, b̄} as
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of c j (see Appendix A). When the Majorana fermions are hy-
bridized, nkµ and n̄kµ take values between 0 and 1. Therefore,
as a measure of the hybridization, we compute

wkµ = nkµ(1 − n̄kµ). (19)

Note that this quantity does not depend on the band, and
hence, we drop the band index µ and denote it as wk hereafter.

1. Ferromagnetic case

First, we discuss the time evolution of the Majorana
fermionic states in the FM case. Figure 5(a) shows the time
evolution of the band structure after the field quench from the
Kitaev QSL state at h/|J| = 0.042, which is just below hc
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of c j (see Appendix A). When the Majorana fermions are hy-
bridized, nkµ and n̄kµ take values between 0 and 1. Therefore,
as a measure of the hybridization, we compute

wkµ = nkµ(1 − n̄kµ). (19)

Note that this quantity does not depend on the band, and
hence, we drop the band index µ and denote it as wk hereafter.
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FIG. 4. Time evolutions of (a) Mz, (b) K, and (c) K̄, and their wavelet scalograms in the AFM Kitaev model for the field quench from
h/J = 0.15 (Kitaev QSL state). (d)–(f) Corresponding plots from h/J = 0.45 (intermediate QSL state). The dotted lines represent the
long-time average of the quantities.

diate phase [52]. This suggests that the scattering procedure
is suppressed and the mixing between two kinds of Majorana
fermions is maintained even after the quench of the magnetic
field. [mixingが maintain → clear distinction of the dynam-
ics?]

C. Time evolution of Majorana bands

In the previous section, we focus on the time evolution of
the magnetization and clarify how the spin fractionalization
manifests itself as the distinct life times of the quasiparticles.
The quasiparticles, itinerant and localized Majorana fermions,
are hybridized in the presence of the magnetic filed and the
mixing is retained even after the field quench due to the retar-
dation effect. This will induce the exotic feature of the Majo-

rana fermions unexpected in equilibrium systems. In this sec-
tion, we examine the time evolution of the Majorana fermion
band to demonstrate characteristic non-equilibrium dynamics
inherent to the Majorana fractional quasiparticles.

Before showing the results, we first clarify the definition of
the Majorana band structure to avoid its ambiguity. The HF
Hamiltonian is originally described by the Majorana fermions
but we introduce complex fermions f †kµ with µ being the band
index to diagonalize this as

HHF =
∑

k

∑

µ=−1,−2

Ekµ

(
f †kµ fkµ −

1
2

)
. (14)

The detail is given in Appendix A. As the energy Ekµ is nega-
tive for µ < 0, the ground state is described by the fully occu-
pied state for the two bands with µ = −1,−2 and its energy is
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FIG. 4. Time evolutions of (a) Mz, (b) K, and (c) K̄, and their wavelet scalograms in the AFM Kitaev model for the field quench from
h/J = 0.3 (Kitaev QSL state). (d)–(f) Corresponding plots from h/J = 0.45 (intermediate QSL state). The dotted lines represent the long-time
average of the quantities.

4. Antiferromagnetic case: intermediate QSL

More conspicuous time evolution of the magnetization is
found in the case of h/|J| = 0.45, corresponding to the quench
from the intermediate QSL state between hc1/|J| ≃ 0.417 and
hc2/|J| ≃ 0.503. As shown in Fig. 4(d), the magnetization
exhibits two-step transient dynamics: a high-frequency oscil-
lation in the early-time stage and a slower oscillation in the
longer-time range. This peculiar time evolution is clearly ob-
served in the wavelet scalogram. The high-energy broad struc-
ture appears for 1 ! ω/|J| ! 3, which quickly decays for
t/|J|−1!10. This can be attributed to the Majorana fermions
{a, b} because similar scalogram is observed for K in Fig. 4(e).
Similar correspondence was observed also for the low-field
QSL case in Figs. 4(a) and 4(b). On the other hand, the scalo-
gram in Fig. 4(d) indicates the enhancement of the low-energy

component with a narrow peak at ω/|J| ∼ 0.2 caused by the
elapse of time. Similar behavior is observed in K̄ shown
in Fig. 4(f), suggesting that this is ascribed to the Majorana
fermions {ā, b̄}. Thus, the dynamics of the magnetization re-
flects both features of {a, b} and {ā, b̄} in this case. This be-
havior will be discussed in Sec. IV B 4.

B. Time evolution of Majorana bands

In the previous section, we clarified the time evolutions of
the magnetization and spin correlations, and elucidated how
the spin fractionalization manifests itself in the transient dy-
namics through the distinct lifetimes of the quasiparticles. The
quasiparticles, Majorana fermions {a, b} and {ā, b̄}, are hy-
bridized in the presence of the magnetic field, and the hy-
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FIG. 9. Three-dimensional plots of the time evolution of the dispersion Ekµ [Eq. (14)] in the first Brillouin zone for the field quench from
(a),(b) h/|J| = 0.0420 (Kitaev QSL) in the FM case, (c),(d) h/|J| = 0.3 (Kitaev QSL) in the AFM case, and (e)–(h) h/|J| = 0.45 (intermediate
QSL) in the AFM case. The color represents the hybridization between two kinds of Majorana fermions wk [Eq. (19)] (see also Fig. 6). The
gray hexagons represent the first Brillouin zone, and the black curves on them indicate the zero-energy level corresponding to the “Fermi
surfaces” (see also Fig. 10).

appears immediately along the ky direction centered around
the M point, and a small pocket also appears around the M’
point. The latter is an open Fermi surface on the Brillouin
zone boundary, but change the topology into a closed one at
t/|J|−1 ∼ 5. This is regarded as a dynamical version of the
“Lifshitz transition” of the Majorana fermion system.

C. Time evolution of Majorana density of states

In the previous section, we found the appearance of the
transient Fermi surfaces by the magnetic-field quench. The
corresponding time evolutions of the DOS were shown in the
right panels of Fig. 6. In this section, we discuss the longer-
time dynamics of the DOS. In Fig. 11, we show the time evo-
lution of the DOS at the Fermi level, D0 = Docc(ω = 0), up
to t/|J|−1 = 100. In the FM case [Fig. 11(a)], before quench-
ing, D0 is zero for all h because the system is “semimetal”
with the point nodes in the Kitaev QSL phase for h < hc
and it is gapped in the forced-FM phase for h > hc (hc/|J| ≃
0.0421). After quenching, D0 suddenly becomes nonzero by
the quench for h < hc. In the wider time range, D0 stays al-
most constant with a slow fluctuation, as plotted in Fig. 11(a).
The overall value of D0 increases with an increase of the ini-
tial magnetic field h, as shown in Fig. 11(a). On the other
hand, in the case of the field quench from h > hc, D0 remains
zero, as exemplified at h/|J| = 0.15 in Fig. 11(a). This is
due to the presence of the gap persisting in the time evolution
from the forced-FM state. The contrasting results are explic-
itly shown by plotting the long-time average of the DOS, Dave

0 ,

as a function of the initial field in Fig. 12(a); here we compute
the average in the time range of 50 < t/|J|−1 < 200. As shown
in Fig. 12(a), Dave

0 becomes nonzero for h > 0 and monotoni-
cally increases while increasing h, but it vanishes above hc.

Figure 11(b) shows the time dependence of D0 in the AFM
case. After the field quench, large changes are observed com-
pared to the FM case, particularly in the case of the quench
from the intermediate QSL state between hc1/|J| ≃ 0.417 and
hc2/|J| ≃ 0.503, as discussed in the previous section. While
D0 is strongly enhanced in the early-time stage, it quickly con-
verges to almost constant for the longer time t/|J|−1 ! 10. Fig-
ure 12(b) shows the long-time average of the DOS, Dave

0 , in
the AFM case. As in the FM case in Fig. 12(a), Dave

0 increases
while increasing h, but suddenly jumps to a larger value at
hc1. We also find that Dave

0 shows a nonmonotonic change for
hc1 < h < hc2 [87].

In Fig. 12(b), we find that Dave
0 changes discontinuously at

hc1 despite the continuous transition in the equilibrium state
[see Fig. 2(c)]. This suggests that the time evolution enhances
the instability inherent to the equilibrium system and yields
the large difference in the long-time behavior. This is one of
the significant features originating from the nonequilibrium
dynamics.

V. DISCUSSION

In this section, we discuss the results obtained in the pre-
vious section, with a focus on the possibilities of the exper-
imental observation. In the transient dynamics of the mag-
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Experimental relevance

typical timescale of the fractional dynamics ~10-100 ps: 
optical techniques, such as Faraday and Kerr effects, might be 
applicable to the observation 

useful for identifying fractional excitations and 
distinguishing topological phases 

transient Fermi surfaces: Peierls instability? hidden phases, 
such as dimerized phases through the coupling to lattice 
deformations and symmetry-breaking phases by spontaneous 
Majorana ordering via quantum many-body effects? 

NB. Dissipation is neglected in the present calculations. 

J. Nasu and YM, preprint (arXiv:1905.10984), to appear in Phys. Rev. Research



How to materialize Kitaev QSL



Jackeli-Khaliullin mechanism
G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009)

spin-orbit entangled Mott insulator 
with Jeff=1/2 Kramers doublet

interference between d-p-d transfers  
(e.g., edge-sharing octahedra)

!ð! Þ was obtained by using Kramers-Kronig (KK) trans-
formation. The validity of KK analysis was checked by
independent ellipsometry measurements between 0.6 and
6.4 eV. XAS spectra were obtained at 80 K under vacuum
of 5 # 10$ 10 Torr at the Beamline 2A of the Pohang Light
Source with !h" ¼ 0:1 eV.

Here we propose a schematic model for emergence of a
novel Mott ground state by a large SO coupling energy #SO
as shown in Fig. 1. Under the Oh symmetry the 5d states
are split into t2g and eg orbital states by the crystal field
energy 10Dq. In general, 4d and 5d TMOs have suffi-
ciently large 10Dq to yield a t52g low-spin state for

Sr2IrO4, and thus the system would become a metal with
partially filled wide t2g band [Fig. 1(a)]. An unrealistically
large U & W could lead to a typical spin S ¼ 1=2 Mott
insulator [Fig. 1(b)]. However, a reasonable U cannot lead
to an insulating state as seen from the fact that Sr2RhO4

is a normal metal. As the SO coupling is taken into
account, the t2g states effectively correspond to the orbital

angular momentum L ¼ 1 states with  m l¼'1 ¼ (ðjzxi'
ijyziÞ=

ffiffiffi
2

p
and  m l¼0 ¼ jxyi. In the strong SO coupling

limit, the t2g band splits into effective total angular mo-
mentum Jeff ¼ 1=2 doublet and Jeff ¼ 3=2 quartet bands
[Fig. 1(c)] [17]. Note that the Jeff ¼ 1=2 is energetically
higher than the Jeff ¼ 3=2, seemingly against the Hund’s
rule, since the Jeff ¼ 1=2 is branched off from the J5=2
(5d5=2) manifold due to the large crystal field as depicted in
Fig. 1(e). As a result, with the filled Jeff ¼ 3=2 band and

one remaining electron in the Jeff ¼ 1=2 band, the system
is effectively reduced to a half-filled Jeff ¼ 1=2 single band
system [Fig. 1(c)]. The Jeff ¼ 1=2 spin-orbit integrated
states form a narrow band so that even small U opens a
Mott gap, making it a Jeff ¼ 1=2Mott insulator [Fig. 1(d)].
The narrow band width is due to reduced hopping elements
of the Jeff ¼ 1=2 states with isotropic orbital and mixed
spin characters. The formation of the Jeff bands due to the
large #SO explains why Sr2IrO4 (#SO )0:4 eV) is insulat-
ing while Sr2RhO4 (#SO )0:15 eV) is metallic.
The Jeff band formation is well justified in the LDA and

LDAþU calculations on Sr2IrO4 with and without in-
cluding the SO coupling presented in Fig. 2. The LDA
result [Fig. 2(a)] yields a metal with a wide t2g band as in
Fig. 1(a), and the Fermi surface (FS) is nearly identical to
that of Sr2RhO4 [12,13]. The FS, composed of one-
dimensional yz and zx bands, is represented by holelike
$ and %X sheets and an electronlike %M sheet centered at
", X, and M points, respectively [12]. As the SO coupling
is included [Fig. 2(b)], the FS becomes rounded but retains
the overall topology. Despite small variations in the FS
topology, the band structure changes remarkably: Two
narrow bands crossing EF are split off from the rest due

FIG. 1. Schematic energy diagrams for the 5d5 (t52g) configu-
ration (a) without SO and U, (b) with an unrealistically large U
but no SO, (c) with SO but no U, and (d) with SO and U.
Possible optical transitions A and B are indicated by arrows.
(e) 5d level splittings by the crystal field and SO coupling.
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FIG. 2 (color online). Theoretical Fermi surfaces and band
dispersions in (a) LDA, (b) LDAþSO, (c) LDAþSOþU
(2 eV), and (d) LDAþU. In (c), the left panel shows topology
of valence band maxima (EB ¼ 0:2 eV) instead of the FS.
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for the symmetry of the intersite interactions. Namely, the
very form of the exchange Hamiltonian depends on bond
geometry through a density profile of Kramers states, as we
demonstrate below.

Exchange couplings of neighboring Kramers states.—
We consider the limit of the strong spin-orbit coupling, i.e.,
when ! is larger than exchange interaction between the
isospins. The exchange Hamiltonians for isospins are then
obtained by projecting the corresponding superexchange
spin-orbital models onto the isospin states Eq. (1). First, we
present the results for the case of cubic symmetry (! ¼ 0,
sin"¼ 1=

ffiffiffi
3

p
), and discuss later the effects of a tetragonal

distortion. We consider two common cases of TM-O-TM
bond geometries: (A) a 180"-bond formed by corner-
shared octahedra as in Fig. 2(a), and (B) a 90"-bond
formed by edge-shared ones, Fig. 2(b).

(A) A 180" bond: For this geometry, the nearest-
neighbor t2ghopping matrix is diagonal in the orbital space
and, on a given bond, only two orbitals are active, e.g., jxyi
and jxzi orbitals along a bond in x-direction [Fig. 2(a)].
The spin-orbital exchange Hamiltonian for such a system
has already been reported: see Eq. (3.11) in Ref. [12]. After
projecting it onto the ground state doublet, we find an
exchange Hamiltonian for isospins in a form of

Heisenberg plus a pseudodipolar interaction,

H ij ¼ J1 ~Si # ~Sj þ J2ð ~Si # ~rijÞð~rij # ~SjÞ; (2)

where ~Si is theS¼ 1=2 operator for isospins (referred to as
simply spins from now on), ~rij is the unit vector along the
ij bond, and J1ð2Þ ¼ 4

9#1ð2Þ. Hereafter, we use the energy
scale 4t2=U where t is a dd-transfer integral through an
intermediate oxygen, and U stands for the Coulomb re-
pulsion on the same orbitals. The parameters #1ð2Þ control-
ling isotropic (anisotropic) couplings are given by
#1 ¼ ð3r1 þ r2 þ 2r3Þ=6 and #2 ¼ ðr1 ' r2Þ=4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio $ ¼ JH=U of
Hund’s coupling and U [24]. At small $, one has #1 ’ 1
and #2 ’ $=2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolarlike anisotropy term.
While the overall form of Eq. (2) could be anticipated
from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO coupling,
the magnetic degrees are governed by a nearly Heisenberg
model just like in the case of small !, and, surprisingly
enough, its anisotropy is entirely due to the Hund’s cou-
pling. This is opposite to a conventional situation: typi-
cally, the anisotropy corrections are obtained in powers of
! while the Hund’s coupling is not essential.
(B) A 90" bond: There are again only two orbitals active

on a given bond, e.g., jxzi and jyzi orbitals along a bond in
the xy-plane. However, the hopping matrix has now only
nondiagonal elements, and there are two possible paths for
a charge transfer [via upper or lower oxygen, see Fig. 2(b)].
This peculiarity of a 90" bond leads to an exchange
Hamiltonian drastically different from that of a 180" ge-
ometry. Two transfer amplitudes via upper and lower oxy-
gen interfere in a destructive manner and the isotropic part
of the Hamiltonian exactly vanishes. The finite, anisotropic
interaction appears, however, due to the JH-multiplet struc-
ture of the excited levels. Most importantly, the very form
of the exchange interaction depends on the spatial orienta-
tion of a given bond. We label a bond ij laying in the %&
plane perpendicular to the 'ð¼ x; y; zÞ axis by a (')-bond.
With this in mind, the Hamiltonian can be written as

H ð'Þ
ij ¼ ' JS'i S

'
j ; (3)

with J ¼ 4
3#2. Remarkably, this Hamiltonian is precisely a

quantum analog of the so-called compass model. The latter,
introduced originally for the orbital degrees of freedom in
Jahn-Teller systems [5], has been the subject of numerous
studies as a prototype model with protected ground state
degeneracy of topological origin (see, e.g., Ref. [25]).
However, to our knowledge, no magnetic realization of
the compass model has been proposed so far.
Implementing the Kitaev model in Mott insulators.—The

Kitaev model is equivalent to a quantum compass model on
a honeycomb lattice [26]. It shows a number of fascinating
properties such as anyonic excitations with exotic frac-

isospin up spin up, lz=0 spin down, lz=1

+=

FIG. 1 (color online). Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition of a
spin up hole density in jxyi-orbital, lz ¼ 0 (middle), and spin
down one in ðjyzi þ ijxziÞ state, lz ¼ 1 (right).
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FIG. 2 (color online). Two possible geometries of a TM-O-TM
bond with corresponding orbitals active along these bonds. The
large (small) dots stand for the transition metal (oxygen) ions.
(a) A 180"-bond formed by corner-shared octahedra, and (b) a
90"-bond formed by edge-shared octahedra.

PRL 102, 017205 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 JANUARY 2009

017205-2

G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009)
Sy
i S

y
j

Sx
i S

x
j

Sz
i S

z
j
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two requisites for realizing the Kitaev-type anisotropic interactions              



Candidate materials

Cu2IrO3 (REF.42) can be synthesized using a soft-chemical 
ion-exchange reaction, by soaking powder of α-Li2IrO3 
(or Na2IrO3 for Cu2IrO3) in a molten salt or aqueous 
solution containing A´ ions. Only polycrystalline pow-
der is available for the second-generation materials at 
the time of writing. The single-crystal growth of these 
materials is challenging but crucially important for  
further investigations.

Behaviour of Kitaev candidates
Electronic properties. All the Kitaev candidate materials 
listed in TABLE 1 exhibit an insulating behaviour and a 
localized moment magnetism, indicating that they are 
Jeff = 1/2 spin-orbital Mott insulators. The optical con-
ductivity spectrum for Na2IrO3 shows a sizeable charge 
gap of ~300 meV (REF.59), which is consistent with an 
activation energy in the resistivity of ~100 meV at room 
temperature40,60. Transport activation energies compa-
rable to that of Na2IrO3 have been observed in the other 
honeycomb-based iridium oxides44,52, implying similar 
charge gaps. The relatively small size of the charge gap 
suggests that they form weak Mott insulators owing to 
the moderate Coulomb repulsion U ≈ 2 eV. For α-RuCl3, 
optical conductivity measurements show a charge gap 
of ~1 eV, substantially larger than that of Na2IrO3, likely 
reflecting a larger U for 4d Ru and a narrow bandwidth 
originating from the strong ionicity of chloride61.

In the resonant inelastic X-ray scattering spectra at the 
Ir L3 (2p3/2→5d) edge for Na2IrO3, α-Li2IrO3 and β-Li2IrO3, 
the presence of low-energy excitations of ~0.7 eV is com-
monly observed62,63, which corresponds to the excitation 
energy of 3λSO/2 from Jeff = 1/2 to 3/2 within the t2g mani-
fold, and indicates a spin–orbit coupling λSO ≈ 0.4–0.5 eV.  
A splitting of the 0.7 eV peak is observed62, likely origi-
nating from the splitting of Jeff = 3/2 states due to the 

trigonal lattice distortion of IrO6 octahedron. The splitting 
is smaller than 3λSO/2 ≈ 0.7 eV, meaning that the Jeff = 1/2 
picture is valid as a first approximation, but the effect of the 
trigonal crystal field may not be negligibly small.

The presence of excitations between Jeff = 1/2 and  
Jeff = 3/2 in analogues to the iridates was identified by INS 
in α-RuCl3

 (REF.64) and is consistent with the expected λSO 
of 0.1 eV for 4d Ru. Despite the small spin–orbit coup-
ling, the Jeff = 1/2 picture holds for α-RuCl3 and is likely 
an even better approximation than that in the iridium 
oxides. The RuCl6 octahedron is less trigonally distorted 
than the IrO6 octahedra in the iridium oxides, which 
reduces the crystal-field splitting to a smaller value than 
the spin–orbit coupling of λSO ≈ 0.1 eV (REF.65).

Jeff = 1/2 magnetism. A numerical calculation of mag-
netic susceptibility χ(T) for the Kitaev model with uni-
form ferromagnetic couplings K = Kx = Ky = Kz indicates 
an isotropic Curie–Weiss behaviour at high tempera-
tures, with a Curie constant for S = 1/2 and g = 2 and with 
a ferromagnetic Curie–Weiss temperature θCW = K/4.  
Upon lowering T below ~K/kB, χ(T) deviates downwards 
from the Curie–Weiss behaviour and crosses over to 
almost T-independent behaviour around a charac-
teristic temperature TH below which the spin–spin  
correlations saturate66.

The magnetic susceptibilities χ(T) of the Kitaev 
candidate compounds40,67 are summarized in FIG. 4a,b. 
The relevant magnetic parameters estimated from χ(T) 
in FIG. 4 are listed in TABLE 1. The Curie–Weiss behav-
iour at high temperatures is indicative of the localized 
moment magnetism. The effective moments, deter-
mined from the slope of the linear behaviour of χ−1(T), 
are close to peff = 1.73 μB expected for the pure Jeff = 1/2 
state, and equivalent to the case of S = 1/2 and g = 2, 

Table 1 | Representative Kitaev candidate materials and a summary of their physical properties

Materials Crystal 
structure 
(space group)

Tmag Anisotropy peff (μB) θCW (K) Magnetic ground state Refs

Na2IrO3 2D (C2/m) 15 K χc > χab 1.81 (ab)

1.94 (c)

−176 (θab)

−40 (θc)

Zigzag 40,60,68,69

α-Li2IrO3 2D (C2/m) 15 K χab > χc 1.50 (ab)

1.58 (c)

+5 (θab),

−250 (θc)

Spiral 44,56,71

H3LiIr2O6 2D (C2/m) – χab > χc 1.60 −105 Spin-liquid 46

Cu2IrO3 2D (C2/c) 2.7 K Not known 1.93 (1) −110 Antiferromagnetic order 
or spin-glass

42

Cu3LiIr2O6 2D (C2/c) 15 K Not known 2.1 (1) −145 Antiferromagnetic order 49

Ag3LiIr2O6 2D (R-3ma) ~12 K Not known 1.77 Antiferromagnetic order 48

α-RuCl3 2D (C2/m or 
P3112, or R-3);

T and sample 
dependent

7 K and/or 
14 K  
(see text)

χab > χc 2.33 (ab),

2.71 (c)

+39.6(θab),

−216.4 (θc)

Zigzag 51,58,67, 

70,130

β-Li2IrO3 3D (Fddd) 38 K χb > χc > χa 1.87 (a)

1.80 (b)

1.97 (c)

−90.2 (θa)

+12.9 (θb)

+21.6 (θc)

Spiral 52,72,93

γ-Li2IrO3 3D (Cccm) 39.5 K χb > χc > χa ~1.6 +40 Spiral 53,73

aR-3m assumed in REF.48 because of strong stacking disorder.
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H. Takagi, T. Takayama, G. Jackeli, G. Khaliullin, and S. E. Nagler, Nat. Rev. Phys. 1, 264 (2019)

All the existing candidates are believed to have 
the ferro Kitaev interactions arising from the J-K mechanism.

Q. how to materialize AFM Kitaev interactions?



4f1 electron compounds

S. Jang, R. Sano, Y. Kato, and YM, Phys. Rev. B 99, 241106(R) (2019) 
cf. F.-Y. Li, Y.-D. Li, Y. Yu, A. Paramekanti, and G. Chen, Phys. Rev. B 95, 085132; J. G. Rau and M. J. P. Gingras, Phys. Rev. B 98, 054408 (2018)



Polar spin-orbit Mott insulator

Y. Sugita, Y, Kato, and YM, preprint (arXiv:1905.12139)
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FIG. 1. (a) Schematic picture of a monolayer of polar honeycomb-
layered transition metal compounds. The large and small spheres
represent the transition metal cations and the ligand ions, respec-
tively. The color gradation of the octahedra depicts polar asymme-
try in the perpendicular direction to the honeycomb plane. The red,
blue, and green bonds denote the x, y, and z bonds, respectively [see
Eq. (1)]. The labels A and B indicate two sublattices of the honey-
comb structure. The orthogonal xyz axes are taken along the direc-
tions from a cation to the surrounding ligands in the ideal octahedron.
(b) Energy levels of the low-spin d5-electron configuration under the
cubic CEF and the SOC. The black dots indicate d electrons.

terms as H = Hhop + Hint + HSOC + Htri [15].
The first term Hhop describes the kinetic energy of holes.

We here take into account the transfer integrals between
nearest-neighbor cations only [46]. Hhop is written in the ma-
trix form of

Hhop = −
∑

⟨i j⟩
c†i
(
T̂γi j ⊗ σ̂0

)
c j + h.c., (1)

where T̂γi j denotes the transfer integrals given below, σ̂0 is the
identity matrix, and c†i =

(
c†i yz ↑ c†i yz ↓ c†i zx ↑ c†i zx ↓ c†i xy ↑ c†i xy ↑

)
;

c†imσ (cimσ) is the creation (annihilation) operator of a hole at
site i with orbital dm (m = yz, zx, or xy) and spin σ =↑ or
↓ (the spin quantization axis is taken along the [001] axis).
Here, sites i and j belong to the A and B sublattices of the
honeycomb lattice, respectively, ⟨i j⟩ denotes nearest-neighbor
pairs, and γi j = x, y, z denotes the γi j bond between the sites
i and j [see Fig. 1(a)]. From the crystalline symmetry, the
transfer integrals, for instance, on the z bonds, are given by

T̂z =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 t2 − η1/2 t4 + η2/2
t2 + η1/2 t1 t4 − η2/2
t4 − η2/2 t4 + η2/2 t3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2)

When the system is nonpolar, η1 and η2 both vanish. Further-
more, t4 and η2 are small when the octahedra are not largely
distorted [12]. In such cases, the exchange processes via t2
predominantly contribute to FM Kitaev interactions [5, 13–
15].

(a) (b)

jeff =3/2 Coulomb
interactions

Coulomb
interactions

jeff =1/2

hole

FIG. 2. Perturbation processes (a) within the jeff = 1/2 states and (b)
via the jeff = 3/2 states.

The second term Hint denotes the onsite Coulomb interac-
tions, which is given by

Hint =
1
2

∑

mnm′n′
Umnm′n′

∑

i

∑

σσ′
c†imσc†inσ′cin′σ′cim′σ. (3)

Assuming the rotational symmetry of the Coulomb interac-
tion, we set Ummmm = U, Umnmn = U − 2JH, and Umnnm =
Ummnn = JH (m ! n), where U is the intraorbital Coulomb
interaction and JH is the Hund’s coupling, respectively [47].
The third and last terms in H describe the SOC and the trigo-
nal CEF splitting as

HSOC = −
λ

2

∑

i

c†i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 iσ̂z −iσ̂y
−iσ̂z 0 iσ̂x
iσ̂y −iσ̂x 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ci, (4)

Htri = −
∑

i

c†i

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ∆tri ∆tri
∆tri 0 ∆tri
∆tri ∆tri 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ⊗ σ̂0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ ci, (5)

respectively, where σ̂α (α=x, y, and z) is the Pauli matrix.
The t2g manifold is split into jeff = 1/2 doublet and jeff =

3/2 quartet under the SOC, and the ground state is given by a
single-hole state in the jeff = 1/2 manifold per site [Fig. 1(b)].
When the Coulomb interactions localize the holes to form the
spin-orbit Mott insulating state [48], the low-energy physics
is governed by the exchange interactions between two pseu-
dospins describing the Kramers pair of the jeff = 1/2 states.
The effective interactions on neighboring sites can be de-
rived by using the second-order perturbations in terms of the
hopping transfers in Eq. (1), which are summarized into the
generic form of Hspin =

∑
⟨i j⟩ S

T
i Ĵγi jS j, where Si denotes the

pseudospin operator at site i. From the crystalline symmetry,
the exchange interactions Ĵγi j , e.g., for the z bonds, are written
as

Ĵz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

J D + Γ −D′ + Γ′
−D + Γ J D′ + Γ′
D′ + Γ′ −D′ + Γ′ J + K

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6)

where J is the coupling constant for the isotropic Heisenberg
exchange interaction, K is for the Kitaev interaction, Γ and Γ′
are for the off-diagonal symmetric exchanges interactions, and
D and D′ are for the Dzyaloshinkii-Moriya interactions [12,
15]. The coupling constants for the x and y bonds are obtained
by the threefold rotations on Eq. (6).

When neglecting the trigonal CEF, there are only two types
of perturbation processes within the t2g manifold contributing

K / 1

U
K / JH

U2

mixed anion

surface/interface, …



Summary and perspectives
Signatures of fractional excitations in a 
magnetic field at finite temperature T 

- extremely wide fractional state beyond the critical field at T=0 
- Majorana-magnon crossover: confinement-deconfinement 
➡ further comparison between theory and experiments, more 

sophisticated theory for lower T in the field, …

Real-time dynamics of fractional excitations 
by magnetic field quench 

- distinct time evolution of two types of fractional excitations 
- transient Majorana fermi surfaces: dynamical Lifshitz transition 
➡ experimental confirmation, other real-time dynamics, …

How to materialize the Kitaev model with 
antiferromagnetic Kitaev interactions 

- 4f1 electron compounds A2PrO3 
- polar spin-orbit Mott insulators 
➡ experimental confirmation, other sorts of candidates, …
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