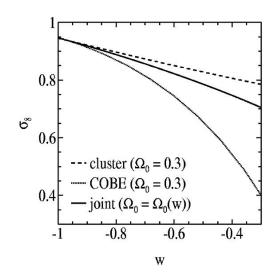
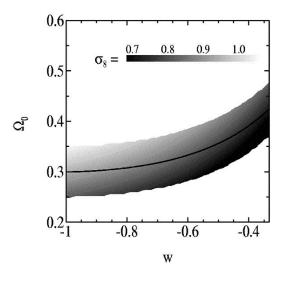
Method:

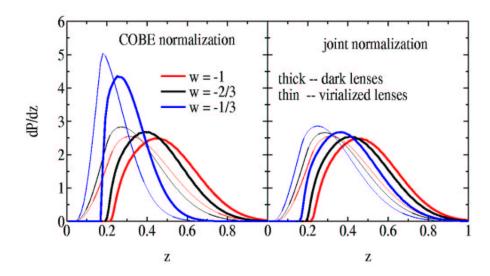
- \rightarrow find minimum overdensity, Δ_{\min} , for detectable weak lensing signal
- → solve spherical-top-hat-collapse with dark energy ⇒ combining with PS mass function get differential abundance of weak lenses
- \rightarrow 3 possible methods of constraining w using weak lens abundances:
 - redshift distribution
 - number count
 - fraction of lenses that are dark

<u>Footnotes:</u>

- 1. can have $\Delta_{\min} < \Delta_{\text{vir}} \Rightarrow X$ -ray underluminous (i.e., dark) lenses (observed? Miralles et al. 2002, Erben et al. 2000...)
- 2. for $w \neq -1$ space curvature inside evolving overdensity time dependent

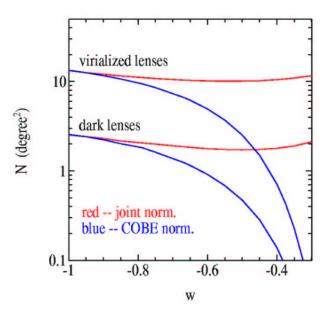






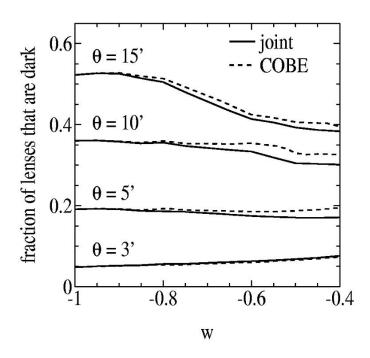
 $K-S \text{ test} \Rightarrow$

- 200 lenses ($\sim 15~{\rm deg^2}$) to differentiate w=-1 from w=-0.6 to 3σ
- 2000 lenses ($\sim 150 \text{ deg}^2$) to differentiate w = -1 from w = -0.9 to 3σ



- for a fixed cosmological model \Rightarrow $\sim 40 \text{ deg}^2$ to differentiate w = -1 from w = -0.9 to 3σ
- given current uncertainties in $\Omega_{\rm m} \Rightarrow 0$ $\sim 90~{\rm deg^2}$ to differentiate w=-1 from w=-0.9 to 3σ

→ but fairly big systematic uncertainties (noise in lensing map, density profile...)



- not very sensitive to noise in weak lensing maps or uncertainties in cosmological parameters
- $\sim 50 \text{ deg}^2$ to differentiate w = -1 from w = -0.6 to 3σ