

Instabilities at "zero" Reynolds number: experiments from shear-thinning in surfactant solutions to shear-thickening in dense suspensions

Sébastien Manneville

Laboratoire de Physique École Normale Supérieure, Lyon, France

Flow-microstructure coupling

shear stress :
$$\sigma = \frac{\partial F_y}{\partial S_x} \simeq \frac{F}{S}$$

shear rate :
$$\dot{\gamma} = \frac{\partial v_y}{\partial x} \simeq \frac{v_0}{e}$$

shear viscosity :
$$\eta = rac{\sigma}{\dot{\gamma}}$$

<u>flow curve</u>: shear stress *vs* shear rate

feedback between flow and microstructure

⇒ possibility of mechanical instabilities

A

Outline

I. Surfactant solutions

from gradient banding to elastic turbulence to vorticity banding

- II. <u>Yielding in soft glassy ("squishy") materials</u>

 from steady shear localization to critical-like fluidization dynamics
- T. Divoux, M.-A. Fardin, SM & S. Lerouge, *Ann. Rev. Fluid Mech.* 48, 81–103 (2016)
- D. Bonn, M. Denn, L. Berthier, T. Divoux & SM, Rev. Mod. Phys. 89, 035005 (2017)

III. What about dense suspensions?

similarities and differences with other complex fluids

Structure and rheology of wormlike micelles

see also Cates & Fielding, Adv. Phys. 55, 799-879 (2006) Manneville, Rheol. Acta 47, 301-318 (2008) & Olmsted, ibid. 283-300 Lerouge & Berret, in Polymer Characterization, 1-71 (2009)

⇒ flow behaviour shared with dense suspensions?

Shear banding in (semidilute) wormlike micelles

a semidilute "suspension" of semi-flexible, breakable cylindrical aggregates with radius ≈ 1 nm & length up to ≈ 1 µm

Candau & Legueux, Rheol. Acta 12, 357-373 (1994)

Berret et al., J. Phys II France 4, 1261-1279 (1994)

A Shear banding in (semidilute) wormlike micelles

Salmon et al., PRL 90, 228303 (2003)

Unsteady shear bands

CTAB-D₂O at 20% wt.

Bécu et al., PRL 93, 018301 (2004) & PRE 76, 011503 (2007) Lettinga & Manneville, PRL 103, 248302 (2009)

- fluctuations of interface position and of wall slip velocity
- intermittent nucleation of a high-shear band at the stator

Normal forces in viscoelastic fluids

Weissenberg effect (1946)

G. McKinley, MIT

Pakdel & McKinley, PRL 77, 2459-2463 (1996)

die swell

polymer flow birefringence

Vinogradov, Rheol. Acta 12, 357-373 (1973)

in a cylindrical geometry curved streamlines ⇒ inward forces

possibility of elasticity-driven instabilities in the absence of inertia

Rheo-optical study of shear banding

CTAB-NaNO₃ at 30 s⁻¹

Rheo-optical study of shear banding

Rheo-ultrasonic imaging of elastic instability

CTAB (0.3 M) - NaNO₃ (0.4 M)

Transition to a shear-banded vortex flow at $\dot{\gamma}$ =50 s⁻¹: t=-0.8 s

Rheo-ultrasonic imaging of elastic turbulence

Elastic turbulence at $\dot{\gamma}$ =140 s⁻¹: t=0.01 s

Similar phenomenology in...

gradient banding is widespread in shear-thinning transitions

+ complications due to elasticity!

Shear-thickening in (dilute) wormlike micelles

continuous transition

Gamez-Corrales et al., Langmuir 79, 6755-6763 (1999)

discontinuous transition

Boltenhagen et al., PRL 79, 2359 (1997) Hu et al., J. Rheol. 42, 1185 (1998)

- ⇒ growth of gel-like shear-induced structures (SIS)
- ⇒ phase coexistence under imposed stress

Dynamics of shear-thickening wormlike micelles

⇒ long induction phase and subsequent elastic instability of the SIS

Vorticity banding in wormlike micelles

shear-thinning followed by shear-thickening!

Herle et al., PRL 99, 158302 (2007) & Eur. Phys. J. E 26, 3-12 (2008)

periodic oscillations of the shear rate & alternating vorticity bands

⇒ interplay between alignment/concentration & viscoelasticity

A

Gap

Rheochaos in wormlike micelles

- ⇒ evidence for type-II intermittency (via quasiperiodicity)
- ⇒ flow-concentration coupling and/or elastic instability?

Wormlike micelles summary

surfactant wormlike micelles show a wide range of heterogeneous flows & dynamical behaviours (that are interesting to keep in mind for dense suspensions)

Outline

I. Surfactant solutions

from gradient banding to elastic turbulence to vorticity banding

II. Yielding in soft glassy ("squishy") materials

from steady shear localization to critical-like fluidization dynamics

- T. Divoux, M.-A. Fardin, SM & S. Lerouge, *Ann. Rev. Fluid Mech.* **48**, 81–103 (2016)
- D. Bonn, M. Denn, L. Berthier, T. Divoux & SM, Rev. Mod. Phys. 89, 035005 (2017)
- III. What about dense suspensions?

similarities and differences with other complex fluids

Shear banding in yield stress fluids

- "1st order" shear-induced solid-liquid transition
- coexistence = shear localization in a fluidized region

ludox colloidal gel

Møller et al., PRE 77, 041507 (2008)

Shear banding in yield stress fluids

Seen in : colloidal gels

pastes

and clay suspensions

Other instability modes

laponite suspensions

Pignon et al., J. Rheol. 40, 573-587 (1996)

no steady flow: fractures and stick-slip

casein gels

Leocmach et al., PRL 113, 038303 (2014)

- irreversible fluidization
- fracture growth
- well-defined wavelength
- macroscopic phase separation

Simple yield stress fluids

- "2nd order" shear-induced solid-liquid transition
- homogeneously sheared flow

Seen in : emulsions

microgels

and foams

carbopol microgel (ETD 2050)

Divoux et al., Soft Matter 8, 4151-4164 (2012)

Slow fluidization dynamics in carbopol

poly(acrylic acid) polymer

Gutowski et al., Rheol. Acta **51**, 441-450 (2012)

Divoux et al., PRL 104, 208301 (2010) & Soft Matter 8, 4151-4164 (2012)

- ⇒ long-lasting transient shear-banding
- \Rightarrow fluctuations and "sudden" fluidization at τ_f
- \Rightarrow rheological signature : "kink" around τ_f

Shear-rate controlled experiments

- independent of gap width and wall roughness
- <u>dependent</u> on carbopol batch (preparation, concentration)

Stress-controlled experiments

Stress-controlled experiments

- independent of gap width and wall roughness
- <u>dependent</u> on carbopol batch (preparation, concentration)
- estimate of σ_c consistent with steady-state flow curve

Link between transients and steady-state

$$\tau_f^{(\dot{\gamma})} = a/\dot{\gamma}^{\alpha}$$

$$au_f^{(oldsymbol{\sigma})} = b/\left(oldsymbol{\sigma} - oldsymbol{\sigma}_c
ight)^{oldsymbol{eta}}$$

let us assume

$$\tau_f^{(\sigma)} = \lambda \tau_f^{(\dot{\gamma})} \Rightarrow \sigma = \sigma_c + A \dot{\gamma}^n$$

 $n = \alpha/\beta$

transient shear-banding with critical-like dynamics

Herschel-Bulkley rheology steady state

A

"Squishy" materials summary

Bécu et al., PRL 96, 138302 (2006)

Coussot & Ovarlez, *Eur. Phys. J* E **33**, 183-188 (2010) Fall *et al.*, *PRL* **105**, 225502 (2010)

Outline

I. Surfactant solutions

from gradient banding to elastic turbulence to vorticity banding

II. Yielding in soft glassy ("squishy") materials

from steady shear localization to critical-like fluidization dynamics

- T. Divoux, M.-A. Fardin, SM & S. Lerouge, *Ann. Rev. Fluid Mech.* **48**, 81–103 (2016)
- D. Bonn, M. Denn, L. Berthier, T. Divoux & SM, Rev. Mod. Phys. 89, 035005 (2017)
- III. What about dense suspensions?

similarities and differences with other complex fluids

What is a "dense suspension"?

Suspension (chemistry)

From Wikipedia, the free encyclopedia

In chemistry, a suspension is a heterogeneous mixture that contains solid particles sufficiently large for sedimentation. The particles may be visible to the naked eye, usually must be larger than 1 micrometer, and will eventually settle. A suspension is a heterogeneous mixture in which the solute particles do not dissolve, but get suspended throughout the bulk of the solvent, left floating around freely in the medium.[1]

> suspensions involve non-Brownian particles (?)

"dense" = concentrated enough to lead to non-Newtonian behaviour (?)

Dispersion (chemistry)

From Wikipedia, the free encyclopedia

A dispersion is a system in which particles are dispersed in a continuous phase of a different composition (or state). See also emulsion. A dispersion is classified in a number of different ways, including how large the particles are in relation to the particles of the continuous phase, whether or not precipitation occurs, and the presence of Brownian motion.

IUPAC definition

Material comprising more than one phase where at least one of the phases consists of finely divided phase domains, often in the colloidal size range, dispersed throughout a continuous phase.[1] Note 1: Modification of definition in ref.[2]

There are three main types of dispersions:

- Coarse dispersion (suspension)
- Colloid
- Solution

The flow of dense colloidal "dispersions"

What about dense non-Brownian "suspensions"?

no Brownian motion ⇒ <u>no</u> yield stress

PS spheres Ø 40 µm

Fall et al., PRL 103, 178301 (2009)

yield stress due to sedimentation

shear-thickening is ubiquitous in dense suspensions

Brown & Jaeger, PRL 103, 086001 (2009)

continuous transition vs discontinuous transition

Heterogeneous flows in shear-thickening

cornstarch

shear banding in DST associated with migration (in wide-gap Couette geometry)

Fall et al., PRL 114, 098301 (2015)

⇒ is migration inherent to the flow of dense suspensions?

see talk by Guillaume Ovarlez on Monday

Stick-slip-like oscillations in shear-thickening

PS particles Ø 5.8 µm

Larsen et al., Rheol. Acta 53, 333-347 (2014)

competition between dilatancy and wall slip through flow-concentration coupling

calcium carbonate Ø 5.5 μm

Bossis et al., Rheol. Acta 56, 415-430 (2017)

coupling between elasticity of the frictional particle network and instrument inertia

Unstable dynamics during shear-thickening

Hermes et al., J. Rheol. 60, 905-916 (2016)

giant stress fluctuations

Lootens et al., PRL 90, 178301 (2003)

localized stress fluctuations

Rathee et al., PNAS 114, 8740-8745 (2017)

⇒ is unsteadiness inherent to the flow of dense suspensions?

see my talk on Wednesday

More questions about dense suspensions

⇒ do dense suspensions show vorticity banding?

so far, no experimental evidence for steady vorticity bands

Pan et al., PRE 92, 032202 (2015)

see talk by Romain Mari on Tuesday

⇒ can "full jamming" be observed in experiments?

Cates et al., J. Phys.: Condens. Matter 17, S2517 (2005) Wyart & Cates, PRL 112, 098302 (2014)

⇒ back to colloids: role of attractive interactions? link with yield stress?

non-glassy hard-sphere colloids also show shear-thickening Frith *et al.*, *J. Rheol.* **40**, 531-548 (1996) but shear-thickening is lost when a yield stress builds up due to attraction

Gopalakrishnan & Zukoski *et al.*, *J. Rheol.* **48**, 1321-1344 (2004) Pednekar *et al.*, *Soft Matter* **13**, 1773-1779 (2017)

⇒ role of particle-particle interactions and particle-surface interactions?

need for microscopic friction measurements

Clavaud et al., PNAS 114, 5147-5152 (2017) Comtet et al., Nat. Comm. 8, 15633 (2017)

Acknowledgements

Thibaut Divoux

Thomas Gibaud

Christophe Perge

Brice Saint-Michel

Thomas Gallot

Mathieu Leocmach

Lydiane Bécu (U. Metz)

Jean-Baptiste Salmon (Solvay-CNRS)

Bernard Pouligny

(CRPP)

Sandra Lerouge (U. Paris 7)

Annie Colin (ESPCI)

Catherine Barentin (iLM, U. Lyon 1)

David Tamarii (res. eng. 2009)

