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Phenomenology of shear banding [PDO EPL 1999]

Homogeneous
constitutive relations
for a hypothetical
fluid:
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I Newtonian:

S1 flow-induced phase

S2 flow-induced “gel”

Identify dynamical variables (flow, composition, and structural
information).

“Phases” =steady state homogeneous solutions to equations of motion:

Dtφ = −∇ ·M∇µ(φ,∇v,Q) = 0 (composition)

ρDtv = ∇ · σ(φ,∇v,Q) = 0 (flow)

DtQ = L(φ,∇v,Q) = 0 (microstructure)

Calculate steady state flow curves as a function of concentration.



Stress-concentration couplings

Two-fluid models [Helfand/Fredrickson 1989, Milner 1992], flow-induced migration
[Leighton & Acrivos 1987, Schmidt/Marques/Lequeux PRE 1995].

ρDtv = ∇.G (φ) W − φ∇δF (φ)

δφ
+ 2∇. η(φ) D−∇p0,

Dtφ = −∇ · ζ−1(φ)

[
∇ · G (φ)W − φ∇δF

δφ
+ 2∇ · η(φ) D

]

(∂t + v m ·∇)W + . . . = +2Dm −
W

τ(φ)
+

`2

τ(φ)
∇2W

Concentration builds up in more viscous regions.

Polymer deformation in stress gradient.

Transverse diffusion due to gradient in shear rate and hence collision rate; . . . .

Migration in response to stress gradients imposed by geometry (e.g. Poiseuille
flow).

Careful:

{
Total stress tensor T 6= Tmicro − p I !!
The pressure is given by p = p0 − Tr(Tmicro).
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Geometry determines “field variables”
Definition of field and density variables depends on coexistence geometry.
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Phase separate according to φ̄ = αφI + (1− α)φS .

Common Stress Common Strain Rate

Gradient Banding Vorticity Banding

¯̇γ = α γ̇I + (1− α) γ̇II σ̄ = ασI + (1− α)σII

σ = “field variable” γ̇ = “field variable”

γ̇ = “density variable” σ = “density variable”



Coexistence Conditions: gradient banding [PDO Rheo Acta 2008]

1. Stationary states

∂tQ = 0 ⇒ σ(γ̇)

2. Stress Balance

∇ · σ = 0⇒ σIxy = σIIxy

(uniform σxy , σyy ) σIyy = σIIyy ⇒ p(y)

3. No φ flux:

∇ · J = 0⇒ µ =
δF

δφ
= uniform
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The pressure in the two bands may differ because of normal stress continuity.
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Stress selection and ‘non-equilibrium phase coexistence’
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σtot = σp + ηγ̇ ∂tσp = f (σp, γ̇)

Unique D-independent stress determined by inhomogeneous terms.
[PDO/PMG PRA 1992; Lu/PDO/Ball PRL 2000] - Concentration, finite stiffness, liquid crystallinity

The pressure difference can lead to an N2-driven instability at a free
meniscus and sample ejection [Skorski & PDO, 2011].
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Liquid Crystals: Phase Diagram for Doi Model
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Wormlike Micelles [PDO, Radulescu, Lu JOR 2000, JNNFM 2000, PRL 2000]

Coupling to concentration fluctuations [Fielding/PDO, PRE 2003; EPJE (2003)]
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homogeneous states.
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(e) Comparison of flow curves and experimen-

tally measured plateau slope Σ ∼ γ̇0.3.

Fig. 6. Phase diagrams and flow curves for α = 10−2, ξ = 0.0 for small l/L. (Recall that l is actually a function of φ: we are using
the convenient shorthand of l for the value l(φ = 0.11).) (a) Thin (upper) solid lines: tie lines for l = 0.016, Ny = 100, ∆t = 0.05.
Thick (lower) solid lines: tie lines for l = 0.008, Ny = 200, ∆t = 0.05. As described in the main text, we actually rescaled l
in the successive runs of each φ̄-sweep (i.e. as φ̄ was tracked from 0.15 down to φ̄c) so that the interfacial width remained
(approximately) constant throughout the sweep: the value of l in the figure legends refers to the value used in the first run of the
sweep, at φ̄ = 0.15. (b,c) Solid lines: tie lines repeated in the (Σ, γ̇), (Σ,φ) representations for l = 0.008, Ny = 200, ∆t = 0.05. (d)
Solid lines: macroscopic flow curves for φ̄ = 0.11, 0.08, 0.06, 0.04, 0.02. These flow curves were recontructed, using the procedure
of Figure 8 below, from the tie lines of the phase diagrams (using the tie lines shown in this figure, and some additional ones).
Because we have only calculated tie lines for discrete values of Σ, in some cases the reconstructed flow curves stop short of the
single-phase region because of the numerical mesh, and have been continued “by eye”. (e) shows the same data, but on a log-log
plot to compare with an experimentally observed slope of 0.3 (dot-dashed line). The spinodal limit is shown in each of (a-d) as
a dashed line. In (d) the thin dotted lines are the unstable branches of the intrinsic (homogeneous) constitutive curves.

critical shear rate ¯̇γ = ¯̇γc(α), determined from Figure 4.
Because the width, δ, of the interface in the banded state
is set by l, but with a prefactor that diverges at the critical
point (¯̇γc(α), φ̄c(α)), in each successive run we rescaled l so
that δ remained (approximately) equal to its value (� L)
in the first run at φ̄ = 0.15. We return below to study the
divergence of δ/l at the critical point.

The phase diagram for α = 10−2, which gives
rather strong concentration coupling, is shown in Fig-
ures 6(a),(b),(c) in three different representations. The
spinodal is marked in each case as a dashed line. We
see from these results that the high shear phase is less
concentrated than the lower shear phase, φh < φ�: the
tie lines have negative slope in the (γ̇, φ)-plane. This

σ

Common stress

γ
.

σ

Common strain rate

(shear thinning)

γ

(shear thickening)

.

Note instability even with
positive slope dΣ/d γ̇ > 0.



Wormlike Micelles [PDO, Radulescu, Lu JOR 2000, JNNFM 2000, PRL 2000]

Coupling to concentration fluctuations [Fielding/PDO, PRE 2003; EPJE (2003)]

0.04 0.08 0.12 0.16
Volume Fraction φ

0

0.5

1

1.5

A
pp

lie
d 

To
ta

l S
he

ar
 S

tr
es

s 
Σ

Weakly Birefringent Phase

Shear-induced Phase

Critical Point

S.M. Fielding and P.D. Olmsted: Flow phase diagrams for concentration-coupled shear banding 73

0.04 0.08 0.12 0.16
φ

0

0.5

1

1.5

Σ

l=0.016
l=0.008

(a) Phase diagram in (Σ,φ)-plane.
Tie lines showing 2-phase region
(solid); spinodal limit (dashed).

0 5 10 15 20
γ.

0

0.5

1

1.5

Σ

(b) Phase diagram in (Σ, γ̇)-plane
for l = 0.008. Tie lines showing 2-
phase region (solid); spinodal limit
(dashed).

0.04 0.08 0.12 0.16
φ

5

10

15

20

γ
.

(c) Phase diagrams in (Σ,φ)-plane
for l = 0.008. Tie lines showing 2-
phase region (solid); spinodal limit
(dashed).

0 5 10 15 20 25
γ
.

0

0.5

1

1.5

Σ

φ=0.11

φ=0.04

φ=0.02

φ=0.08

φ=0.06

unstable region

(d) Flow curves for l = 0.008. Thick
lines: steady-state flow curves. Thin solid
lines: metastable part of the homoge-
neous constitutive curves. Thin dotted
lines: unstable part of the same curves.
Dashed line: spinodal limit of stability of
homogeneous states.

0.1 1 10
γ
.

0.1

1

Σ

Σ ∼ γ. 0.3

(e) Comparison of flow curves and experimen-

tally measured plateau slope Σ ∼ γ̇0.3.

Fig. 6. Phase diagrams and flow curves for α = 10−2, ξ = 0.0 for small l/L. (Recall that l is actually a function of φ: we are using
the convenient shorthand of l for the value l(φ = 0.11).) (a) Thin (upper) solid lines: tie lines for l = 0.016, Ny = 100, ∆t = 0.05.
Thick (lower) solid lines: tie lines for l = 0.008, Ny = 200, ∆t = 0.05. As described in the main text, we actually rescaled l
in the successive runs of each φ̄-sweep (i.e. as φ̄ was tracked from 0.15 down to φ̄c) so that the interfacial width remained
(approximately) constant throughout the sweep: the value of l in the figure legends refers to the value used in the first run of the
sweep, at φ̄ = 0.15. (b,c) Solid lines: tie lines repeated in the (Σ, γ̇), (Σ,φ) representations for l = 0.008, Ny = 200, ∆t = 0.05. (d)
Solid lines: macroscopic flow curves for φ̄ = 0.11, 0.08, 0.06, 0.04, 0.02. These flow curves were recontructed, using the procedure
of Figure 8 below, from the tie lines of the phase diagrams (using the tie lines shown in this figure, and some additional ones).
Because we have only calculated tie lines for discrete values of Σ, in some cases the reconstructed flow curves stop short of the
single-phase region because of the numerical mesh, and have been continued “by eye”. (e) shows the same data, but on a log-log
plot to compare with an experimentally observed slope of 0.3 (dot-dashed line). The spinodal limit is shown in each of (a-d) as
a dashed line. In (d) the thin dotted lines are the unstable branches of the intrinsic (homogeneous) constitutive curves.

critical shear rate ¯̇γ = ¯̇γc(α), determined from Figure 4.
Because the width, δ, of the interface in the banded state
is set by l, but with a prefactor that diverges at the critical
point (¯̇γc(α), φ̄c(α)), in each successive run we rescaled l so
that δ remained (approximately) equal to its value (� L)
in the first run at φ̄ = 0.15. We return below to study the
divergence of δ/l at the critical point.

The phase diagram for α = 10−2, which gives
rather strong concentration coupling, is shown in Fig-
ures 6(a),(b),(c) in three different representations. The
spinodal is marked in each case as a dashed line. We
see from these results that the high shear phase is less
concentrated than the lower shear phase, φh < φ�: the
tie lines have negative slope in the (γ̇, φ)-plane. This

σ

Common stress

γ
.

σ

Common strain rate

(shear thinning)

γ

(shear thickening)

.

Note instability even with
positive slope dΣ/d γ̇ > 0.



Coexistence Conditions: vorticity banding [PDO Rheo Acta 2008]

Dr. Peter Olmsted, ITP & University Leeds (ITP Complex Fluids Program  3-28-02) Phenomenology of Shear Banding Page 11
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∇ · σ = 0 ∇ ‖ ẑ

σIxz = σIIxz
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Dtφ = 0 ⇒ µI = µII

DtQ = 0 γ̇ branches

Inhomogeneous pressure p(z);
measure σyy (z); stable meniscus?



Coexistence Conditions: vorticity banding [PDO Rheo Acta 2008]

Dr. Peter Olmsted, ITP & University Leeds (ITP Complex Fluids Program  3-28-02) Phenomenology of Shear Banding Page 11

γ
.

γ
.

xyσ xyσ

Dtφ = −∇ ·M∇µ(φ,∇v,Q)

ρDtv = ∇ · σ(φ,∇v,Q)

DtQ = L(φ,∇v,Q)

∇ · σ = 0 ∇ ‖ ẑ
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Calculations from a liquid-crystal model [PDO & Lu PRE 1997, 1999]

Gradient Banding Vorticity Banding
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Typical Rheological Signatures of Banding [PDO, Europhys. Lett. (1999)]
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Flat/Vertical plateaus: same
concentration.

Sloped plateaus: different
coexisting concentrations
[Schmitt et al. 1996].

Vorticity banding: few
examples, not well studied.

KITP, 18 January 2018 Heterogeneous flows



Thinning Vorticity Banding

Colloidal Crystalline Suspensions [Chen, Zukowski et al. PRL 1992, Langmuir 1994].
φ = 0.45, 0.53; D = 230 nm.

Polycrystalline +
ordered layer sliding.



Thinning Vorticity Banding

Colloidal Crystalline Suspensions [Chen, Zukowski et al. PRL 1992, Langmuir 1994].
φ = 0.45, 0.53; D = 230 nm.

2820 Langmuir, Vol. 10, No. 8, 1994 Chen et al. 

Figure 3. SANS scattering patterns with 8, = 0 at various shear rates: (a, top left) at rest, (b, top middle) 0.08 s-l, (c, top right) 
0.3 s-l, (d, middle left) 15 scl, (e, middle middle) 40 s-l, (f, middle right) 500 s-l, (g, bottom) 6000 s-l. 

yr ,  is the snap-back strain achieved after the applied stress 
is set to ~e ro .~ ,~O Oscillatory strain measurements were 
also used to determine the suspension's elastic modulus. 
For strains in the linear viscoelastic region, the storage 
and loss moduli showed no frequency dependence in a 
range of 10-3-10 Hz. Both creep and recovery and 
oscillatory strain techniques for determining Go agreed, 
giving 55.5 and 214 Pa for Go for the suspensions with 
volume fractions of 0.45 and 0.53, respectively. Limiting 
linear viscoelastic strains (i.e., the strain above which, in 
an oscillatory strain experiment, the modulus is no longer 
independent of strain) and the static yield stresses for the 
suspensions are given in Table 1. 

For stresses above zys, the suspension's appearance was 
altered during creep and recovery experiments. The 
smooth iridescence seen at  rest was broken into mottled 
zones as if the crystal was forming shear zones. The 
furrows or lines of different color developed in chevron 
patterns with a characteristic angle of approximately 70- 
80". Figure 2b shows a suspension exposed to 1.2 Pa for 
1 h where the striation pattern occupies approximately 
half the surface area of the shear cell. On release of the 
stress, the striation patterns persist for times longer than 

3 h. These patterns were only seen for zys < z < zyd and, 
as a result, could not be observed with SANS where only 
continuous rates of deformation could be applied. 

As the stress is further raised above zys, the recoverable 
strain becomes a nonlinear function of applied stress 
(Figure 5 )  and the striation pattern expands to occupy the 
entire observable surface. For example, after stressing 
the same suspension pictured in Figure 2c at  1.6 Pa for 
10 ks, the striations cover the entire surface but the 
chevrons are still observable. Note the striations are still 
iridescent. 

At a characteristic stress denoted the dynamic yield 
stress, zyd, a steady-state rate of strain is reached 500 s 
or less after applying the stress. This contrasts markedly 
with the sluggish behavior seen for z < zyd. At zyd, the 
recoverable strain curves for both suspensions change in 
slope. The recoverable strain at  zyd for both suspensions 
was near 0.04 (Figure 5 ,  Table 1). As the stress is raised 
above zyd, the stress-steady state shear rate curves show 
a low shear rate plateau stress (Figures 6 and 7). The 
reported shear rates are apparent and do not necessarily 
reflect that the suspension is deforming with a uniform 
shear rate. The open circles in Figures 6 and 7 denote 

Polycrystalline +
ordered layer sliding.



Kinetics during Vorticity Banding?

σ

Common stress Common strain rate

(shear thinning)

(shear thickening) γ
.

σ

γ
.

σ

γ
.

σ

γ
.

No symmetry-breaking field.

1D coarsening ?



Lamellar-to-onion transition....[Wilkins & PDO EPJE 2006]

SDS/dodecane/pentanol/water
[Diat & Roux 1993]

Candidate for vorticity banding
on the (“stress cliff”)??

VOLUME 78, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 24 FEBRUARY 1997

FIG. 3. The jump in size transition seen in the direct space (optical microscopy). The transition is controlled here by a change
in temperature (21 to 24.3±C). The shear direction is horizontal. 3(a) After a few minutes some big spherulites appear randomly;
3(b) they are then collected in lines; 3(c) the small and big populations coexist; 3(d) the big population once stopped and after
some small amplitude oscillations.

The transition between small and big vesicles can be
mapped in theÙgyT plane. Figure 4 presents a series
of light scattering measurements obtained at steady shear
and varying temperature. Below 26±C a clear jump in
the size of the vesicles is observed, and the evolution of
the scattering pattern as a function of time is presented
in Figs. 5(a)–(d). Figures 5(b) and 5(c) show clearly a
population of small particles (large scattering circle) coex-
isting with a population of big particles (small-angle scat-
tering peaks). However, above 26±C no jump is observed
and the increase of size is continuous. Figures 5(e)–5(h)
show the evolution as a function of time. Clearly the ring
is shrinking continuously, indicating that the onion size
is increasing with time as the long-range order is built.

FIG. 4. The evolution of the spherulite size as a function of
the shear rate for different temperatures. Above 26±C the
transition cannot be seen and a continuous evolution of size
replaces the jump seen previously.

One concludes that the transition that was discontinuous
below T  26 ±C becomes continuous above. Figure 6
shows the shear diagram obtained from these measure-
ments. The two regions of ordered vesicles (small and
big) are separated by a line corresponding to a discon-
tinuous transition. This line ends on a “critical point” at
Ùg  40 s21, T  26 ±C.

It seems difficult with the knowledge we have on
these systems to give a theoretical interpretation of this
complex behavior, even if some hand waving arguments
can be given to explain the lamellar-spherulite [1–2,4]
instability and some similarity with colloidal systems
invoked for the layering transition [5]. However, the fact
that well defined transitions can be determined confirms
that the correct way of describing the effect of shear on
complex fluids is to use the shear diagrams methodology.
Moreover, because these systems are out of equilibrium

FIG. 5. Evolution of the scattering pattern after a shear jump
below 26±C [continuous transition, 5(a)-5(d)] and above 26±C
[continuous transition, 5(e)–(h)]. Note that the intermediate
times show two populations in 5(b) and 5(c) corresponding to
the discontinuous transition when it looks continuous in 5(f )
and 5(g).

1498
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Onions in more detail [Wilkins & PDO EPJE 2006]

No “Newtonian regime”

Yield stress [smectic defect
network?] and HB-like.

Several transitions: vorticity
bands?

Hysteresis, slow transition.



Cliff Region: Response to a stress jump σ → σ + δσ?
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σ̄(γ̇∗) = ασO(γ̇)e + (1− α)σL(γ̇)

1 Nucleate more onions, α→ α + δα and return to selected strain rate.

2 Resist nucleation, evolve strain rate γ̇∗ → γ̇∗ + δγ̇.

Nucleation/growth harder if vorticity banded:

I different interface configuration (not under shear)
I No driving force in Couette flow?.
I Lamellae and onions cannot smoothly evolve to one another?
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Cliff Region: Response to a stress jump σ → σ + δσ?
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Scaling the Stress Cliff? [Wilkins & PDO EPJE 2006]

σ̄(γ̇∗) = ασO(γ̇)e + (1− α)σL(γ̇)
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Instability of shearing flows [Fielding JOR 2016]

Overshoots imply instability......

• dσ

d γ̇
< 0 (constitutive)

• dσ

dγ
< 0 (transient/dynamic)

• concentration/order coupling

S.M. Fielding and P.D. Olmsted: Flow phase diagrams for concentration-coupled shear banding 73
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(a) Phase diagram in (Σ, φ)-plane.
Tie lines showing 2-phase region
(solid); spinodal limit (dashed).
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(b) Phase diagram in (Σ, γ̇)-plane
for l = 0.008. Tie lines showing 2-
phase region (solid); spinodal limit
(dashed).
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(c) Phase diagrams in (Σ, φ)-plane
for l = 0.008. Tie lines showing 2-
phase region (solid); spinodal limit
(dashed).
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(d) Flow curves for l = 0.008. Thick
lines: steady-state flow curves. Thin solid
lines: metastable part of the homoge-
neous constitutive curves. Thin dotted
lines: unstable part of the same curves.
Dashed line: spinodal limit of stability of
homogeneous states.
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.
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Σ ∼ γ
. 0.3

(e) Comparison of flow curves and experimen-

tally measured plateau slope Σ ∼ γ̇0.3.

Fig. 6. Phase diagrams and flow curves for α = 10−2, ξ = 0.0 for small l/L. (Recall that l is actually a function of φ: we are using
the convenient shorthand of l for the value l(φ = 0.11).) (a) Thin (upper) solid lines: tie lines for l = 0.016, Ny = 100, ∆t = 0.05.
Thick (lower) solid lines: tie lines for l = 0.008, Ny = 200, ∆t = 0.05. As described in the main text, we actually rescaled l
in the successive runs of each φ̄-sweep (i.e. as φ̄ was tracked from 0.15 down to φ̄c) so that the interfacial width remained
(approximately) constant throughout the sweep: the value of l in the figure legends refers to the value used in the first run of the
sweep, at φ̄ = 0.15. (b,c) Solid lines: tie lines repeated in the (Σ, γ̇), (Σ, φ) representations for l = 0.008, Ny = 200, ∆t = 0.05. (d)
Solid lines: macroscopic flow curves for φ̄ = 0.11, 0.08, 0.06, 0.04, 0.02. These flow curves were recontructed, using the procedure
of Figure 8 below, from the tie lines of the phase diagrams (using the tie lines shown in this figure, and some additional ones).
Because we have only calculated tie lines for discrete values of Σ, in some cases the reconstructed flow curves stop short of the
single-phase region because of the numerical mesh, and have been continued “by eye”. (e) shows the same data, but on a log-log
plot to compare with an experimentally observed slope of 0.3 (dot-dashed line). The spinodal limit is shown in each of (a-d) as
a dashed line. In (d) the thin dotted lines are the unstable branches of the intrinsic (homogeneous) constitutive curves.

critical shear rate ¯̇γ = ¯̇γc(α), determined from Figure 4.
Because the width, δ, of the interface in the banded state
is set by l, but with a prefactor that diverges at the critical
point (¯̇γc(α), φ̄c(α)), in each successive run we rescaled l so
that δ remained (approximately) equal to its value (≪ L)
in the first run at φ̄ = 0.15. We return below to study the
divergence of δ/l at the critical point.

The phase diagram for α = 10−2, which gives
rather strong concentration coupling, is shown in Fig-
ures 6(a),(b),(c) in three different representations. The
spinodal is marked in each case as a dashed line. We
see from these results that the high shear phase is less
concentrated than the lower shear phase, φh < φℓ: the
tie lines have negative slope in the (γ̇,φ)-plane. This

[Fielding & PDO, 2003]
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Boundary Effects

R =!3 3m

2!"#
m mass"kg#, # density at Tmeasure"kg/m3# . $4%

These relations involve the following assumptions:

• Equation $1%: The shear rate across the gap is homogeneous. Adams and Lodge $1964%
have shown that this assumption is the better fulfilled, the smaller the cone angle. For
the larger cone angle in this study $0.15 rad%, the shear rate varies by 2.3%.

• Equation $2%: The surface of the sample is part of a sphere with radius R centered on
the rotation axis "Fig. 1$b%#. Immediately after sample loading this is not the case; the
wetting radius rw is smaller than R and p21 is calculated too small "Fig. 1$a%#.

• Equation $3%: Also the derivation of this well known relation is based on a spherical
surface. If this is not the case, terms involving the normal stress component p33 do not
cancel out and an error is introduced "Jobling and Roberts $1959%#.

One notes that the spherical shape of the surface of the sample is an important pre-
requisite for reproducible and geometrically correct rheological experiments. However,
after placing a compression molded tablet on the flat member of the measuring geometry
and penetrating the cone, the rim is strongly bulged "Fig. 1$a%# with a curvature radius rc0.
During a time trest the curvature radius rc$t% will increase due to surface tension and the
spreading of the melt on the metal surfaces. The first goal of this paper is to show how the
sample can be conditioned in such a way that rc$trest%=R in order to fulfill the above
requirements.

In practice, however, a spherical rim as indicated in Fig. 1$b% can hardly ever be
obtained. The second goal of this work is therefore to quantify a phenomenon observed
when starting a test from a non-spherical rim, namely a non-linear velocity profile
$NLVP% across the gap. In the extreme case this evolves into one or two bands with
constant surface velocity within each of it. This is then termed “shear banding” and is
readily observed in micellar solutions "see, e.g., Decruppe et al. $2001%#, polymer solu-
tions "e.g., Tapadia and Wang $2004%; Schweizer $2007%#, melts "monodisperse polysty-
rene $PS%, this work#, and granular materials $bulk materials and pastes%. The third goal
finally is to show how the measured $ and N1 are influenced by a NLVP.

A NLVP originates from the non-spherical surface, an inhomogeneous temperature
distribution or concentration gradients in solutions $e.g., a drying skin at the surface%. If

FIG. 1. Schematic evolution of rim shape. R: from Eq. $4%, rw: wetting radius, rc: radius of curvature. $a% After
loading. $b% Ideal case: Surface is part of a sphere centered on the rotation axis. $c% Rest time too long: Wetting
of plates proceeds. $d% Rest time far too long: Concave shape.

714 T. SCHWEIZER AND M. STÖCKLI

[Schweizer & Stöckli JOR 2008]

Free surface balance

Edge fracture

Wall slip

Instability in cone & plate
and Couette flows.

Stress gradient in
channel/Poiseuille flows.
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Can shear banding induce edge fracture? [Skorski and PDO, JOR (2011)]

Edge fracture for |N2| > γ
R

[Tanner & Keentok, JOR 1983, Hemingway & Fielding arXiv:1703.05013].

Wormlike Micelles
[Lopez-Gonzalez, Soft Matter 2006]

After 20 s of signal acquisition at zero shear, a constant

shear rate was abruptly applied, by starting the stepper

motor. Measurements were taken at constant shear rate for

150 seconds. A second train of radio frequency pulses was then

started, with a separation of 100 ms, then the applied shear was

removed. Each fid was then Fourier transformed and phased

to obtain a time series of chemical shift spectra.

2.3.3 2H-NMR spectroscopy. By solubilising deuterated

n-decane probe molecules inside the micelle interior, it was

possible to study the orientational behaviour of the wormlike

micelles by acquiring the 2H-NMR spectrum of the probe

molecule. The probe molecule concentration was kept very low

(,1%) in order to minimise the disturbance to the system. The

signal intensity acquired from the probe molecule is small and

it was necessary to average the signal over 100 000 scans.

Spatial resolution was not possible due to the low signal,

therefore only gap-averaged experiments were performed.

A second 2H-NMR experiment was performed using

deuterated water as the solvent. Compared to the previous

experiment, the 2H signal was much larger allowing spatially

resolved spectroscopic measurements. The NMR sequence

used selects a single slice normal to the vorticity (z) and

velocity (y) directions using two slice-selective radio frequency

pulses while the signal is read under the influence of a position-

encoding gradient pulse applied along the hydrodynamic

gradient (x) direction. The pulse sequence was preceded by

prior T2 conditioning using a CPMG radio frequency pulse

train.50 For each pixel of the 1D image, inverse Fourier

transformation with respect to the multiple time steps along

the echo train, provided a 2H-NMR spectrum. The linewidth

was then obtained, (pT2)
21, of the deuterated water as a

function of gap position.

3 Results and discussion

3.1 Rheology

Linear viscoelastic measurements verified that the CPyCl–

NaSal system approximates a Maxwell fluid, see Fig. 4, with a

modulus plateau of G0 = 256 ¡ 7 Pa and zero shear viscosity

g0 = 118 ¡ 8 Pa s. The relaxation time was found to be t =

460 ¡ 20 ms, which agrees with the results reported by

Berret et al..3 The breaking/recombining time was calculated

to be 79 ¡ 3 ms, using ref. 51 which is similar to the value

obtained by Berret et al..3

The non-linear behaviour of this system is seen in the flow

curve, Fig. 5, using a double logarithmic scale. The micelle

system has almost identical rheology whether H2O or D2O was

used as the solvent. The shear behaviour is divided into three

regions, as follows: region I at low shear rates, the system

exhibits Newtonian behaviour, characterised by a near linear-

dependence of the shear stress vs. shear rate, ranging from 0.1

to 1.1 s21. Also, the first normal stress difference, N1, is equal

to zero, which is characteristic of a Newtonian fluid. Region II

is shear thinning, from 1.2 to 2.8 s21, the first normal stress

difference increases linearly on the semi-logarithmic scale.

Region III is above the critical shear rate _ccc, of around 2.8 s21.

This region has a distinct stress plateau andN1 increases abruptly

up to the fluid being expelled from the gap of the rheometer.

Rheological measurements were also made of the transient

stress response (on start-up), these experiments consisted of

applying a sudden shear step and measuring the transient

response of the material. The shear response was measured in

three sections: the initial stress response after the abrupt

application of shear, the stationary state and following the

abrupt cessation of shear. Fig. 6 shows the stress response of

the CPyCl–NaSal system to the start-up experiment at

different shear rates. For shear rates in region I, the steady

Fig. 4 (a) Frequency sweep, under constant strain of 2%, of the

CPyCl–NaSal system with G0 equal to 256 Pa and a terminal

relaxation time of 0.46 s. (b) Cole–cole plot (G9 vs. G0) using the

experimental data of (a), which is a semi-circle with radius equal to

G0/2. The Maxwell model is plotted in the solid lines and the

experimental data are plotted with the symbols, the data points at high

frequencies are affected by experimental artefacts.

Fig. 5 Flow curve under controlled strain-rate for the CPyCl–NaSal

solution in H2O. The flow curve is divided in three regions: region I is

Newtonian, region II is shear thinning and region III a stress plateau.

The first normal stress difference is plotted in the squares. Very similar

behaviour was seen using D2O as the solvent.

This journal is ! The Royal Society of Chemistry 2006 Soft Matter, 2006, 2, 855–869 | 859

Polymer Solutions

the uniform decrease of about 30% at all frequencies
following edge fracture is a consequence of the loss of
material. The 30% decrease in |G*| is consistent with
the estimate of a 25% volume loss from Figure 2d. The
figure also shows the steady flow curve from ascending
(Figure 1) and descending (Figure 3) creep tests that
used different samples. The loss of material is reflected
in the decreased stress at low rates in the two descend-
ing tests; the descending tests were done sequentially
with the same sample. The fractional decrease in the
steady stress below the plateau is comparable to the
decrease in the magnitude of |G*| from the oscillatory
experiments.

3. 7.5% Solution
The 7.5% solution provided by Professor Wang shows

essentially the same behavior, but it is easier to work
with and thus somewhat more revealing. Figure 5 shows
the results of creep experiments at constant nominal
stresses ranging from 500 to 3000 Pa, which should be
compared to Figure 6a in Tapadia and Wang1 and to

Figure 1 above. The sample was permitted to relax
without stress for 5 min after each measurement and
then stepped up to the designated stress, starting at 500
Pa and increasing to 3000 Pa. The shape change
between 1150 and 1300 Pa, with an increase in shear
rate of more than an order of magnitude, and the long,
slow transient at 1200 Pa, with an apparent shoulder
at about 50 s, are analogous to the transition observed
by Tapadia and Wang in the 10% solution between 2000
and 3000 Pa and the transient at 2500 Pa, which are
also seen here in Figure 1. The long transient in shear
rate was accompanied by an edge instability. Parts a
and b of Figure 6 show the shape of the meniscus after
loading the sample and following development of the
severe edge instability at 1200 Pa, respectively. The
edge fracture did not appear to propagate inward with
increasing shear stress for this sample and seemed
instead to stabilize. The tacky material that rolled out
from the cone-and-plate fixture spread around the rim
with continuing steady shear, creating the visual im-
pression of a smooth edge, as shown in Figure 6c. In
one trial we attempted to recover the material that had
been extruded during the transient. The sample was too
tacky for us to recover all of the extruded material, but
about 0.04 g, comprising about 7.5% of total volume, was

Figure 2. Pictures of the meniscus (a) after sample loading,
(b) during the initial transient following step-up to 2500 Pa,
(c) during the final portion of the transient, and (d) with
extruded material removed from the exterior of the fixture.
The pictures were taken without temperature control by the
Peltier plate for better visualization of the meniscus shape.

Figure 3. Shear rates as functions of time at constant input
stresses from 5500 to 500 Pa. The sample was fully relaxed
for 5 min after each creep experiment and then stepped up to
the next stress.

Figure 4. Magnitude of the complex modulus (|G*|) as a
function of frequency after sample loading (filled triangles) and
following edge fracture (filled squares), together with the
steady-state flow curve (applied shear stress as a function of
steady shear rate) from the ascending creep data in Figure 1
(open triangles), the descending creep data in Figure 3 (open
squares), and a second sequence of descending creep data (open
circles).

Figure 5. Shear rates as functions of time for the 7.5%
solution at constant input stresses from 500 to 3000 Pa. The
sample was fully relaxed for 5 min after each creep experiment
and then stepped up to the next stress.

9386 Notes Macromolecules, Vol. 38, No. 22, 2005

[Inn, Wissbrun, and Denn, Macromolecules 2005].
KITP, 18 January 2018 Heterogeneous flows



Surface tension γ vs. normal stress balance:

N2 = Tyy − Tzz side view
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139where Ri is the radius of curvature of the meniscus in the ith band and cs is the surface tension.
140From Eq. (4), the difference in Tzz between the two bands is given by the difference in the sec-
141ond normal stress differences, Tð1Þ

zz # Tð2Þ
zz ¼ Nð2Þ

2 # Nð1Þ
2 . Making use of this and Eq. (5), we

142can relate the second normal stress differences to the radii of curvature of the two bands

DN2

cs
¼ 1

R2
# 1

R1
; (6)

143where DN2 ¼ Nð2Þ
2 # Nð1Þ

2 . This can be easily calculated for a given constitutive relation,
144and together with the surface tension defines a characteristic “elasto-capillary” length for
145the shear banding configuration

f ¼ cs
jDN2j

: (7)

146The three Eqs. (4) and (5) relate four unknown quantities: the pressures and meniscus
147curvatures in each band. By eliminating the pressures we can relate curvature radii, but
148more information is needed to absolutely determine the shape. This will follow by con-
149structing a continuous and smooth meniscus. The balance at the meniscus, Eq. (5), deter-
150mines the pressure in each band in terms of the meniscus curvature. We will find below
151that the curvatures must change in order to maintain a physical meniscus, which thus
152determines the pressure in each band.

153III. MENISCUS SHAPE AND INTEGRITY

154A. General shape (two bands)

155We ignore deviations due to complex flows near the contact line, and approximate the
156meniscus of each band as the arc of a circle of radius Ri, which may be positive or

FIG. 3. (a) Flow curve (thick line) and constitutive curve (thin line) for shear banding flows. Banding occurs on
the stress plateau at T%

xy, for applied shear rates _capp such that _c1 & _capp & _c2. A “lever” rule relates the widths of
the shear bands to the applied shear rate, w1 ¼ Wð _c2 # _cappÞ=ð _c2 # _c1Þ and w2¼W#w1. (b) Profile of the fluid
surface (meniscus) between flat plates (flow in the x̂ direction). Each band has a circular profile, and the surface
is continuous and differentiable; /1 and /2 are the contact angles at the two plates. The contact lines between
fluid and plates move up and down as the widths of the shear bands alter; H is the height difference between the
contact lines. Note that the curvatures may be positive or negative.
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139where Ri is the radius of curvature of the meniscus in the ith band and cs is the surface tension.
140From Eq. (4), the difference in Tzz between the two bands is given by the difference in the sec-
141ond normal stress differences, Tð1Þ

zz # Tð2Þ
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2 . Making use of this and Eq. (5), we

142can relate the second normal stress differences to the radii of curvature of the two bands
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; (6)

143where DN2 ¼ Nð2Þ
2 # Nð1Þ

2 . This can be easily calculated for a given constitutive relation,
144and together with the surface tension defines a characteristic “elasto-capillary” length for
145the shear banding configuration

f ¼ cs
jDN2j

: (7)

146The three Eqs. (4) and (5) relate four unknown quantities: the pressures and meniscus
147curvatures in each band. By eliminating the pressures we can relate curvature radii, but
148more information is needed to absolutely determine the shape. This will follow by con-
149structing a continuous and smooth meniscus. The balance at the meniscus, Eq. (5), deter-
150mines the pressure in each band in terms of the meniscus curvature. We will find below
151that the curvatures must change in order to maintain a physical meniscus, which thus
152determines the pressure in each band.

153III. MENISCUS SHAPE AND INTEGRITY

154A. General shape (two bands)

155We ignore deviations due to complex flows near the contact line, and approximate the
156meniscus of each band as the arc of a circle of radius Ri, which may be positive or

FIG. 3. (a) Flow curve (thick line) and constitutive curve (thin line) for shear banding flows. Banding occurs on
the stress plateau at T%

xy, for applied shear rates _capp such that _c1 & _capp & _c2. A “lever” rule relates the widths of
the shear bands to the applied shear rate, w1 ¼ Wð _c2 # _cappÞ=ð _c2 # _c1Þ and w2¼W#w1. (b) Profile of the fluid
surface (meniscus) between flat plates (flow in the x̂ direction). Each band has a circular profile, and the surface
is continuous and differentiable; /1 and /2 are the contact angles at the two plates. The contact lines between
fluid and plates move up and down as the widths of the shear bands alter; H is the height difference between the
contact lines. Note that the curvatures may be positive or negative.
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fluid and plates move up and down as the widths of the shear bands alter; H is the height difference between the
contact lines. Note that the curvatures may be positive or negative.
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(a) Meniscus profiles for φ = 60◦.
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(b) Meniscus profiles for φ = 40◦.
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(c) Height difference Ĥ(w2) for φ = 60◦.
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(d) Height difference Ĥ(w2) for φ = 40◦.

FIG. 5. (a,c) Meniscus profiles h(y); and (b,d) height difference Ĥ and curvatures normalized by the gap size, wi
Ri

, as a function

of the high shear band width ŵ2; for A = −3.5. The dotted lines are the stability limits on wi
Ri

from Eq. (15). For φ = 60◦

(a,c) the surface is stable for all shear rates in the plateau region, while for φ = 40◦ (bd) the surface of the fluid will become
unstable on some portion of the stress plateau.

The stability contours for a range of stability parameters A are shown in Fig. 6, and the different regions of stability
are summarised in Table I. For A > −2 the shear bands are always stable. For −4 < A < −2 the meniscus is stable
for contact angles satisfying

cos2 φ ≤ cos2 φ∗ = |A|
(

1 − |A|
4

)
. (16)

For large magnitude |A| > 4 the shear band unstable at all contact angles, for some regions of the stress plateau. For

φ = 60◦ φ = 40◦

5

III. MENISCUS SHAPE AND STABILITY

A. General Shape (two bands)

Range of A Stability of meniscus

A < −4 Unstable for all contact angles φ, for ŵ−
2 < ŵ2 < ŵ+

2 .

−4 < A < −2 Unstable for | cosφ| > | cosφ∗| and ŵ−
2 < ŵ2 < ŵ+

2 .

−2 < A < 0 Completely stable for all contact angles φ.

TABLE I. Criteria for (in)stability as a function of the stability parameter A, for equal contact angles φ1 = φ2 = φ.

0

30

60

90

120

150

180

0.0 0.2 0.4 0.6 0.8 1.0

*!

 

 

 

C
o

n
ta

ct
 A

n
g

le
 !

o

0.0 0.2 0.4 0.6 0.8 1.0

w2
^ ^ +w2

^ -w2

 

unstable region

unstable region

stable region

contact angle 60
o

contact angle 40
o

(a)

*Txy

T
x
y

s
h

e
a
r 

s
tr

e
s
s

 

 

shear rate

(b)

 !!
 
2

!! 
1

!!  
app!!

 

 

! w2

FIG. 4. (a) Stability contours for equal contact angles φ2 = φ1 = φ, for A = −3.5. For φ = 60◦ all shear band widths are
allowed, while for φ = 40◦ the surface of the fluid becomes unstable for some widths ŵ2 of the high shear rate band satisfying
ŵ−

2 < ŵ2 < ŵ+
2 . All widths are stable for | cosφ| < cosφ∗ = 0.661. (b) Flow curve (thick line) for φ = 40◦, showing the

inaccessible segment of the stress plateau.

We ignore deviations due to complex flows near the contact line, and approximate the meniscus of each band as
the arc of a circle of radius Ri. We demand continuity of the surface and its tangent at the interface between two
bands. Simple geometry (Fig. 3b) yields

w1

R1
+

w2

R2
= − cosφ1 − cosφ2 , (8)

where φ1 and φ2 are the contact angles at either wall. This and Eq. (6) now completely specify the shape:

R̂1 =
1

− cosφ1 − cosφ2 − ŵ2A
and R̂2 =

1

− cosφ1 − cosφ2 + ŵ1A
, (9)

where the dimensionless stability parameter

A ≡ W∆N2

γs
= −W

ζ
(10)

controls the shape. In the limit of high surface tension, |A| # 0, both radii are equal and completely determined by

the contact angles. We have chosen negative values for A here since we expect N
(2)
2 < N

(1)
2 ≤ 0 in the high shear rate

band for most polymer and micellar solutions (a similar analysis can be done for A > 0). In Section IV we analyze
recent experiments and estimate −A ∼ 0.8 − 3 for shear banding wormlike micelles and −A ∼ 3 − 140 for entangled
polymer solutions.

To fulfil the conditions above, the fluid must adopt a height difference between the contact edges along each plate:

H = (R1 − R2)

√
1 −

(w1

R1
+ cosφ1

)2

+ R2 sinφ2 − R1 sinφ1 . (11)

stable region 

unstable region 

unstable region 

contact angle 50° 

contact angle 40° 

A =
LG

γ

∆N2

G
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Instabilities: A = LG∆N2/γG

Expulsion

After 20 s of signal acquisition at zero shear, a constant

shear rate was abruptly applied, by starting the stepper

motor. Measurements were taken at constant shear rate for

150 seconds. A second train of radio frequency pulses was then

started, with a separation of 100 ms, then the applied shear was

removed. Each fid was then Fourier transformed and phased

to obtain a time series of chemical shift spectra.

2.3.3 2H-NMR spectroscopy. By solubilising deuterated

n-decane probe molecules inside the micelle interior, it was

possible to study the orientational behaviour of the wormlike

micelles by acquiring the 2H-NMR spectrum of the probe

molecule. The probe molecule concentration was kept very low

(,1%) in order to minimise the disturbance to the system. The

signal intensity acquired from the probe molecule is small and

it was necessary to average the signal over 100 000 scans.

Spatial resolution was not possible due to the low signal,

therefore only gap-averaged experiments were performed.

A second 2H-NMR experiment was performed using

deuterated water as the solvent. Compared to the previous

experiment, the 2H signal was much larger allowing spatially

resolved spectroscopic measurements. The NMR sequence

used selects a single slice normal to the vorticity (z) and

velocity (y) directions using two slice-selective radio frequency

pulses while the signal is read under the influence of a position-

encoding gradient pulse applied along the hydrodynamic

gradient (x) direction. The pulse sequence was preceded by

prior T2 conditioning using a CPMG radio frequency pulse

train.50 For each pixel of the 1D image, inverse Fourier

transformation with respect to the multiple time steps along

the echo train, provided a 2H-NMR spectrum. The linewidth

was then obtained, (pT2)
21, of the deuterated water as a

function of gap position.

3 Results and discussion

3.1 Rheology

Linear viscoelastic measurements verified that the CPyCl–

NaSal system approximates a Maxwell fluid, see Fig. 4, with a

modulus plateau of G0 = 256 ¡ 7 Pa and zero shear viscosity

g0 = 118 ¡ 8 Pa s. The relaxation time was found to be t =

460 ¡ 20 ms, which agrees with the results reported by

Berret et al..3 The breaking/recombining time was calculated

to be 79 ¡ 3 ms, using ref. 51 which is similar to the value

obtained by Berret et al..3

The non-linear behaviour of this system is seen in the flow

curve, Fig. 5, using a double logarithmic scale. The micelle

system has almost identical rheology whether H2O or D2O was

used as the solvent. The shear behaviour is divided into three

regions, as follows: region I at low shear rates, the system

exhibits Newtonian behaviour, characterised by a near linear-

dependence of the shear stress vs. shear rate, ranging from 0.1

to 1.1 s21. Also, the first normal stress difference, N1, is equal

to zero, which is characteristic of a Newtonian fluid. Region II

is shear thinning, from 1.2 to 2.8 s21, the first normal stress

difference increases linearly on the semi-logarithmic scale.

Region III is above the critical shear rate _ccc, of around 2.8 s21.

This region has a distinct stress plateau andN1 increases abruptly

up to the fluid being expelled from the gap of the rheometer.

Rheological measurements were also made of the transient

stress response (on start-up), these experiments consisted of

applying a sudden shear step and measuring the transient

response of the material. The shear response was measured in

three sections: the initial stress response after the abrupt

application of shear, the stationary state and following the

abrupt cessation of shear. Fig. 6 shows the stress response of

the CPyCl–NaSal system to the start-up experiment at

different shear rates. For shear rates in region I, the steady

Fig. 4 (a) Frequency sweep, under constant strain of 2%, of the

CPyCl–NaSal system with G0 equal to 256 Pa and a terminal

relaxation time of 0.46 s. (b) Cole–cole plot (G9 vs. G0) using the

experimental data of (a), which is a semi-circle with radius equal to

G0/2. The Maxwell model is plotted in the solid lines and the

experimental data are plotted with the symbols, the data points at high

frequencies are affected by experimental artefacts.

Fig. 5 Flow curve under controlled strain-rate for the CPyCl–NaSal

solution in H2O. The flow curve is divided in three regions: region I is

Newtonian, region II is shear thinning and region III a stress plateau.

The first normal stress difference is plotted in the squares. Very similar

behaviour was seen using D2O as the solvent.
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Vorticity Banding: DST in colloids?

[Grob et al., PRE 2013, Brown & Jaeger Rep Prog Phys 2014, Pan et al. PRE 2015]
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FIG. 6. Flow curves from the stress-controlled simulations. The
unstable branches (decreasing stress) are obtained as time averages
over the transient flow (right axis: stress values used for the time
series in Fig. 3).

metastable states), we have tried to construct the flow curves
in this regime by the following procedure: The monitored
time series are truncated as soon as the system jams. The
(transiently) flowing part of the time series is averaged over
time, giving rise to the flow curves, shown in Fig. 6. These flow
curves show clearly a nonunique relation σ (γ̇ ) or equivalently

a non monotonic relation γ̇ (σ ), which can only be observed
as transient behavior, before the system has settled into a
stationary state.

In conclusion, the goal of this Rapid Communication is
to understand the role of friction in the jamming behavior
of dry granular matter. To this end we present a theoretical
model (supplemented by molecular dynamics simulations)
that can reproduce all the phenomenology of simulated flow
curves (Fig. 2) both for the fully frictional system as well as
for the limiting case of frictionless particles. The jamming
phase diagrams derived from the model agree with recent
experiments [11]. The key result is that the transition between
the two jamming scenarios, frictionless and continuous, and
frictional and discontinuous, can in our model be accounted
for by the variation of just a single parameter (b). The most
important feature of the frictional phase diagram is reentrant
flow and a critical jamming point at finite stress. The fragile
“shear jammed” states observed in the experiments [11] then
correspond to the reentrant (inertial) flow regime in our
theory. Our work allows one to bring together previously
conflicting results [6–8,10] and opens a new path towards a
theoretical understanding of a unified jamming transition that
encompasses both frictionless as well as frictional particles.

We thank Till Kranz for fruitful discussions. We gratefully
acknowledge financial support by the DFG via FOR 1394 and
the Emmy Noether program (He 6322/1-1).
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in viscosity with shear rate gradually becomes larger with
increasing packing fraction, and it is usually found that the
shear thickening regime starts at a critical stress τmin which
is roughly independent of packing fraction (Gopalakrishnan
and Zukoski 2004, Laun 1984, Maranzano and Wagner 2001a,
Wagner and Brady 2009). Below this stress, shear thinning or a
Newtonian regime may be found, depending on the suspension.

3.2. Discontinuous shear thickening

In many shear thickening fluids, the viscosity increase with
shear rate continues to become steeper with increasing packing
fraction, up to the point that the viscosity and shear stress
appear to jump discontinuously by orders of magnitude beyond
a certain shear rate (such as the red curve in figure 2). In
such cases it is often said that the shear thickening evolves
from continuous to discontinuous shear thickening with
increasing packing fraction. This so-called Discontinuous
Shear Thickening (DST) has the most dramatic increase in
viscosity of any type of shear thickening, and includes the
prototypical example of cornstarch in water as well as many
other densely packed hard-particle suspensions (Barnes 1989,
Bender and Wagner 1996, Bertrand et al 2002, Boersma et
al 1990, Brown and Jaeger 2009, Brown et al 2010a, 2010b,
Egres and Wagner 2005, Egres et al 2006, Fall et al 2008,
Frith et al 1996, Hoffman 1972, 1974, 1982, Laun 1994, Lee
and Wagner 2006, Lootens et al 2003, 2005, Maranzano and
Wagner 2001a, 2001b, 2002, Metzner and Whitlock 1958,
O’Brien and Mackay 2000, Shenoy and Wagner 2005), and
solutions of micelles (Hofmann et al 1991, Liu and Pine 1996).
An example of the evolution from continuous to discontinuous
shear thickening with packing fraction is shown in figure 3.

The DST suspensions mentioned above tend to have
several rheological properties in common that provide
considerable insight into the possible mechanisms and help
distinguish different phenomena. One such property is that
the DST regime tends to occur in a well-defined range of
shear stress. The onset of the shear thickening regime can be
characterized by the same critical stress τmin that is roughly
independent of packing fraction as with continuous shear
thickening (see figure 3(b)). Once started, the viscosity
or shear stress increase does not continue indefinitely with
increasing shear rates. Instead, the shear thickening regime
ends at a maximum stress scale τmax, also roughly independent
of packing fraction (Brown and Jaeger 2009, Frith et al 1996,
Maranzano and Wagner 2001a, Shenoy and Wagner 2005).
Above this stress, shear thinning, cracking, and breakup of the
suspension are often observed (Laun 1994).

A second common property has to do with the scaling
of the slope of τ (γ̇ ) in the shear thickening regime. The
apparently discontinuous jump in the viscosity or shear stress
with shear rate tends to be observed only over a range of
packing fractions a few per cent below a critical packing
fraction φc in very densely packed suspensions, typically
around φc ≈ 0.6 for nearly spherical particles (Brown and
Jaeger 2009, Egres and Wagner 2005, Maranzano and Wagner
2001a). This critical packing fraction corresponds to the
jamming transition, above which the system has a yield stress
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Figure 3. Representative viscosity curves showing the evolution of
DST with increasing packing fraction. The suspension consists of
cornstarch in a solution of 85% glycerol and 15% water by weight,
with different mass fractions φm (proportional to φ) shown in the
key. (a) Shear stress τ versus shear rate γ̇ , in which shear
thickening is defined by the region with slope greater than 1. The
evolution to apparently discontinuous viscosity curves can be seen
as the mass fraction increases toward φc. Above φc, the suspension
becomes a yield stress fluid. (b) Same data, replotted as viscosity η
versus τ . The latter format better shows the gradual evolution of the
increasing slope in the shear thickening regime, confined in the
stress range between τmin and τmax. When plotted as η(τ ), a slope
greater than zero corresponds to shear thickening, and a slope of 1
corresponds to a discontinuous jump in τ (γ̇ ). Figure based on
Brown and Jaeger (2012). Reproduced with permission. Copyright
2012 American Institute of Physics.

like a solid (Liu and Nagel 1998). The value of φc can vary with
particle shape and a number of other suspension properties, but
the proximity to this point generally controls the slope of shear
thickening regime like a second order phase transition; the
slope of τ (γ̇ ) diverges at φc (Brown and Jaeger 2009, Brown
et al 2010b). This critical point will be discussed in more detail
in section 6.

3.3. Local versus global descriptions of rheology and
nomenclature

There is a major distinction between the local relation linking
shear stress and shear rate and the energy dissipation rate
measured by a rheometer for DST suspensions just described.
It has been found that the local shear stresses between
neighboring particles are frictional and thus proportional to
the local normal stress, which can depend on the boundary
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mass of granular particles and the total mass of the suspension,
respectively. The initial volume fraction ϕ is varied from
55% to 59%. For density-matched suspensions, no contacts
induced by gravity exist and normal forces are only caused by
shear [1].

The rheological measurements are performed by a rheome-
ter (Anton Paar MCR300) with a small-gap Couette geometry:
a rotating inner cylinder of 27 mm in diameter and a fixed outer
cup diameter of 29 mm, leading to a gap of 1 mm. This gap size
is around 60–100 times the particle diameter so that finite-size
effects are negligible. We verified that the stress distribution in
the gap is uniform compared to that in the wide-gap Couette
geometry that is often used for these suspensions [1,12]; no
strong particle migration effects occur when the suspension
is measured over a long time: Variations in viscosity (volume
fractions) are smaller than a few percent. For controlling both
shear stress and shear rates, the sweep rates are set at 10 s/data
point, 30 points/decade unless specified otherwise.

To visualize the flow behavior of the suspensions, we use
a fast confocal microscope (Zeiss Pascal Live) coupled with
a DSR 301 rheometer head. We use a cone-plate geometry
CP50-1 (50 mm/1◦) with a gap of 0.102 mm, but replace the
usual bottom plate by a transparent glass microscope slide.
Because the confocal is an inverted microscope, the sample in
the cone-plate geometry can be directly visualized by making
microscopy images through the glass slide while the sample
flows. We apply an interesting technique to visualize the local
stress; we use the fluorescent stress probe molecule 9-(2,2-
dicyanovinyl) julolidine (DCVJ) dissolved in the aqueous
phase. DCVJ belongs to a class of rigidochromic molecular
rotors based on twisted intramolecular charge transfer (TICT)
states [23,24] and is sensitive to the normal stress between
particles: The higher the stress, the higher the fluorescence
intensity it emits [23].

The concentration-dependent shear thickening behavior
measured in the Couette geometry is shown in Fig. 1. Upon
increasing the stress, we first observe a Newtonian flow
behavior at low stress in agreement with [12]. Here, some
fluctuations may be due to slight particle migration effects or a
slight density mismatch as a result of varying lab temperatures.
Next, clear thickening behavior at higher stresses is observed:
Continuous shear thickening occurs for low volume fractions
(ϕ ! 56.5%), becoming more pronounced with increasing ϕ.

FIG. 1. (Color online) Flow curves under controlled shear stress:
(a) shear stress vs shear rate and (b) viscosity vs shear rate for granular
suspensions with volume fractions varying from 55% to 59%. The
flow curves are taken when the suspensions are sheared over a long
time.

Surprisingly, at a fraction above a threshold value ϕ ≈ 56.5%
(a value very similar to that in [13,20]), the flow curves
display continuous shear thickening first, followed by an
S-shaped flow curve. When ϕ exceeds 58%, the continuous
thickening weakens and the viscous Newtonian regime and
the high-viscosity thickened regime are only connected by
an intermediate part with a negative slope. The thickened
states in both S-shaped and discontinuous shear thickening
are reversible, and the corresponding viscosities depend on
the volume fractions, indicating that complete jamming does
not occur here and thus is not necessary for the discontinuous
shear thickening. In jamming, the viscosity would become
infinite [6] and the system cannot flow without (particle)
inhomogeneity and fracture [13].

Figure 1 shows that the onset stress for the S-shaped
curve decreases with increasing ϕ, which is different from
the shear rate controlled rheology reported in [1], where the
onset stress varies only weakly with ϕ. The onset shear rate
(stress) can be estimated by considering dilatancy [25] that
causes a nonequilibrium osmotic pressure (particle pressure)
" ≈ ηγ̇ /(1 − ϕ/ϕm)2 with ϕm the maximum volume fraction
[26,27]. A simple estimate can be made by equating this
pressure to the Laplace pressure given as γ /d, where γ is the
surface tension and d is the particle diameter. With η ≈ 1 Pa s,
ϕm ≈ 0.63, and γ ≈ 0.02 N/m, we obtain a critical shear
rate γ̇c ≈ 12.6 s−1 in good agreement with the onset shear
rate for the S-shaped flow curve at ϕ = 58% (Fig. 1). Note
that this shear rate corresponds to a small Stokes number
St ≈ 10−3, again suggesting that inertia is not important for
shear thickening [1,19].

We now investigate the S-shaped flow curve in more detail
for concentrated suspensions with ϕ fixed at 58%. Figure 2(a)
shows the difference between shear stress and shear rate
controlled experiments. While under stress control we obtain
the S-shaped flow curve as above, under shear rate control
a discontinuous jump in stress is observed: By controlling
shear stress, measurements can be performed beyond the onset
of sudden shear thickening [28]. Both flow curves exhibit
the same Newtonian regime and shear thicken at almost the
same shear rate (γ̇+). Under shear rate control, however, the
stress abruptly jumps to a higher value corresponding to
the thickened state, while in the stress controlled experi-
ments the system has to pass through the S-shaped curve
characterized by a second critical shear rate γ̇− at which the

FIG. 2. (Color online) Comparison between flow curves (stress
vs shear rate) obtained from controlling shear stress [(CSS), black
squares] and controlling shear rate [(CSR), red circles]. The volume
fractions are fixed at 58% (a) and 56% (b).
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not generate overlaps—vanishes with δz≡ zc − z, where
zc ¼ 2d in d dimensions. This causes the viscosity (and the
correlation length [30]) to diverge as [31]

P ¼ A0η0γ
:
δz−α; (6)

where A0 is a constant and α≃ 2.7. In frictional packings,
counting soft modes is slightly more involved; nonetheless,
these must be present for a system of hard particles to flow,
and it is found numerically that at the critical state ϕm the
number of soft modes is just zero [32]. Both facts suggest
that the loss of soft modes again causes the viscosity
divergence. We shall thus assume that Eq. (6) is valid for all
packings, so long as δz represents the actual number of soft
modes per particle. Theoretically the dependence
of δz on ϕ is not derived, but follows empirically from
the observed divergences for rough and smooth particles
(with constants Ar;s) as

δzr ¼ Arðϕm − ϕÞβr=α (7)

δzs ¼ Asðϕ0 − ϕÞβs=α. (8)

Any given packing has a definite z; but the number of
soft modes, δz, depends on the fraction, fðpÞ, of frictional
contacts. The problem of counting soft modes is somewhat
subtle for spherical particles, but we expect the rheology of
spherical and aspherical particles to display only minor
differences [33]. For aspherical grains the number of soft
modes simply decreases as the number of constraints
increases. The latter should increase linearly with the
number of frictional contacts, leading to

δz ¼ fðpÞδzr þ ð1 − fðpÞÞδzs. (9)

Equations (6)–(9) are closed. For simplicity we assume
(in qualitative accord with the empirical results) that
Ar ¼ As ¼ A, and α ¼ βr ¼ βs ¼ 2. This gives results
completely equivalent to (3), (4), with λ ¼ A0η0=A2.
(From now on we choose rescaled units where λ ¼ 1.)
As already made clear, details of the crossover function
fðpÞ are unimportant unless its decay to unity at large p is
very slow.
Results and discussion.—We next present numerical

results for a suitably bland choice, fðpÞ ¼ 1 − expð−pÞ.
The resulting flow curves Pðγ: Þ are shown in Fig. 1.
A key finding is the onset of DST at a packing fraction
ϕDST ≈ 0.55, distinctly below ϕm ¼ 0.58. As ϕ approaches
ϕDST from below, the slope of the flow curves become more
and more pronounced for p ∼ 1, implying a growing CST.
In our model, which neglects inertia, at higher γ

:
this crosses

over to a second Newtonian regime of high viscosity. At
ϕDST the slope is vertical, and for ϕDST < ϕ < ϕm, the flow
curve is sigmoidal, signaling hysteretic DST between upper
and lower branches of finite viscosity. The maximal extent

of hysteresis is delineated by two strain rates γ
:þ > γ

:−

where dγ
:
=dP ¼ 0. For ϕ → ϕm, we find γ

:− → 0. At this
point, the upper branch of the sigmoid disappears, signify-
ing complete jamming. For ϕ ≥ ϕm material is flowable
at low stress, but completely jammed for p ≫ 1. One may
still observe a discontinuous (and possibly hysteretic)
thickening at γ

:þ, but the thickened state must flow
inhomogeneously.
Figure 2 shows a phase diagram of the various flow

regimes. Inside the solid (blue) curve, there is hysteresis
and flow can depend on strain-rate history. Several features
of this diagram do not depend on the details of f:
(a) near ϕDST the hysteresis zone narrows to a cusp, with
γ
:þ − γ

:− ∝ ðϕ − ϕDSTÞ3=2, as expected from a saddle node
bifurcation; (b) on the approach to complete jamming,
γ
:− vanishes at least as ðϕm − ϕÞ2, and for f0ð0Þ > 0
as ðϕm − ϕÞ3 (modulo logarithmic corrections); (c) γ

:þ

vanishes only at ϕ0 beyond which homogeneous flow is
impossible even at infinitesimal γ

:
.

In the presence of noise, jumps can occur before the
relevant stability limit is reached: the hysteretic regime in
Fig. 2 represents the maximum possible. (Noise-induced
nucleation might recover a single-valued but discontinuous
curve as dγ

:
=dt → 0, but this limit could in turn prove

experimentally inaccessible [34].) Note also that at DST,
where Iv jumps downward and p up, one expects a jump in
the stress ratio μ ¼ σ=P which depends on the full form of
μðIv; pÞ. (However numerics support that μ weakly
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FIG. 1 (color online). Log-log plot of flow curve pðγ: Þ from
(3, 4) with λ ¼ 1, ϕ0 ¼ 0.64 and ϕm ¼ 0.58, for various ϕ. For
small ϕ, the behavior is near Newtonian. As ϕ increases, CST
becomes pronounced; its onset pressure p≃ 1 barely depends on
ϕ (unlike the corresponding strain rate). The dashed line is for
ϕ ¼ ϕDST. For ϕDST < ϕ < ϕm, DST is predicted with hysteresis
between two flowing, unjammed states. For ϕ > ϕm (dotted
lines) homogeneous flow can only occur at small strain rates.
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depends on friction at fixed ϕ [35], so this effect may be
small). The same applies to other stress ratios, such as those
involving normal stress differences.
In the inset of Fig. 2 the same phase diagram is plotted in

the ϕ, p plane. This might be relevant for experiments at
controlled P [13]. In principle these might allow one to
reach states inaccessible by any flow history at fixed ϕ,
such as those on the decreasing ‘middle’ branch of the flow
curve Pðγ: Þ. (For ϕ > ϕm this becomes the upper branch,
but is still decreasing.) However, the same branch is also
present for σðγ: Þ where its observation at fixed σ is normally
precluded by transverse shear banding [36]. Ignoring
particle migration (which is slow [16]) such banding might
be prevented if P is controlled locally (not just as an
average along the velocity gradient direction). It is unclear
to us whether the semipermeable rheometer of [13]
achieves this.

Finally we address the role played by the static friction
coefficient m of contacts. So long as this is a positive
constant, ϕm < ϕ0 and our model remains applicable; both
CST and DST are predicted. Since the jamming density ϕm
moves away from ϕ0 as m is increased [37], our model
predicts shear thickening to be more pronounced with high
friction particles than low ones—as reported experimen-
tally [5]. However an alternative but similar scenario might
now be obtained even without finite repulsions, by choos-
ing a stress-dependent contact friction mðpÞ that increases
with p ¼ P=P$.
Conclusion.—We have provided a phenomenological

model of shear thickening for frictional hard spheres with
finite short-range repulsions. Our analysis explains obser-
vations of hysteresis, and predicts that DST should begin at
an onset packing fraction, ϕDST < ϕm, below the jamming
point. Our result may be tested by careful experiments on
hysteresis (which should reveal DST to smoothly flowing
states) in a system of sufficiently hard particles, at fixed
volume fraction. DST (and indeed CST) should disappear
altogether if flow is measured at fixed particle pressure P
[13]. DST also will not be observable if the onset stress P$

exceeds the threshold τ=R for containment of particles
by rheometer menisci of surface tension τ [1,15]. In this
sense DST depends on boundary conditions as well as bulk
properties [1]; but for ϕ < ϕm, with fixed ϕ and no free
surfaces, it reverts to an intrinsic property of the bulk flow
curve σðγ: Þ. We have neglected gravity, Brownian motion,
particle deformability [38], and inertia, thus showing these
not to be prerequisites for shear thickening, but it would be
interesting to see how much they change the picture. For
instance, it may be that slight Brownian motion has effects
very similar to a short-range repulsion [39]. Also it is
possible that shear thickening by a related but inertial
mechanism [5] would arise in fast enough flows even for
purely hard spheres, whereas additional short-range repul-
sions introduce a second, noninertial mechanism operative
at lower strain rates.
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FIG. 2 (color online). Phase diagram in the (ϕ, γ
:
) plane. The

solid (blue) curves delimit upper and lower stability limits γ
:%ðϕÞ

between which hysteresis is possible. The cusp at the left of this
region identifies ϕ ¼ ϕDST. For ϕ0 > ϕ > ϕDST, increasing the
strain rate gives an upward stress-jump at the upper stability
curve: ascending (pink) arrow. To the right of the vertical line at
ϕ ¼ ϕm, homogeneous flow is impossible for γ

:
> γ

:þðϕÞ unless
particles are deformable. For ϕ < ϕm, the upward jump is to a
flowing frictional state; lowering the strain rate from a large value
gives a negative stress jump at the lower stability limit γ

:−ðϕÞ:
descending (red) arrow. Inset: Phase diagram in the (p, ϕ) plane.
The left (blue) curve locates the stress-jump on steadily increas-
ing strain rate. The right (green) curve shows the maximal stress
above which no flowing states exist. (Labels A, B, C as in main
figure; ϕ axis horizontal.)
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FIG. 1. Relative viscosity ⌘r as a function of the volume fraction � in the two limits �̇ ! 0 and �̇ !
1 (left). The �̇ ! 0 viscosity (blue circles) is independent of the friction coefficient µ as the friction
is not activated at low stresses, which leads to a relatively lower viscosity diverging at a higher
volume fraction �0

J (which is the jamming point for frictionless systems). The �̇ ! 1 viscosity
however directly depends on µ, as is seen from the difference between µ = 1 (red squares) and
µ = 1 (gray diamonds) plots. In particular, the jamming volume fraction decreases with increasing
µ. We fit our data with power laws ⌘r = C(1 � �/�J)

�� (right). The best fitting parameters are
(�0

J,�
0, C0) ⇡ (0.66, 1.6, 1.40), (�µ=1

J ,�µ=1, Cµ=1) ⇡ (0.58, 2.3, 0.71), and (�µ=1
J ,�µ=1, Cµ=1) ⇡

(0.56, 2.4, 0.63).

B. Shear thickening, continuous and discontinuous

We can switch from one rheology to the other by varying the shear rate. Physically,
the transmitted stress increases as the shear rate increases, which triggers the formation
of frictional contacts between particles. Thus, by increasing the shear rate, the viscosity
interpolates between the frictionless and frictional rheology curves, which means we can
observe shear thickening. All this should be a natural consequence of the existence of two
distinct rheologies at �̇ = 0 and �̇ = 1. What we cannot anticipate a priori is the way
in which the system switches from the low viscosity state to the high viscosity one: do we
observe a Continuous Shear Thickening (CST) or a Discontinuous Shear Thickening (DST)?

The shear rate dependence of the viscosity, shown in FIG. 2 for the CLM, demonstrates
the existence of both CST and DST in our system, depending on the volume fraction. As in
experiments, when � < �c the shear thickening is continuous, getting steeper and steeper as
we approach �c, at which point it becomes discontinuous and keeps this behavior for � > �c

and up to �0
J. Note that there appears to be a real discontinuity in our data for these volume

fractions: the time series of the viscosity show an intermittent behavior switching between
two states, that we detail in the next section. In FIG. 2, the intermittent data are split
(two points appear at the same shear rate) and represent a time average for each of the two
states.

When plotted against stress in FIG. 2, the viscosity curves show another interesting
feature, namely that the onset of shear thickening occurs at a stress that is roughly inde-
pendent of the volume fraction. From a mild shear thickening to a marked DST, this stress

11

[Seto et al., PRL 2013, JOR 2014]

FIG. 4. (a)–(e) Apparent shear rate as a function of time measured during a continuous increase in shear stress in a Couette geometry at /w¼ 0.50. (f)–(j)
Same as (a)–(e) but in a parallel plate geometry at /w¼ 0.465. (k)–(o) Same as (a)–(e) but in a parallel plate geometry at /w¼ 0.45.

FIG. 5. (a) Relative viscosity g=gs vs reduced shear rate _cgs=p? at different volume fractions / (as labeled) predicted by the theory of Wyart and Cates [15],
[Eq. (5)]. We take /m ¼ 0:56; /RCP ¼ 0:64; b ¼ 1 from recent experiments [9]. The unstable regimes are marked in thick (red) lines. (b) Corresponding flow
curves (shear stress as a function of shear rate). (c) The /-independent stress ratio (or effective macroscopic friction coefficient) in the y- (gradient-) direction,
lyy ¼ rxy=ryy, used to obtain these plots. Black solid line: derived from Boyer et al. [23], applicable up to /m; gray line: a plausible extrapolation to higher /
based on 2D simulations [24]. (d) The flow curves dxyð _cÞ=p? at different / (blue lines) plotted again, now against a linear horizontal axis, and compared with
the normal stress in the y-direction $ryyð _cÞ=p? (red lines) calculated using the expression for l, shown in (c).

910 HERMES et al.

[Guy et al., JOR 2016]

[Seto, Mari, Denn, Morriss, Cates, Wyart, . . . ]

Viscosity η =
1

(
1− φ

φJ(pp)

)2

Jamming φJ = φmf (pp) + φ0(1− f (pp)

Contacts f (pp) = (1− e−pp/p∗)

Correct choice of fabric tensor A?

Orientational order?

T = T(A, f ,D, . . .)

Dynamics ∂t f = . . . , ∂t A = . . . ?

Frictional models are non-analytic
and non-differentiable!



Wyart/Cates model (non-Brownian suspensions) [PRL 2014]

Ë
Ë

Ë
Ë
Ë
Ë

Ë

Ë

Ë

Ë

ü

ü

ü

ü
ü
ü
ü
ü

Ì

Ì

Ì

Ì

Ì

0.45 0.5 0.55 0.6 0.65

10

50

100

500

1000

5000

Ë
Ë

Ë
Ë

Ë
Ë

Ë

Ë

Ë

Ë

Ì

Ì

Ì

Ì

Ì

ü

ü

ü

ü
ü
ü
ü

ü

0.01 0.02 0.05 0.1 0.2 0.5

10

50

100

500

1000

5000
�
µ=1
J �0

J�
µ=1
J

FIG. 1. Relative viscosity ⌘r as a function of the volume fraction � in the two limits �̇ ! 0 and �̇ !
1 (left). The �̇ ! 0 viscosity (blue circles) is independent of the friction coefficient µ as the friction
is not activated at low stresses, which leads to a relatively lower viscosity diverging at a higher
volume fraction �0

J (which is the jamming point for frictionless systems). The �̇ ! 1 viscosity
however directly depends on µ, as is seen from the difference between µ = 1 (red squares) and
µ = 1 (gray diamonds) plots. In particular, the jamming volume fraction decreases with increasing
µ. We fit our data with power laws ⌘r = C(1 � �/�J)

�� (right). The best fitting parameters are
(�0

J,�
0, C0) ⇡ (0.66, 1.6, 1.40), (�µ=1

J ,�µ=1, Cµ=1) ⇡ (0.58, 2.3, 0.71), and (�µ=1
J ,�µ=1, Cµ=1) ⇡

(0.56, 2.4, 0.63).

B. Shear thickening, continuous and discontinuous

We can switch from one rheology to the other by varying the shear rate. Physically,
the transmitted stress increases as the shear rate increases, which triggers the formation
of frictional contacts between particles. Thus, by increasing the shear rate, the viscosity
interpolates between the frictionless and frictional rheology curves, which means we can
observe shear thickening. All this should be a natural consequence of the existence of two
distinct rheologies at �̇ = 0 and �̇ = 1. What we cannot anticipate a priori is the way
in which the system switches from the low viscosity state to the high viscosity one: do we
observe a Continuous Shear Thickening (CST) or a Discontinuous Shear Thickening (DST)?

The shear rate dependence of the viscosity, shown in FIG. 2 for the CLM, demonstrates
the existence of both CST and DST in our system, depending on the volume fraction. As in
experiments, when � < �c the shear thickening is continuous, getting steeper and steeper as
we approach �c, at which point it becomes discontinuous and keeps this behavior for � > �c

and up to �0
J. Note that there appears to be a real discontinuity in our data for these volume

fractions: the time series of the viscosity show an intermittent behavior switching between
two states, that we detail in the next section. In FIG. 2, the intermittent data are split
(two points appear at the same shear rate) and represent a time average for each of the two
states.

When plotted against stress in FIG. 2, the viscosity curves show another interesting
feature, namely that the onset of shear thickening occurs at a stress that is roughly inde-
pendent of the volume fraction. From a mild shear thickening to a marked DST, this stress
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FIG. 4. (a)–(e) Apparent shear rate as a function of time measured during a continuous increase in shear stress in a Couette geometry at /w¼ 0.50. (f)–(j)
Same as (a)–(e) but in a parallel plate geometry at /w¼ 0.465. (k)–(o) Same as (a)–(e) but in a parallel plate geometry at /w¼ 0.45.

FIG. 5. (a) Relative viscosity g=gs vs reduced shear rate _cgs=p? at different volume fractions / (as labeled) predicted by the theory of Wyart and Cates [15],
[Eq. (5)]. We take /m ¼ 0:56; /RCP ¼ 0:64; b ¼ 1 from recent experiments [9]. The unstable regimes are marked in thick (red) lines. (b) Corresponding flow
curves (shear stress as a function of shear rate). (c) The /-independent stress ratio (or effective macroscopic friction coefficient) in the y- (gradient-) direction,
lyy ¼ rxy=ryy, used to obtain these plots. Black solid line: derived from Boyer et al. [23], applicable up to /m; gray line: a plausible extrapolation to higher /
based on 2D simulations [24]. (d) The flow curves dxyð _cÞ=p? at different / (blue lines) plotted again, now against a linear horizontal axis, and compared with
the normal stress in the y-direction $ryyð _cÞ=p? (red lines) calculated using the expression for l, shown in (c).
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Viscosity η =
1

(
1− φ

φJ(pp)

)2

Jamming φJ = φmf (pp) + φ0(1− f (pp)

Contacts f (pp) = (1− e−pp/p∗)

Correct choice of fabric tensor A?

Orientational order?

T = T(A, f ,D, . . .)

Dynamics ∂t f = . . . , ∂t A = . . . ?

Frictional models are non-analytic
and non-differentiable!



Unsteady vorticity banding in non-Brownian suspensions?

S-SHAPED FLOW CURVES OF SHEAR THICKENING . . . PHYSICAL REVIEW E 92, 032202 (2015)

FIG. 3. (Color online) Up-and-down flow curves displaying hys-
teresis: stress vs shear rates at stress sweep rates of (a) 10 s/point
and (b) 40 s/point. Filled symbols are for increasing stress and open
symbols are for decreasing stress sweeps. Black symbols are under
controlled shear stress (CSS), red symbols under controlled shear
rate (CSR).

thickened state is reached. The two types of flow curves are
again identical in the thickened state. In addition, the volume
fraction where the S-shaped flow curve appears coincides with
the appearance of discontinuous shear thickening in controlled
shear rate experiments; also as shown in Fig. 2(b), no
quantitative difference is seen between shear stress controlled
and shear rate controlled experiments at a low volume fraction
ϕ = 56%.

A hysteresis, similar to that observed in cornstarch sus-
pensions [29], is observed when we impose up-and-down
stress sweeps (10 s/data point) on the sample. The S-shaped
flow curve is observed in both upward and downward shear
stress sweeps [Fig. 3(a)]. The hysteresis region in Fig. 3(a)
can be roughly described as a rectangle with two vertices on
the Newtonian branch (at γ̇+ ≈ 12.5 s−1 and at γ̇− ≈ 9.5 s−1)
and two vertices on the shear thickened branch. The rate
at which stress sweeps are performed determines the flow
curves; Fig. 3(b) shows that at a rate of 40 s/data point,
the negative slope sides of the rectangle approach each other
and the hysteresis disappears, while the S shape in the flow
curve remains. Figure 3(a) shows that up-and-down shear rate
sweeps also result in hysteresis loops, again in accordance with
shear stress controlled rheology in that the onset shear rate is
identical to that for observing the S-shaped flow curve.

This kind of hysteresis is often attributed to stress het-
erogeneity and is believed to be analogous to the hysteresis
accompanying coexistence of two phases in a first-order phase
transition [29]: The negative slope of stress vs shear rate cannot
reflect the viscosity of a homogeneous system; in general it
signals a linear instability of such a flow, which for systems
such as wormlike micelles results in shear banding.

To investigate what happens in this part of the S-shaped flow
curve, in Fig. 4(a) we show the result of a series of constant
shear stress experiments, taken at varying locations along the
flow curve. Figure 4(b) shows that when constant stress is
imposed in either the Newtonian state or the thickened state,
the viscosities stay almost constant over a period of 10 min
suggesting two stable flowing states (no jamming). However,
under constant controlled stress in the intermediate state (15,
20 Pa are close to the boundary), the viscosities in our sample
fluctuate between 1.3 and 2.5 Pa s. Comparing with Fig. 4(a),
this corresponds roughly to the viscosity at γ̇+ and γ̇− for which

FIG. 4. (Color online) (a) Flow curve on which the different
constant stress levels are indicated: 5, 10 Pa for the Newtonian state;
15, 17, 20 Pa for the intermediate state; and 30, 50 Pa for the thickened
state. The corresponding viscosities are shown as a function of time
in (b). The symbols in (b) are in accordance with the dashed lines in
(a) of the same color.

we find 1.5 and 2.7 Pa s from the flow curve, respectively.
These observations could suggest that the Newtonian and the
shear thickened states coexist here. Theory [30] indicates that
in this case an S-shaped flow curve should be associated with
shear banding in the vorticity direction under controlled stress:
The system separates into bands of different stresses (thus
different viscosities) that pile up along the vorticity direction.

To directly investigate the vorticity banding hypothesis we
need to be able to distinguish parts of the system that have
different shear stresses but the same shear rate, which is far
from obvious. Figure 5, however, shows that the fluorescence
emission of DCVJ, present in the interstitial fluid between
the particles can be turned on by increasing the normal stress
between the particles. The onset of shear thickening has often
been associated with the emergence of normal stresses between
particles, and consequently the DCVJ can be used as a local
stress sensor [23]. Figure 6(a) shows that the S-shaped flow
curve is reproduced in the cone-plate geometry, albeit with
a slightly higher onset shear rate (stress), which is perhaps
due to the change in geometry leading to a different dilatancy
effect. By focusing the fast confocal microscope in a layer
20 µm above the glass slide we find that the stress field in
the system remains uniform [Figs. 6(c) and 6(d)] even for
shear stresses corresponding to the negative slope part of the
S-shaped curve (the residual fluorescence in the fluid away
from the contact between particles is probably due to a
combination of scattering and a third dimensional contribution

FIG. 5. (Color online) Representative fluorescent images with
the focal plane positioned at the surface of a transparent glass slide
on top of which one drop of DCVJ aqueous solution is loaded. A
PMMA bead is pressed on the glass slide with the following normal
stress levels: (a) 0 Pa, (b) 40 MPa, (c) 50 MPa. The size of the images
is 90 µm × 90 µm.
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While the jamming events in region B are sparsely dis-
tributed and seem to occur randomly in time, they become
very regular with a well-defined frequency at r ! 0:2p?, re-
gime C Fig. 2(f). This is visible macroscopically as periodic
jerks of the rheometer top plate. The minimum shear rate
reached during a jamming event is variable, Fig. 2(c), while
the shear rate in the flowing state is approximately the same
and corresponds to the right-hand limit of the horizontal lines
in Fig. 2(f). These oscillations remain over long times and
only change over the course of hours (presumably as the
sample dries out). The frequency of the oscillations increases
linearly with the applied stress, Fig. 3(a). Each sudden
decrease in _c is accompanied by a localized deformation of
the air-sample interface. A small area of the interface compa-
rable to the gap height bulges out slightly, while the sur-
rounding area curves slightly inward. The interface recovers
a smooth profile as the plate accelerates back to the steady-
state value. Note that these localized jams are not an artifact
of the cross-hatched plates; they start to appear at the same
stresses with smoother surfaces, albeit in the presence of sig-
nificant wall slip, as well as in Couette geometries [Fig.
4(b)].

In region D, Fig. 2(f), periodic jamming coexists tempo-
rally with bursts of unpredictable fluctuations, as shown in

Fig. 2(e). During the periodic intervals, the air-sample inter-
face behaves the same as in region C, with short-lived, static
jammed regions appearing at the same time as the drop in
shear rate. During the random bursts, more irregular surface
deformations are observed that are long lived and move
around the interface opposite to the direction of flow [see
Figs. 3(b)–3(d)]. Usually, only one or two transient deforma-
tions appear during each intermittent event and disappear
when the periodic oscillations resume.

At the highest stresses r=p? ! 1, in region E, Fig. 2(f), the
periodic jamming and unjamming are absent, and only
random-looking fluctuations are observed, Fig. 2(e). This
behavior, and the series of events at lower stresses that pre-
cede it, are similar to the development of rheochaos as
observed in micellar systems [2]. We leave it to future work
to establish whether the flow is really chaotic in a technical
sense; for our purposes, what matters is that it is unsteady,
not readily predictable, and without obvious periodic fea-
tures. In region E, the first normal stress difference is perma-
nently large and positive and anticorrelated with the shear
rate. Very recently, unstable flow, sudden jams and a transi-
tion to what appears to be rheochaos have been observed in
2D computer simulations of inertial frictional grains [22].
Although the origin of the sigmoidal flow curves is different,

FIG. 2. (a)–(e) Apparent shear rate as a function of time for increasing stress, on the left y axis. The thin black lines show the normal pressure nf/rxy on the
right y axis. (f) Apparent shear stress as a function of rim shear rate _cR in absolute and reduced units for corn starch at a mass fraction of /w¼ 0.52, corre-
sponding to a volume fraction just above /m in WC theory. Horizontal lines: raw _cR data at different applied rxy in the stable (dark blue), periodic (red), inter-
mittent (green), and chaotic (cyan) regimes. Symbols: average _cR.
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FIG. 3. (Color online) Up-and-down flow curves displaying hys-
teresis: stress vs shear rates at stress sweep rates of (a) 10 s/point
and (b) 40 s/point. Filled symbols are for increasing stress and open
symbols are for decreasing stress sweeps. Black symbols are under
controlled shear stress (CSS), red symbols under controlled shear
rate (CSR).

thickened state is reached. The two types of flow curves are
again identical in the thickened state. In addition, the volume
fraction where the S-shaped flow curve appears coincides with
the appearance of discontinuous shear thickening in controlled
shear rate experiments; also as shown in Fig. 2(b), no
quantitative difference is seen between shear stress controlled
and shear rate controlled experiments at a low volume fraction
ϕ = 56%.

A hysteresis, similar to that observed in cornstarch sus-
pensions [29], is observed when we impose up-and-down
stress sweeps (10 s/data point) on the sample. The S-shaped
flow curve is observed in both upward and downward shear
stress sweeps [Fig. 3(a)]. The hysteresis region in Fig. 3(a)
can be roughly described as a rectangle with two vertices on
the Newtonian branch (at γ̇+ ≈ 12.5 s−1 and at γ̇− ≈ 9.5 s−1)
and two vertices on the shear thickened branch. The rate
at which stress sweeps are performed determines the flow
curves; Fig. 3(b) shows that at a rate of 40 s/data point,
the negative slope sides of the rectangle approach each other
and the hysteresis disappears, while the S shape in the flow
curve remains. Figure 3(a) shows that up-and-down shear rate
sweeps also result in hysteresis loops, again in accordance with
shear stress controlled rheology in that the onset shear rate is
identical to that for observing the S-shaped flow curve.

This kind of hysteresis is often attributed to stress het-
erogeneity and is believed to be analogous to the hysteresis
accompanying coexistence of two phases in a first-order phase
transition [29]: The negative slope of stress vs shear rate cannot
reflect the viscosity of a homogeneous system; in general it
signals a linear instability of such a flow, which for systems
such as wormlike micelles results in shear banding.

To investigate what happens in this part of the S-shaped flow
curve, in Fig. 4(a) we show the result of a series of constant
shear stress experiments, taken at varying locations along the
flow curve. Figure 4(b) shows that when constant stress is
imposed in either the Newtonian state or the thickened state,
the viscosities stay almost constant over a period of 10 min
suggesting two stable flowing states (no jamming). However,
under constant controlled stress in the intermediate state (15,
20 Pa are close to the boundary), the viscosities in our sample
fluctuate between 1.3 and 2.5 Pa s. Comparing with Fig. 4(a),
this corresponds roughly to the viscosity at γ̇+ and γ̇− for which

FIG. 4. (Color online) (a) Flow curve on which the different
constant stress levels are indicated: 5, 10 Pa for the Newtonian state;
15, 17, 20 Pa for the intermediate state; and 30, 50 Pa for the thickened
state. The corresponding viscosities are shown as a function of time
in (b). The symbols in (b) are in accordance with the dashed lines in
(a) of the same color.

we find 1.5 and 2.7 Pa s from the flow curve, respectively.
These observations could suggest that the Newtonian and the
shear thickened states coexist here. Theory [30] indicates that
in this case an S-shaped flow curve should be associated with
shear banding in the vorticity direction under controlled stress:
The system separates into bands of different stresses (thus
different viscosities) that pile up along the vorticity direction.

To directly investigate the vorticity banding hypothesis we
need to be able to distinguish parts of the system that have
different shear stresses but the same shear rate, which is far
from obvious. Figure 5, however, shows that the fluorescence
emission of DCVJ, present in the interstitial fluid between
the particles can be turned on by increasing the normal stress
between the particles. The onset of shear thickening has often
been associated with the emergence of normal stresses between
particles, and consequently the DCVJ can be used as a local
stress sensor [23]. Figure 6(a) shows that the S-shaped flow
curve is reproduced in the cone-plate geometry, albeit with
a slightly higher onset shear rate (stress), which is perhaps
due to the change in geometry leading to a different dilatancy
effect. By focusing the fast confocal microscope in a layer
20 µm above the glass slide we find that the stress field in
the system remains uniform [Figs. 6(c) and 6(d)] even for
shear stresses corresponding to the negative slope part of the
S-shaped curve (the residual fluorescence in the fluid away
from the contact between particles is probably due to a
combination of scattering and a third dimensional contribution

FIG. 5. (Color online) Representative fluorescent images with
the focal plane positioned at the surface of a transparent glass slide
on top of which one drop of DCVJ aqueous solution is loaded. A
PMMA bead is pressed on the glass slide with the following normal
stress levels: (a) 0 Pa, (b) 40 MPa, (c) 50 MPa. The size of the images
is 90 µm × 90 µm.
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While the jamming events in region B are sparsely dis-
tributed and seem to occur randomly in time, they become
very regular with a well-defined frequency at r ! 0:2p?, re-
gime C Fig. 2(f). This is visible macroscopically as periodic
jerks of the rheometer top plate. The minimum shear rate
reached during a jamming event is variable, Fig. 2(c), while
the shear rate in the flowing state is approximately the same
and corresponds to the right-hand limit of the horizontal lines
in Fig. 2(f). These oscillations remain over long times and
only change over the course of hours (presumably as the
sample dries out). The frequency of the oscillations increases
linearly with the applied stress, Fig. 3(a). Each sudden
decrease in _c is accompanied by a localized deformation of
the air-sample interface. A small area of the interface compa-
rable to the gap height bulges out slightly, while the sur-
rounding area curves slightly inward. The interface recovers
a smooth profile as the plate accelerates back to the steady-
state value. Note that these localized jams are not an artifact
of the cross-hatched plates; they start to appear at the same
stresses with smoother surfaces, albeit in the presence of sig-
nificant wall slip, as well as in Couette geometries [Fig.
4(b)].

In region D, Fig. 2(f), periodic jamming coexists tempo-
rally with bursts of unpredictable fluctuations, as shown in

Fig. 2(e). During the periodic intervals, the air-sample inter-
face behaves the same as in region C, with short-lived, static
jammed regions appearing at the same time as the drop in
shear rate. During the random bursts, more irregular surface
deformations are observed that are long lived and move
around the interface opposite to the direction of flow [see
Figs. 3(b)–3(d)]. Usually, only one or two transient deforma-
tions appear during each intermittent event and disappear
when the periodic oscillations resume.

At the highest stresses r=p? ! 1, in region E, Fig. 2(f), the
periodic jamming and unjamming are absent, and only
random-looking fluctuations are observed, Fig. 2(e). This
behavior, and the series of events at lower stresses that pre-
cede it, are similar to the development of rheochaos as
observed in micellar systems [2]. We leave it to future work
to establish whether the flow is really chaotic in a technical
sense; for our purposes, what matters is that it is unsteady,
not readily predictable, and without obvious periodic fea-
tures. In region E, the first normal stress difference is perma-
nently large and positive and anticorrelated with the shear
rate. Very recently, unstable flow, sudden jams and a transi-
tion to what appears to be rheochaos have been observed in
2D computer simulations of inertial frictional grains [22].
Although the origin of the sigmoidal flow curves is different,

FIG. 2. (a)–(e) Apparent shear rate as a function of time for increasing stress, on the left y axis. The thin black lines show the normal pressure nf/rxy on the
right y axis. (f) Apparent shear stress as a function of rim shear rate _cR in absolute and reduced units for corn starch at a mass fraction of /w¼ 0.52, corre-
sponding to a volume fraction just above /m in WC theory. Horizontal lines: raw _cR data at different applied rxy in the stable (dark blue), periodic (red), inter-
mittent (green), and chaotic (cyan) regimes. Symbols: average _cR.
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Final thoughts.....

There are many models for yielding materials (fluids and solids); usually
these are not treated at a particle level.

STZ-motivated models [Lemaitre, Langer, Manning, Falk, . . . ]

Long-range elastic/viscoplastic models [Picard, Lequeux, Ajdari, Martens, Barrat, . . . ]

Fluidity models [Bonn, Mansard/Colin, Ovarlez, Coussot, . . . ] .
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