Exceptional Topology of
Non-Hermitian Systems
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Fantasy or reality”

e Complex energies, non-unitary time-evolution, ...,
Pandora’s box!?

Reality:

e Dissipative systems — experiments!

e Photonic systems with gain and/or loss

_|
-

e Various classical mechanical, electrical, robotic
and optical metamaterials

10cm’

* Open, non-equilibrium systems — toy
alternative to the Lindblad master equation

't

» Effective description of systems with finite lifetime states ~ Im[FE] ~ 1/7

Need:

e Basic theory!



lodgay:

* Minimal example

* Exceptional nodal phases

e Biorthogonal bulk-boundary
correspondence




Minimal example:
a two-level system

0 o
H:(1 O) a#£ 1

e Take home: Exceptional degeneracies & Square roots



A two-level system

0 «
H =
1 O
* Eigenvalues generally complex EFi+ = v/«
- Winding of @ twice yield a Note the branch point
winding of F4 only once! and branch cut
» Non-orthogonal eigenvectors — J, , — ::i/a
- Left and right
eigenvectors are different \IjLa o (1 — \/a)



An exceptional point  (a=0)

=1y

* Doubly degenerate eigenvalue EL =20

* But only one normalisable eigenvector! Wp | =

- The left eigenvector
is the “opposite” \IJL,:

=

» “Exceptional points” (EPs) with singular behaviour

- Rare, measure zero in the space of matrices

0 E(a)| = o

- Diverging response

* When can we expect EPs to occur and what are
their consequences?



Exceptional nodal phases
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* Take home: Abundant & conceptually rich



A step back:
Band crossings in Hermitian systems

* When can we expect two energy bands to cross at a single point?
C. Herring, Phys. Rev. 52 365 (1937)

ds(K) + do(k)  di (k) — ida(k)
H(k) = <d1<k> +idy(K) —ds(k) + d0<k>> E
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B(K) = /a3 (k) + d3(K) + d3(K) + do(K) = =

- 3 equations "-‘gbl"-‘--'- i N P .'.'.-bI‘
- Fine-tuning in 2d
- Stable and generic in 3d!

e Simplest case — the Weyl Hamiltonian H=vk: o




What about the non-Hermitian case?

H(k) = d(k) -0  now with d(k) — dR(k) + Zdl(k>

E(k) = £v/dg(k)? — di(k)? + 2idg (k) - di(k)

* Generic band crossings from tuning only two parameters! (Pancharatnam, Berry, ...)

- Look at E? (k) in2d

dg -d; =0
d%{—d%:() —

T

* EPs come in pairs and are generic in 2d, hence much more abundant than
In the Hermitian case!



Spectral features

* EPs are non-analytical,
“square roots of Weyl points”

0.05

« E(k) is different than what one naively infers from E?(k)!

Re[E(k)]  Im[E(k)]
| .

- 2d bulk Fermi arcs! V. Kozi and L. Fu, arXiv:1708.0584 |



| et’s have a closer look: arcs

E(k) = +/dr (k)2 — di(k)2 + 2idg (k) - d; (k)

* Fermiarcs Re[E] =0 when dr-di=0 and d3 —dj <0 {/
» i-Fermiarcs Im[E] =0 when dr-d; =0 and d% —d7 >0 ‘

* |rremovable degeneracies; generic (d-1)-dimensional open nodal surfaces/arcs



Splitting Weyl/Dirac points

* Minimal 2d model

H=%Fk, o,

+ kyoy + €0y

% FE = -

(B2 4 B2 = € 4 2iek,




e Fermi arcs observed in
photonic crystal slabs with
losses

H.Zhou, et. al. Science p. eaap9859 (2018)

* These experiments directly
measure Re|E(k)|!

A Experiments B Simulations
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—Xperimental olbservation of 2d bulk Fermi arcs

- Light scattering,

ISO-frequency
contours vs.
theoretical band
structure



Mater|a| Ju nCthnS? EJ. Bergholtz and J.C. Budich,

Phys. Rev. Research |, 012003 (2019)

e Example: 3d Topological insulator
coupled to a ferromagnetic lead

HNH - H EE(C&J — O)

- Surface theory + lead self energy:

H = Mkyo,—ky0,) +37(0) —Bo, =¢ +d-o

‘min(|]AE|)
0.25
e Symmetry protected state promoted to a B
generic topological phase! g0 NH Weyl |
ed
- Sufficiently generic coupling needed i 5‘ | A,




Symmetries in non-Hermitian systems

D. Bernard and A. LeClair; arXiv.cond-mat/O| 10649 (2001)

* Specifically non-Hermitian S. Lieu, Phys. Rev. B 98, 115135 (2018)
symmetries K. Kawabata et al. 2018, 2019
H. Zhou, ].Y. Lee, 2019, ...
e Example [ — qHTq_l, qTq—l _ qu — 1 “Pseudo hermiticity”

- For 2-band models, pick G = 0

dy,do €R,  d,d, €iR.

- Trivial in the Hermitian limit

- Generally drp-d;y =0 % EL = i\/d%—d%, (do = O)

/!

Purely real or imaginary!

e P77 symmetric systems, popular in optics, work analogously



Symmetry protected nodal non-Hermitian phases

e Generically one equation less...

—>

* Exceptional (d-1)-dimensional surfaces

* d-dimensional open “Fermi volumes”

e 2d example

H = (2 —cosky —cosky)o, + i0,/4

J.C. Budich, . Carlstrom, FK. Kunst and E.J. Bergholtz, in arXiv:1810.009 | 4
+ several subsequent postings. ..



3d: generic exceptional rings,...

* Remember: E(k) = £1/dgr(k)? — di(k)2 + 2idg (k) - di(k)
» E=0 solutions form exceptional rings Y. Xu,5-T.Wang,and L-M. Duan, PRL | 18,045701(2017)

e Think about this geometrically

- Intersections between 2d surfaces

J. Carlstréom and EJ. Bergholtz,
Phys. Rev. A 98,0421 14 (2018)

e |eads to unusual open Fermi
surfaces

- Terminated by exceptional lines




=xceptional links and twisted “Fermi

Ribbons”

* Exceptional links generated as generic . Carlstrém and EJ. Bergholtz,
intersections between more general 20 Phys. Rev. A 98,0421 14 (2018)

closed surfaces

* Leads to open “Fermi ribbons”

- Seifert surfaces, orientable




Geﬂera‘lzathr‘ KnOtted J. Carlstrém, M. Stalhammar, J.C. Budich and
non-Hermitian metals EJ. Bergholtz, Phys. Rev. B 99, 161115 (2019)

“Fermi-Seifert
surfaces”

0
ky -1.5 1.5 kxO 1.5

* Two notions of topology combined — a unique NH possibility

- Hermitian generic line-like nodes occur in D=4, but in D>3 all knots are triviall

e Short-range tight-binding models — nearest neighbour for a nodal link
and next nearest for a trefoli knot

* Boundary states, hyperbolic knots etcin -~ 14 | e et al arxXiv:1812.020] |

followup works...
P M. Stalhammar; et. al., SciPost Phys. 7,019 (2019)



—xceptional rings: Experiments

Non-Hermitian, dye > 0

* Realised with coupled
waveguides

Re[éw]

Weyl point

Cerjan et. al.
Nature Photonics |3, 623
(2019)

~_ Surface

states

* | inks and knots to come...

e Exotic new bulk physics — but how about boundary states?



Biorthogonal bulk-boundary
correspondence

F K. Kunst, E. Edvardsson, J. C. Budich, and E. J. Bergholtz,
Phys. Rev. Lett. [21,026808 (2018)

Re b Alternative approach :

S.Yao, k. Song, and Z.Wang,
Phys. Rev. Lett. 121, 136802 (2018)

N gz e Take home: Open and closed boundary
= 4 conditions give dramatically different physics
> \ — but cases can be understood and are

———F  experimentally relevant!




Non-Hermitian skin effect

* At the heart of the problem

1,

0.2;

s
=

VIVRYL]
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m

m

 Left and right eigenstates pile up at the boundaries — exceptional physics?

* But their “product” does not pile up...



Biorthogonal quantum mechanics
Brody, | Phys. A: Math. Theor: 4/,035305 (2013)

e By definition we have

Hluy) = Enluy) and  H'luy) = E; |uy)

e Away from (but arbitrarily close to) exceptional points one can get a
complete orthonormal basis by normalizing as

<uql{|u§z> = Onm <u£|uf> = Onm

- Consistent with

nd B, = (ub|Hluf)

* This provides the “product”...



Application: non-Hermitian SSH chain

- - - - e . - (odd length)
N
8
tl — 5 t2
* Exact zero energy boundary states:
YR) NRZTRCAm YL) NLZTLCAm

v
tl_g#’)"L:—tl—i_§

R = —
R to to

* Observation: when |r} rr| = 1 we have zero energy biorthogonal bulk state!

<Hm> = <wL|Hm‘¢R> ~ (TZTR)m (now with 1L, = ‘eA,m> <6A,m| + e ,m> (e ,mD

2 2
* Phase transitions and changes in zero-modes at ¢ = i\/ % + 12, i\/ % — 12 7



Biorthogonal polarisation and boundary modes

* We construct a “biorthogonal polarisation”, P, which is quantised and jumps
precisely when |rirg| =1

M — o0

P=1 lim <¢L

t
(even length spectra)

* Predicts the correct phase transitions — strikingly different from Bloch band
iInvariants!

- Generalises directly to more complicated systems



NH Chern insulators...




Why does it work??

e Spectrum from left and right eigenvectors

IS <UTI{|H‘U§>

- Extended biorthogonal states play the same role as extended
states in Hermitian models where the distinction between right
and left is gone



Periodic vs. open boundary
conditions

 Effect of coupling the ends

 Crossover at exponentially small 1’

Inspired by Xiong, Journal of Physics
Communications 2, 035043 (2018)

0 10 20 30 40 50 60 70
M

* |ntuitive from the perspective of the skin effect — related to the proximity to EPs
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Domain walls

* Physical mechanism: coupling ends via a Hermitian domain

Hermitian chain
- - - - - - - -

C )

- - - - - - - -
Non-Hermitian chain

Gapless

* Both periodic and open system physics can be realised depending on the
strength of the effective coupling!

- Also tuneable geometrically and/or by Wannier function engineering



Experiments!

* Very recent experimental studies of the bulk-boundary correspondence

Topolectric circuits: Helbig et al., arXiv:1907.11562.
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Mechanical/robotic system: Quantum walks: Xiao et al., arXiv:1907.12566
Ghatak et al., arXiv:1907.11619.
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Summary

* Exceptional Topology of Non-Hermitian Systems

* Exceptional degeneracies, square roots

e Gapless nodal phases theoretically more abundant
and conceptually richer than in the Hermitian realm

* Open and closed boundary conditions give very different
physics — but cases can be understood and are
experimentally relevant!

* Intriguing and relevant!

See e.g. M.A. Bandres and M. Segev, Physics | |,96 (2018) andV. M. Martinez Alvarez, |. E. Barrios Vargas, M.
Berdakin, and L. E. F. Foa Torres, Eur: Phys. |. Spec. Top. (2018)

Review together with Flore Kunst and Jan Budich to appear soon...



