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Instabilities at “zero” Reynolds number:
experiments from shear-thinning in surfactant solutions

to shear-thickening in dense suspensions 



Flow-microstructure coupling
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shear-thickening

shear-thinning

flow curve : shear stress vs shear rate

Newtonian

unstable when

∂s
∂ ˙g

< 0

s µ G

˙g µ W

q
0

⌧ 1

e/R

1

⌧ 1

flow curve s vs

˙g

h =
s
˙g

s =
∂F

y

∂S

x

' F

S

˙g =
∂v

y

∂x

' v

0

e

for f & 0.58: s
c

(f) = s
0

(1�f/f
m

)�p

with f
m

' 0.67

s
c

a

3/k

B

T

f/f
m

f ⇠ R

3�d

f

h = h
s

(1�f/f
p

)�s

s = h
s

˙g

"
1�

✓
˙g
p

˙g

◆(3�d

f

)n
#�s

R ⇠ ˙g�n

∂s
∂ t

= G

˙g �a

2s

a(r, t)

a

2(r, t)/G

V (s ,a)

∂a

∂ t

=�dV

da

+D
∂ 2

a

∂ r

2

+N(r, t)

t
f

⇠ exp(s
0

/s)

t
f

⇠ exp(�s/s
0

)

t
f

⇠ ( ˙g � ˙g ?)�a

A = (b/la)1/b

˙g =

ds = s �s
c

=

s = s
c

+A

˙g a/b

t(s)
f

= lt( ˙g)
f

t( ˙g)
f

= a/ ˙g a

t(s)
f

= b/(s �s
c

)b

t( ˙g)
f

⇠ ˙g�a

t(s)
f

⇠ (s �s
c

)�b

t(s)
f

⇠ s�b

t( ˙g)
f

⇠ ˙g�1

s = A

˙g n

b = 3.4

a = 1

n = 0.27 ' 1/b

n = a/b

s
c

= 28.1 Pa

n = 0.53

s
c

= 30.4 Pa

G

0

˙g t

t

�2/3

1

  feedback between flow and microstructure
⇒ possibility of mechanical instabilities  
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I. Surfactant solutions
from gradient banding to elastic turbulence to vorticity banding

II. Yielding in soft glassy (“squishy”) materials
from steady shear localization to critical-like fluidization dynamics

Outline

T. Divoux, M.-A. Fardin, SM & S. Lerouge, Ann. Rev. Fluid Mech. 48, 81–103 (2016)

D. Bonn, M. Denn, L. Berthier, T. Divoux & SM, Rev. Mod. Phys. 89, 035005 (2017)

III. What about dense suspensions?
similarities and differences with other complex fluids 



Structure and rheology of wormlike micelles

“suspensions” of Brownian “particles”
anisotropic, deformable & breakable

radius ≈ 1 nm & length up to ≈ 1 μm

see also Cates & Fielding, Adv. Phys. 55, 799-879 (2006)
Manneville, Rheol. Acta 47, 301-318 (2008) & Olmsted, ibid. 283-300
Lerouge & Berret, in Polymer Characterization, 1-71 (2009) 
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- diversité des interactions et des tailles caractéristiques

- diversité des microstructures

 diagramme de phases très complexes

Questions

- quels outils pour mesurer la microstructure ?

- comment comprendre les diagrammes de phases obtenus ?

 étude au cas par cas ? quel degré d'universalité ? 
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[ salt ] / [surfactant ]
⇒ flow behaviour shared
 with dense suspensions?

flow-concentration coupling, nematohydrodymics
& elasticity ⇒ complications!

shear-induced ordering
⇒ shear-thinning

shear-induced growth
⇒ shear-thickening

crowding of self-assembled structures
⇒ yield stress



a semidilute “suspension” of semi-flexible, breakable cylindrical aggregates
with radius ≈ 1 nm & length up to ≈ 1 μm
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Candau & Lequeux, Rheol. Acta 12, 357-373 (1994)
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3. THE LINEAR REGIME. Before doing so, we first discuss briefly the linear viscoelastic
properties of the CPCI/Sal equilibrium polymers shown in figures 3 and 4. As emphasized in

reference [61, the theoretical predictions derived for solutions of long flexible micelles apply
fairly well over an exceptionally large concentration range (at given temperatures and salt

contents). A Maxwell-type relaxation behavior of the linear response function is observed for

~b>2fG-20fb. This implies that the low-frequency elastic modulus G*(w) (with

w ~
100 rad.s~ 'j is entirely described through two parameters, Go and r~, Moreover, in the

range where the Cole-Cole plots are semicircular, we can assume, following Cates [101, that

the time for reversible scission of the aggregates is always much lower than that of reptation
Tb W T~ept.

The observation of the expected scaling laws for Go (~b and ~o(~b ) with the right exponents
(2.2 and 3.3, respectively) in the semidilute regime l~b

=
0.6-6 fG) supports the conclusion

that the CPCI/Sal solutions are a model system for the study of the rheological properties of

equilibrium polymers. The deviations of Go (~b and ~ o (~b from these scaling laws observed in

figure 4 at about 6-10 fb are probably due to the fact that the system is now in an intermediate

regime, in between the pure semidilute (~ l fG) and the concentrated (~ 30fG) regimes.
Another indication is the direct measurements of the correlation length f obtained by using
elastic light scattering experiments [61 at 6 fb, f

i
150 1, that is a value quite similar to what

is currently expected for the persistence length of giant micelles [201.

3.2 THE NONLINEAR REGIME. The nonlinear viscoelastic response of the CPCI/Sal solutions

to a steady shear are now analyzed in terms of dimensionless units the shear stress « has been

normalized at each ~b with respect Go and plotted in figure 8 against the shear rate, itself

rescaled in terms of jr~. As already mentioned, the terminal relaxation time r~ and the elastic
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Fig. 8. Same data as for figure 5 but in dimensionless units. For each ~b, the shear stress « has been

normalized with respect to the elastic plateau modulus Gu and plotted against j, itself normalized with

respect to the inverse relaxation time, I/r~.
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Shear banding in (semidilute) wormlike micelles
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coexistence

R2 

h 
= 

30
 m

m

R1 = 24 mm

e = 1 mm

v0

r

Salmon et al., PRL 90, 228303 (2003)

r

velocity profile
in Couette geometry

coexistence of two shear bands
along the gradient direction

CPCl-NaSal at 6% wt.



Unsteady shear bands

CTAB-D2O at 20% wt.

Bécu et al., PRL 93, 018301 (2004) & PRE 76, 011503 (2007)
Lettinga & Manneville, PRL 103, 248302 (2009)

 ⇒ unstable, three-dimensional flow? 

• fluctuations of interface position and of wall slip velocity
• intermittent nucleation of a high-shear band at the stator

v0



Normal forces in viscoelastic fluids

Weissenberg effect (1946) die swell

G. McKinley, MIT

364 Rheologica Acta, Band 12, Heft 3 (1973) 

a) b) c) 

d) e) 

higher stress. According!y , sections of larger and 
smaller diameter appear  in the polymer stream 
issuing from the duct (as a result of larger and 
smaller stress relaxation). An estimate of the stress 
concentration near the duct edge on exit of the 
polymer from it showed that when the stress at 
the walls inside the duct reaches the value at 
which the distortion of t h e  extrudate shape 
begins, it rises to the critical value in the near-the- 

e d g e  zone. So this explains why small-scale 
periodic distortions in the extrudate shape may 
be observed at the duct exit under the Newtonian 
regime of PB flow in the duct. Another important  
conclusion is that the cause for the appearance of 
small-scale distortions in the extrudate shape 
and the enhancement of these distortions with 
increased shear stresses and rates is the same as 

Fig. 9. Interference band patterns in a rectangular duct 
during movement of polybutadiene: a) duct entrance at a 
stress of 6.31 x 10 » dyn/cm 2; b) same at duct exit; c) middle 
part of duct at a stress of 3.16 x 106 dyn/cm2; d) smooth 
entrance at a stress of 3.98 x 10 6 dyn/cm 2; e) duct entrance 
at a stress of 5.62 x 10 6 d y n / c m  2 (all shear stresses are at 
duct walls) 

for the spurt effect, viz. the transition of the poly- 
mer to the high-elastic state or such approach to 
this state where the predominant  effect on poly- 
mer deformation is exerted by the loss in its fluid- 
ity. This explains the unambiguous correlation 
of the parameters determining the spurt and the 
appearance of elastic turbulence. 

Let us now consider the movement  ofa polymer 
in a duct when critical values of pressure drops 
and flow rates are achieved inside it. When observ- 
ing the movement  ofsolid particles in the near-the 
wall zone, the stick-slip process is clearly regis- 
tered. This process is very sharply reflected in the 
polarization-optical pattern, which is presented 
in photo c. One can see alternating narrowing and 
broadening of the interference bands along the 
duct walls. The narrow zones correspond to an 

280 

polymer flow birefringence

Vinogradov, Rheol. Acta 12, 357-373 (1973)

 possibility of elasticity-driven instabilities   
in the absence of inertia

Pakdel & McKinley, PRL 77, 2459-2463 (1996)

in a cylindrical geometry
curved streamlines ⇒ inward forces 



CTAB-NaNO3 at 30 s-1

Rheo-optical study of shear banding

rotor stator
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CTAB-NaNO3 at 30 s-1 at 70 s-1

Rheo-optical study of shear banding

rotor stator

• instability of the interface between shear bands
• pairs of counter-rotating vortices
• creation-annihilation dynamics ⇒ chaotic?

how to quantify these unstable dynamics? 
Lerouge et al., PRL 96, 088301 (2006)
Lerouge et al., Soft Matter 4, 1808-1819 (2008)
Fardin et al., PRL 103, 028302 (2009)
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Shear-Induced Transitions and Instabilities in Surfactant Wormlike Micelles
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Fig. 25 Spatiotemporal evolution of the interface position in the gap of the Couette cell during
a step shear rate from rest to (a) γ̇ = 6.5s−1, (b) γ̇ = 30s−1, (c) γ̇ = 70s−1. The position of the
interface in the gap is given in gray scale, the origin being taken at the inner moving wall so
that dark gray regions correspond to positions of the interface nearer to the inner cylinder than
light gray regions. The z-axis represents the spatial coordinate along the cylinder axis. The sample
is made of C16TAB (0.3 M) and NaNO3 (0.405 M) (c = 11 wt. %) at T = 28◦C. Reprinted from
Lerouge et al. [196]

the amplitude of the interface profile saturates while the wavelength continuously
evolves over time: two neighboring minima have a tendency to merge and when the
distance between a pair of minima increases, several other minima close to this pair
nucleate and finally merge again with a minimum of longer lifetime. The system
does not seem to tend toward a stationary situation and the spatiotemporal diagram
strongly suggests chaotic dynamics.

Case of Vorticity Banding

In Sect. 3.2.2, we mentioned the particular time-dependent rheological behavior of
an equimolar solution of CPCl/NaSal (c = 2.1 wt. %). The shear-thickening tran-
sition was characterized by strong oscillations as a function of time in the shear
and normal stresses at fixed shear rate (or vice versa). Using direct visualizations
and SALS experiments, the authors showed that these oscillations were correlated

z (mm)

30 s-1

70 s-1



Rheo-ultrasonic imaging of elastic instability

CTAB (0.3 M) - NaNO3 (0.4 M)

7

Ex. 4 : les tensioactifs a
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[ Lequeux & Candau (1994) ][ sel ]
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Bilan intermédiaire

- diversité des interactions et des tailles caractéristiques

- diversité des microstructures

 diagramme de phases très complexes

Questions

- quels outils pour mesurer la microstructure ?

- comment comprendre les diagrammes de phases obtenus ?

 étude au cas par cas ? quel degré d'universalité ? 

Perge et al., Eur. Phys. J E 37, 23 (2014) & Soft Matter 10, 1450 (2014)
Fardin et al., Phys. Rev. E 89, 011001(R) (2014)



Rheo-ultrasonic imaging of elastic turbulence

Perge et al., Eur. Phys. J E 37, 23 (2014) & Soft Matter 10, 1450 (2014)
Fardin et al., Phys. Rev. E 89, 011001(R) (2014)



Similar phenomenology in…

triblock copolymer micelles

Manneville et al., PRE 75, 061502 (2007)

van der Gucht et al., PRL 75, 108301 (2006)

EHUT supramolecular polymers

Example 2: SDS-octanol-NaCl lamellar phase 

Time-averaged rheo-DLS velocity profiles in Couette geometry 

γ = 5 s-1 . 

γ = 10 s-1 . 

γ = 15 s-1 . 

γ = 20 s-1 . 

γ = 26 s-1 . 

γ = 22.5 s-1 . γ = 37 s-1 . 

γ = 53 s-1 . 

[ Salmon et al., Phys. Rev. E 68, 051503 (2003) ] 

presence of 
wall slip 

surfactant multilamellar vesicles

Salmon et al., PRE 68, 051503 (2003)

Boukany et al., Macromol. 41, 2644-2650 (2008)

entangled DNA solutions

gradient banding is widespread
in shear-thinning transitions

+ complications
due to elasticity!
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Ex. 4 : les tensioactifs a
c

p

[ Lequeux & Candau (1994) ][ sel ]

[ t
en
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]

Bilan intermédiaire

- diversité des interactions et des tailles caractéristiques

- diversité des microstructures

 diagramme de phases très complexes

Questions

- quels outils pour mesurer la microstructure ?

- comment comprendre les diagrammes de phases obtenus ?

 étude au cas par cas ? quel degré d'universalité ? 

Shear-thickening in (dilute) wormlike micelles

 ⇒ growth of gel-like shear-induced structures (SIS)

Gamez-Corrales et al., Langmuir 79, 
6755-6763 (1999)

continuous transition

Boltenhagen et al., PRL 79, 2359 (1997)
Hu et al., J. Rheol. 42, 1185 (1998)

VOLUME 79, NUMBER 12 P HY S I CA L REV I EW LE T T ER S 22 SEPTEMBER 1997

from higher-than-average fluctuations in the micelle
concentration.
A typical experiment consisted of the following proto-

col. To a well equilibrated sample, a constant shear stress
or shear rate was applied starting at time t ≠ 0. The rheo-
logical parameters (shear rate and stress) and the LSM
images were recorded continuously as a function of time
until the steady state was achieved. This simultaneous
measurement of rheological parameters and LSM images
allowed us to directly correlate rheological changes in
the system with shear-induced structural and phase transi-
tions. All experiments were performed at 22.5 6 0.3 ±C.
First we describe our observations for the experiments

performed under constant applied stress. In these experi-
ments, the viscosity decreases as the stress increases for
applied stresses of less than 0.45 Pa. When the stress is
increased above 0.45 Pa, the measured viscosity increases
and a brighter “white” shear-induced phase (SIP) begins
to appear at the inner cylinder. The SIP grows and
the measured viscosity increases for a period of time
(typically many minutes) until a steady state is achieved
in which the new SIP coexists with the preexisting
darker phase. In Fig. 1, we show LSM images obtained
after the solution reached steady state for three different
levels of stress between 0.5 and 1.0 Pa. We also show
the corresponding apparent viscosity for each level of
stress as a function of time. Each light scattering image

FIG. 1. (a) Scattering images obtained at various shear
stresses for a 7.5y7.5 mM TTAAyNaSal solution in the steady
state. The SIP (bright phase) grows from the inner cylinder
(left side). Arrows indicate the boundary of the shear-induced
phase as characterized by the increased scattering intensity.
(b) Time evolution of the apparent viscosity after the stress is
applied at t ≠ 0 s. Circles on each curve indicate the stress
and time corresponding to the images in (a).

corresponds to a cross section across the gap of the
Couette cell with the inner cylinder on the left. Each
image shows the brighter SIP on the left side of the image
with the SIP occupying an increasing fraction of the gap
as the shear stress increased. This SIP is more viscous
than the dark phase and appears only when the apparent
viscosity begins to increase [9].
The most striking feature of the first two images in

Fig. 1 is that the SIP occupies only a fraction of the
gap. Moreover, the boundary between the two phases is
very well defined and remains stable indefinitely, although
its position fluctuates by about 10% for a given level of
stress. When the stress is increased from 0.5 to 0.7 Pa, as
it is in the first two images in Fig. 1, the interface moves
to the right as more SIP is created at the expense of the
dark phase. Thus, we observe coexistence of two phases
which are separated by a single stable interface whose
position depends on the level of stress. Note that when
the stress is increased to 1 Pa, the SIP fills the entire gap,
as shown in the third image. The gap remains filled with
the SIP when the stress is increased beyond 1 Pa. By
contrast, no SIP was formed in the gap when the stress
remained below 0.5 Pa even after the flow was applied for
as long as 1 hour.
Figure 2 shows LSM results for measurements per-

formed under constant applied shear rate. When the shear
rate is below a critical value (,39 s21 in this case), no
stable SIP is formed, as shown by the image obtained
at 30 s21. By contrast, when the shear rate is increased

FIG. 2. (a) Scattering images obtained at shear rates be-
low and above the critical shear rate for a 7.5y7.5 mM
TTAAyNaSal solution in the steady state. The shear-induced
phase is characterized by increased and fluctuating scattering
intensity. (b) Time evolution of the apparent viscosity after
the shear is applied at t ≠ 0 s. The circle on the viscosity
curve indicates the position corresponding to the second image
in (a).

2360

discontinuous transition

TTAA

 ⇒ phase coexistence under imposed stress



Dynamics of shear-thickening wormlike micelles

SIS growth

elastic instability

Fardin et al., Phys. Rev. E 89, 011001(R) (2014)

 ⇒ long induction phase and subsequent elastic instability of the SIS

CTAT 
0.16% wt.



Vorticity banding in wormlike micelles

intensity maps were 20! section averaged in flow (x) and
vorticity (z) directions for further analysis.

Figure 1 displays the linear and nonlinear flow curve
(stress controlled) and corresponding 2D SANS patterns
for the quiescent state (0 Pa) and under imposed shear
stress for the WM solution [18]. At low shear stresses (! "
5 Pa) the solution exhibits Newtonian behavior, which is
associated with an isotropic intensity map. With an in-
crease in shear stress (6 " ! " 13 Pa) shear-thinning be-
comes evident and SANS patterns become elongated in the
vorticity direction (z) indicating shear-induced alignment
of the WMs [19]. Comparing the anisotropic scattering
patterns to those of other semidilute and concentrated
WM systems [2,20], wherein similar onset of shear-
thinning properties were observed, the system at hand
shows a weak anisotropy in the shear-thinning regime,
with absence of any two-lobed or butterfly-like patterns.

The apparent viscosity of the solution significantly in-
creases above the critical shear stress of !c ’ 13 Pa with
the appearance of transient oscillations of shear rate and
viscosity. Furthermore, in this shear-thickening regime,
alternating vorticity bands appear in the form of transpar-

ent and turbid concentric rings [Fig. 2(a)]. To elucidate the
microstructures in these vorticity bands separately, trig-
gered SANS experiments were designed so that scattering
patterns could be obtained exclusively from turbid or
transparent bands, despite their spatiotransient appearance.
Triggering was achieved by an external trigger signal, a
He-Ne laser beam, which was passed orthogonally to the
neutron beam to detect the nature of the bands, either
turbid or transparent. Measured laser intensity was fed to
a Labview-based computer program which allowed us to
enable or disable the neutron detection depending on the
transmitted laser intensity. Figure 2(b) shows the scattering
patterns obtained by triggering the neutron detector for
transparent and turbid bands. Two remarkable features
emerge from this triggered experiment. First, the intensity
maps show two-lobed patterns oriented in the vorticity (z)
direction as compared to the spherical and elliptical pat-
terns in Newtonian or shear-thinning flow, respectively,
(Fig. 1). Such two-lobed patterns indicate a higher degree
of anisotropy, i.e., a stronger alignment of the wormlike
chains in the flow (x) direction [2,21,22] compared to the
shear-thinning regime below !c. Second, there is a consid-
erable difference between the patterns obtained from the
transparent and turbid states. For the turbid state, the over-
all scattering intensity in vorticity (z) direction is enhanced
and intensity in the flow (x) direction is diminished as
compared to the transparent state indicating that the turbid
state is more anisotropic than transparent state.

To quantify these intensity maps, the 20! sector aver-
aged scattering intensity I was calculated in the flow (x)
and vorticity (z) directions and plotted against momentum
transfer q as shown in Fig. 3 for both transparent and turbid
regions. The experimental data were fitted using the

FIG. 1 (color online). Nonlinear and linear (inset) flow curves
for a 40 mM CPyCl-NaSal WM solution and the corresponding
SANS intensity maps at rest (0 Pa) and at different elevated shear
stresses. The dotted ellipse in the flow curve shows the region
where the solution exhibits shear-thickening (13 " ! " 23 Pa)
while the bars indicate the minimum and maximum shear rate
during flip-flop motion at constant shear stress. The inset shows
the linear flow behavior indicating a Maxwell behavior.
Displayed scattering patterns were collected at 6 m detector
distance, corresponding to a q range of 0:008# 0:06 !A#1.
Coordinates x, y, and z correspond to the flow, velocity gradient,
and vorticity directions, respectively. The neutron beam passes
through the sample along the velocity gradient y direction.

FIG. 2 (color online). (a) Formation of vorticity bands in the
shear-thickening regime at 21 Pa, as visualized by a high-speed
digital video camera. The small white rectangle shows the
approximate position of the neutron beam. (b) 2D SANS patterns
obtained by triggering the Neutron detector for transparent (left)
and turbid (right) regions at a detector distance of 6 m (0:008 "
q " 0:06 !A#1) (see also Fig. 3).

PRL 99, 158302 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
12 OCTOBER 2007

158302-2

40 mM CPCl - NaSal

shear-thinning followed by shear-thickening !

6 The European Physical Journal E

Shear Rate (s-1)

S
h
e
a
r 

S
tr

e
ss

 (
P

a
)

A
p
p
a
re

n
t 
V

is
co

si
ty

 (
P

a
 s

)

2.0

1.0

0.2
10010

1

30

10

η
 (

P
a
 s

)

τ 
(P

a
)

γ (s-1)⋅
1

10

20

2 10 100
0.1

1.0

2 Pa

5 Pa

8 Pa

10 Pa

8 Pa 17 Pa

0

20

40

60

S
h
e

a
r 

R
a

te
 (

s-
1

)

150 155 160 165 170
Time (s)

(a)

(b)

Fig. 3. (Color online) (a) Flow curve of 40mM CPyCl-NaSal
solution (1 < τ < 10Pa) with 1 wt% tracer particles recorded
under controlled shear stress conditions. The inset shows the
full flow curve including the shear-thickening region. Horizontal
dashed lines represent the stresses where the steady-state UVP
velocity profiles were recorded. (b) Transient shear rate signals
below (8 Pa) and above (17 Pa) shear-thickening regime of flow.

range of shear rates. Such a plateau in τ versus γ̇ has
been associated to shear-induced transitions or formation
of shear-induced structures (SIS) [1,37–40] and studied in
the framework of shear banding theories [18,41,42]. Fur-
ther shearing the sample above the critical shear stress
(τc = 10Pa), the solution exhibits shear-thickening be-
havior (inset in Fig. 3a) and this region extends up to
τ = 17Pa as compared to 25Pa in the case of the un-
seeded sample. In this regime of flow, strong temporal os-
cillations in apparent viscosity and shear rate as well as
the flip-flop–like axial motion of the vorticity bands has
previously been observed which correspond to fast struc-
tural changes in the system [5,25,26]. Figure 3b shows the
variation of shear rate as a function of time at 8 and 17Pa.
The shear rate is constant for 8Pa which is below the
shear-thickening regime. However in the shear-thickening
regime that follows (i.e., at 17Pa), the shear rate signal
shows large temporal oscillations around a mean value
with a characteristic frequency. To investigate the struc-
tural transitions in these regimes of flow (shear-thinning
and shear-thickening) and to get an idea about the local
velocities in shear bands, pointwise local velocity measure-
ments are carried out inside the gap of a Couette cell.

3.2 Rheology and UVP measurements (τ ! 10Pa)

To begin with, several shear stresses below τc = 10Pa are
chosen to measure the velocity profiles (dashed lines in

t = 0t t

τ (t)

t = 0

τ

τ

5 Pa

t1
(a) (b)

τ (t)

Fig. 4. Rheological test sequence used to measure velocity
profiles. (a) Step stress method for shear stresses τ ! 10Pa
and (b) pre-shear and step stress method for shear stresses
τ > 10 Pa; t1 = 40 s.
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Fig. 5. Time-averaged velocity profiles for different shear
stresses in the Newtonian and shear-thinning regime measured
in the stress-controlled mode. Error bars correspond to the
standard deviation of the local velocities and mainly account
for temporal fluctuations in the velocity. r denotes the radial
distance to the rotor; r = 0 at the rotor and r = 1 at the stator.

Fig. 3). Figure 4a shows the rheological protocol used to
measure such profiles. At t = 0, a shear stress of τ is in-
stantly applied and the velocity profiles are recorded for
a minimum of 200 s. These are then averaged and such
time-averaged velocity profiles are shown in Figure 5 for
different shear stresses. r denotes the radial distance in
the gap of the Couette shear cell (r = 0 at the rotor and
r = 1 at the stator). For τ = 2Pa, the profile is very close
to a straight line, consistent with the Newtonian behavior
of the micellar solution at low shear stresses. However, for
τ = 10, the data do not exactly fall on the Newtonian
velocity profile but deviates slightly. Such a curvature in
the velocity profile is due to the sharp shear-thinning ef-
fect [43] observed at τ = 10 but the overall flow behavior of

Herle et al., PRL 99, 158302 (2007) &
Eur. Phys. J. E 26, 3-12 (2008)

periodic oscillations of the shear rate & alternating vorticity bands
⇒ interplay between alignment/concentration & viscoelasticity
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(the beam is close to the inner rotating cylinder and cannot
be translated across the gap) along the vorticity (r! v)
direction, where v is the velocity field. An analyzer
below the Couette geometry allows us to select either the
vertically (VV) or the horizontally polarized (VH) scat-
tered light from the sample. A condenser beneath the
analyzer collects the scattered light dominantly from a
plane 6 mm above the bottom plate and forms the image
on a screen in the (v, rv) plane. The imaging was done
using a 8-bit color CCD camera (Lumenera 075C,
640! 480 pixels, maximum frame rate "60 fps) at a
frame rate of 1 frame=750 ms. About 3000 images were
grabbed for each polarization while stress relaxation mea-
surements were simultaneously going on. The intensity at
various wave vectors from the noise filtered image was
analyzed.

We now turn to our results. Figure 1(a) (filled circles)
shows the flow curve for CTAT 2 wt % in a controlled-
stress experiment. The flow curve shows a near plateau for
_!> 0:1 s"1. The observed weak departure (slope " #

0:07 in the log-log plot) from a true plateau is very likely
due to the small inhomogeneity of the stress field arising
from curvature effects in the cylindrical Couette geometry
[14,17]. Figure 1(a) also shows the flow curve for CTAT
2 wt %$ 100 mM NaCl (hollow circles). The stress shows
a much stronger shear rate dependence [" # 0:32 for
CTAT 2 wt %$ 100 mM NaCl and " # 0:24 for CTAT
2 wt %$ 50 mM NaCl. See Fig. 1(a) inset] above _!>
1 s"1, which cannot be due to geometry effects alone [14].
We attribute this slope to a concentration difference be-
tween the shear rate bands [14,18]. Our system is in the
semidilute region and is far from a zero-shear I-N transi-
tion % 27 wt % for pure CTAT [16] and >30 wt % for
CTAT$ 50 mM NaCl. Hence, a large slope " is not due
to I-N coexistence [19]. A concentration difference be-
tween the shear rate bands can arise from a Helfand-
Fredrickson mechanism [20]. Here, the high shear rate
band is predicted to be lower in concentration due to
micelles diffusing against their own concentration gra-
dients leading to flow-enhanced concentration fluctuations.
If so, our SALS experiments should show a ‘‘butterfly’’

light scattering pattern with the wings of the butterfly
stretched along the flow direction [21]. Figure 1(b) shows
the SALS pattern in VV geometry for CTAT 2 wt % and
CTAT 2 wt %$ 100 mM NaCl. The butterfly pattern is
absent for the pure CTAT 2 wt % [Fig. 1(b)(i)] and is
present for CTAT 2 wt %$ 100 mM NaCl [Fig. 1(b)(ii)],
and (iii) and (iv) in Fig. 1(b) show corresponding patterns
in VH geometry. We have carried out experiments at six
different salt concentrations 10 mM< cNaCl < 1 M,
which yield plateau slopes ranging from 0:07< "< 0:4.
We find that a minimum slope of 0.12, corresponding to a
salt concentration of 25 mM NaCl, is essential to see a
butterfly pattern indicating the onset of flow concentration
coupling at this " value.

Figs. 2(a)–2(c) show the stress relaxation dynamics for
three shear rates fixed in the plateau region for the system
CTAT 2 wt %$ 100 mM NaCl. Figure 2(a) shows the
stress relaxation dynamics at _! # 23 s"1. The signal looks
periodic, but a closer inspection reveals finer features that
do not repeat exactly. Figure 2(d) shows the power spec-
trum of this signal. Apart from the two primary frequencies
centered around !1 # 0:049 and !2 # 0:061 Hz and their
higher harmonics, there are other frequency components
centered at linear combinations of!1 and!2 like!2 "!1
and !1 $!2. These extra features are the hallmark of a
two-frequency quasiperiodic signal [22,23]. In Fig. 2(b),
there are bursts of chaos breaking in between the quasi-
periodic signal for _! # 25 s"1. The power spectrum of the
quasiperiodic laminar region once again shows two fre-
quencies centered around !1 # 0:057 and !2 #
0:063 Hz, implying a decrease in the time period with
increasing shear rate. The stress relaxation dynamics at
_! # 27:5 s"1 [Fig. 2(c)] was completely chaotic (charac-

terized by a positive Lyapunov exponent % 0:14 and an

(a) (b)

FIG. 1 (color online). (a) Flow curves for CTAT 2 wt % (solid
circles) and CTAT 2 wt %$ 100 mM NaCl (hollow circles).
Inset: Flow curve for CTAT 2 wt %$ 50 mM NaCl (red line:
linear fit). (b) SALS profiles (i) and (iii) CTAT 2 wt % for VVand
VH polarizations. (ii) and (iv) CTAT 2 wt %$ 100 mM NaCl
for VV and VH polarizations.

1

1

1

FIG. 2 (color online). Stress relaxation dynamics for CTAT
2 wt %$ 100 mM NaCl for different shear rates. (a) _! #
23 s"1, (b) _! # 25 s"1, (c) _! # 27:5 s"1, and (d) Fourier power
spectrum of (a).
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!inner cylinder diameter 18 mm, height 40 mm" and 2 mm
!inner cylinder diameter 32 mm, height 16.5 mm". The outer
cylinder is made of glass and is partially enclosed by a
temperature-controlled water circulation chamber !approxi-
mately 1 /4th of the glass cell is left exposed for performing
scattering measurements". A thin sheet of laser light enters
the shear cell along the !!v direction and illuminates the
gap completely. A polarizer arrangement in front of the laser
beam gives us the freedom of choosing any polarization in

the !v ,!v" plane. This way the incident polarization can be
made to couple strongly with structures of a given orienta-
tion in this plane. The imaging was done at 90° in the
!!v ,!!v" plane using a CCD camera !UNIQ 1830CL,
1024!1024 pixels, maximum frame rate −30 frames per
second". For stress relaxation measurements, a zoom lens
captured #30% of the height in the 1 mm gap Couette cell,
and the complete height for the 2 mm gap cell. A wide-angle
lens was used to capture the complete height in the 1 mm
gap Couette cell during measurements of the flow curve. The
optics was mounted on XYZ stages to facilitate scanning of
different regions of the Couette cell. All measurements were
carried out at a controlled temperature of 26.5 °C. Flow
curves and stress relaxation measurements using the home-
made cell reproduced our earlier results $12%. The flow
curves were measured in an upward strain rate sweep with a
residence time of 120 s per data point under controlled shear
rate as follows: starting from the lowest value of the shear
rate, at each shear rate the stress is measured by averaging
over 120 s. The stress relaxation measurements were done
starting from rest for each measurement at a fixed shear rate.
After measuring the stress time series at a fixed shear rate,
the shear rate was reduced to zero, followed by a waiting
time for 240 s before starting the next measurement of stress
time series at the next higher value of the shear rate.

III. RESULTS

Figure 1!a" shows the flow curve for the CTAT 2 wt. %
+100 mM NaCl in controlled-shear rate conditions for the

FIG. 1. !Color online" !a" Flow curve for CTAT 2 wt. %
+100 mM NaCl in the 1 mm gap Couette cell. a1–a7: Scattered
birefringence intensity profile at positions marked 1–7 on the flow
curve. The positions of the outer wall, inner wall, and gap are
marked for a1. The convention is the same for all images shown in
the paper. Inset: shows a cartoon of the nematic in the !v ,!v" plane
!red lines" coupled to the incident laser polarization shown by
green.

FIG. 2. !Color online" !a" Stress time series at
"̇=13 s−1 for the 1 mm gap Couette cell. !b"
Stress time series at "̇=18.5 s−1. The arrow indi-
cates the amplitude !a0#0.8% ". The dashed line
indicates the time at which the incident laser po-
larization was changed from +45° !image: b1" to
−45° !image: b2". b3 is the sum of b1 and b2.
The thick white lines in b1 and b2 are the inter-
face positions represented as a STP in !c".
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CTAT 2% wt. + 100 mM NaCl

⇒ evidence for type-II intermittency (via quasiperiodicity)
⇒ flow-concentration coupling and/or elastic instability?
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surfactant wormlike micelles show a wide range of 
heterogeneous flows & dynamical behaviours

(that are interesting to keep in mind
for dense suspensions)

Wormlike micelles summary

r

shear-thinning
⇒ gradient banding

shear-thickening
⇒ vorticity banding

+ flow-concentration coupling
+ nematohydrodynamics

     … or both?
R. Ganapathy et al.: Spatiotemporal dynamics of shear induced bands en route to rheochaos 539

4 Results and discussion

Figures 2a–d show the results of the shear rate dynam-
ics for increasing stresses in the plateau region of the
flow curve for CTAT 2 wt% + 100mM NaCl. Figure 2a
shows the results of the shear-rate relaxation experiment
at a stress of 19.4 Pa. The variation in the shear-rate is
periodic and a Fourier power spectrum of this time se-
ries (Fig. 3a) shows a primary frequency centered at ω =
0.019 Hz and its higher harmonics. Figure 2b shows the
shear rate relaxation dynamics at a stress of 22.5 Pa. The
signal shows characteristic intermittent behaviour com-
prising laminar stretches and turbulent bursts. A closer
look (Fig. 2e) at the intermittent time series reveals that
there are two frequency components, ω0 and ω0/2, which
we call the fundamental and the sub-harmonic mode re-
spectively. The amplitude of the fundamental mode de-
creases with time, and this is accompanied by a simulta-
neous increase in the amplitude of the sub-harmonic mode.
When the sub-harmonic mode reaches a critical value, the
signal loses all regularity and a turbulent burst appears.
This is followed by the reappearance of the laminar be-
haviour. This kind of behaviour is typical of Type-III in-
termittency [31]. Although we do not see a period dou-
bling bifurcation before intermittency in our experiments,
the presence of a limit cycle (Fig. 2a) and two modes in the
laminar stretches (Fig. 2b and e) indicate that intermit-
tency is preceded by a period doubling bifurcation [32].
The dynamical properties of low-dimensional attractors
can be analysed using Poincaré return maps. We follow
the method described in [31] and construct a second re-
turn map by plotting the successive maxima of the sub-
harmonic mode (shown by blue stars in Fig. 3b) and the
fundamental mode (denoted by red circles in Fig. 3b) be-
fore the first turbulent burst. For Type-III intermittency
preceded by a period-doubling bifurcation the map can
be expressed as: An+2 = (1 + 2ϵ)An + aA3

n, where ϵ is
proportional to the control parameter (stress in our ex-
periments), a is a constant and An is the maxima of the
sub-harmonic or the fundamental mode [33]. The black
line (Fig. 3b) shows the fit of the above expression to ex-
perimental data which yields ϵ = 0.009. This small value
of ϵ implies that we have just crossed the threshold value
of the stress at which intermittency first occurs and this is
also evident from the very long laminar stretch before the
first turbulent burst (Fig. 2b). We are unable to carry
out any other test for Type-III intermittency since we
find the laminar lengths between bursts get progressively
shorter [34]. This could be from an extremely slow tran-
sient as seen in the wormlike micellar gel of cetyltrimethy-
lammonium bromide in deuterated water [35]. Figure 2c
shows the time series for a stress of 26.5 Pa. The time
series shows many small amplitude oscillations that are
followed by a large amplitude oscillation. This behaviour
is more clearly seen for the CTAT 2wt% + 50 mM NaCl
at a stress of 20.5 Pa (Fig. 3c) and is typical of mixed-
mode chaotic oscillations known to occur in many chem-
ical and biological systems(see Refs. 1–13 of [36]). The
number of small amplitude oscillations between two large
amplitude oscillations is random implying a chaotic mix-

Fig. 2. (a)–(d) Shear rate relaxation time series for
CTAT+100 mM NaCl at various stresses (a) Stress = 19.4 Pa,
(b) Stress = 22.5 Pa, (c) Stress = 26.5 Pa and (d) Stress =
33 Pa. (e) shows an expanded version of (b). (f) VH inten-
sity time series corresponding to (e) at a wave vector of q =
0.75 µm−1.

ing of many periodic mixed-mode states [36]. Large ampli-
tude relaxation oscillations in shear rate have been seen
in a lamellar phase under shear [6–8] where they corre-
sponded to transitions from a disordered onion state to an
ordered lamellar phase. The time series shows high dimen-
sional chaos at a stress of 33 Pa (Fig. 2d). Figure 2f show
the time series of the VH intensity at a fixed wavevector,
q = 0.75 µm−1 obtained during the shear rate relaxation
measurement shown in Figure 2b. Qualitatively, the VH
intensity follows oscillations in the shear rate and this once
again proves the vital role played by the nematic ordering
in rheochaos [15,16,18].

We will now discuss the spatiotemporal dynamics of
the shear induced band during the intermittency route
to chaos in shear rate relaxation measurements. We see
the appearance of a turbid band which shows complex
spatiotemporal dynamics for stresses in the plateau re-
gion above 15 Pa. Turbidity is associated with large size
structures induced by shear. The spatiotemporal patterns
during the periodic oscillations (as in Fig. 2a) and during
Type-III intermittency (as in Fig. 2b) show the following:
the shear induced band is pinned to the top and bottom of

+ elastic instability

intensity maps were 20! section averaged in flow (x) and
vorticity (z) directions for further analysis.

Figure 1 displays the linear and nonlinear flow curve
(stress controlled) and corresponding 2D SANS patterns
for the quiescent state (0 Pa) and under imposed shear
stress for the WM solution [18]. At low shear stresses (! "
5 Pa) the solution exhibits Newtonian behavior, which is
associated with an isotropic intensity map. With an in-
crease in shear stress (6 " ! " 13 Pa) shear-thinning be-
comes evident and SANS patterns become elongated in the
vorticity direction (z) indicating shear-induced alignment
of the WMs [19]. Comparing the anisotropic scattering
patterns to those of other semidilute and concentrated
WM systems [2,20], wherein similar onset of shear-
thinning properties were observed, the system at hand
shows a weak anisotropy in the shear-thinning regime,
with absence of any two-lobed or butterfly-like patterns.

The apparent viscosity of the solution significantly in-
creases above the critical shear stress of !c ’ 13 Pa with
the appearance of transient oscillations of shear rate and
viscosity. Furthermore, in this shear-thickening regime,
alternating vorticity bands appear in the form of transpar-

ent and turbid concentric rings [Fig. 2(a)]. To elucidate the
microstructures in these vorticity bands separately, trig-
gered SANS experiments were designed so that scattering
patterns could be obtained exclusively from turbid or
transparent bands, despite their spatiotransient appearance.
Triggering was achieved by an external trigger signal, a
He-Ne laser beam, which was passed orthogonally to the
neutron beam to detect the nature of the bands, either
turbid or transparent. Measured laser intensity was fed to
a Labview-based computer program which allowed us to
enable or disable the neutron detection depending on the
transmitted laser intensity. Figure 2(b) shows the scattering
patterns obtained by triggering the neutron detector for
transparent and turbid bands. Two remarkable features
emerge from this triggered experiment. First, the intensity
maps show two-lobed patterns oriented in the vorticity (z)
direction as compared to the spherical and elliptical pat-
terns in Newtonian or shear-thinning flow, respectively,
(Fig. 1). Such two-lobed patterns indicate a higher degree
of anisotropy, i.e., a stronger alignment of the wormlike
chains in the flow (x) direction [2,21,22] compared to the
shear-thinning regime below !c. Second, there is a consid-
erable difference between the patterns obtained from the
transparent and turbid states. For the turbid state, the over-
all scattering intensity in vorticity (z) direction is enhanced
and intensity in the flow (x) direction is diminished as
compared to the transparent state indicating that the turbid
state is more anisotropic than transparent state.

To quantify these intensity maps, the 20! sector aver-
aged scattering intensity I was calculated in the flow (x)
and vorticity (z) directions and plotted against momentum
transfer q as shown in Fig. 3 for both transparent and turbid
regions. The experimental data were fitted using the

FIG. 1 (color online). Nonlinear and linear (inset) flow curves
for a 40 mM CPyCl-NaSal WM solution and the corresponding
SANS intensity maps at rest (0 Pa) and at different elevated shear
stresses. The dotted ellipse in the flow curve shows the region
where the solution exhibits shear-thickening (13 " ! " 23 Pa)
while the bars indicate the minimum and maximum shear rate
during flip-flop motion at constant shear stress. The inset shows
the linear flow behavior indicating a Maxwell behavior.
Displayed scattering patterns were collected at 6 m detector
distance, corresponding to a q range of 0:008# 0:06 !A#1.
Coordinates x, y, and z correspond to the flow, velocity gradient,
and vorticity directions, respectively. The neutron beam passes
through the sample along the velocity gradient y direction.

FIG. 2 (color online). (a) Formation of vorticity bands in the
shear-thickening regime at 21 Pa, as visualized by a high-speed
digital video camera. The small white rectangle shows the
approximate position of the neutron beam. (b) 2D SANS patterns
obtained by triggering the Neutron detector for transparent (left)
and turbid (right) regions at a detector distance of 6 m (0:008 "
q " 0:06 !A#1) (see also Fig. 3).
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I. Surfactant solutions
from gradient banding to elastic turbulence to vorticity banding

II. Yielding in soft glassy (“squishy”) materials
from steady shear localization to critical-like fluidization dynamics

Outline

T. Divoux, M.-A. Fardin, SM & S. Lerouge, Ann. Rev. Fluid Mech. 48, 81–103 (2016)

D. Bonn, M. Denn, L. Berthier, T. Divoux & SM, Rev. Mod. Phys. 89, 035005 (2017)

III. What about dense suspensions?
similarities and differences with other complex fluids 
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• “1st order” shear-induced solid-liquid transition
• coexistence = shear localization in a fluidized region 

yield stress

!ii" The effective viscosity ! depends on the hydrody-
namic volume fraction " of the dispersed particles via a
Krieger-Dougherty #26$, mean-field #27,28$, or more general
scaling-type expression ! /!0= !1−" /"p"−s, with !0 the sol-
vent viscosity and "p a gel-percolation point well below
unity; the exponent s will be 2, 2.5"p #26$, 1 #27$, or left as
a fitting parameter, dependent on the chosen expression, but
will anyway be of order unity.

!iii" The flow breaks up the aggregates. Via different
mechanistic assumptions of aggregation and breakup, differ-
ent models can be constructed for the rate of change dM /dt
of the cluster mass. Depending on the stress or strain rate
applied, a steady state dM /dt=0 may or may not be reached
between spontaneous aggregation and flow-induced breakup,
which relates R to #̇. Fairly independently of the specific
model, e.g., diffusion-limited cluster aggregation !DLCA,
df =1.7–1.8" #29$ or shear-induced aggregation #30$, size
scaling in fracture, etc., one arrives at a relation of the form
R /R0= !#̇ / #̇0"−n, with #̇0 some typical high shear rate and n a
model-dependent exponent smaller than unity; e.g., DLCA
with breakup linearly proportional to the shear rate may be
shown to give n=1 /df =0.55–0.60, while for shear-induced
aggregation a value n=1 /3 has been derived, in good agree-
ment with some experimental data #30$. Rheometric studies
with a similar modeling approach also show that shear may
lead to more compact aggregates, with an increase in df to-
ward 2.4–2.5 #31$.

Combination of !i", !ii", and !iii" gives an effective steady
state shear stress that depends on shear rate:

$ss!#̇" = #̇!0%1 − & #̇p

#̇
'!3−df"n(−s

!1"

with #̇p corresponding to the percolation point "p also via

!i"–!iii": #̇p= #̇0!"0 /"p"1/!3−df"n. The resulting steady state
flow curve $ss vs #̇ is shown in Fig. 2!b".

The most important feature of the model is that it gives
rise to a critical shear rate #̇c= #̇p#1+sn!3−df"$1/!3−df"n for
which the slope of stress vs strain rate changes sign #3$. The
negative slope for #̇%#̇c implies that such flows are unstable
#32$ which, as will follow, is the hallmark of shear banding.

Cohen and co-workers recently examined colloidal crystal
subjected to oscillatory shear #14$. They observed that the
colloids shear band into a hcp crystal and a state where crys-
tal layers slide over each other. These two states can in fact
be understood as limiting cases of ours; those of infinite and
unit cluster sizes, respectively. This is consistent with the
finding of Cohen and co-workers that their system shows a
transition between two linearly responding phases—one
solid and one liquid.

We will now test the detailed predictions of the model
using standard rheology. The rheology was done also with a
4° cone-plate cell but now of 2 cm radius in a Rheologica
Stresstech rheometer. The essence of the model is the com-
petition between spontaneous buildup of the colloidal aggre-
gates, increasing the viscosity, and breakdown by the flow,
decreasing it. Thus, either the viscosity becomes infinite, or it
decreases due to the flow to a steady state and rather low
value. If the shear rate is imposed, this can lead to shear
banding !the viscosity being infinite in one part and low in
the other", but if the stress is imposed the whole material is
either solid or fluid #7$. This is known as viscosity bifurca-
tion #6$. The model then predicts that measurements at im-
posed shear stress and imposed shear rate should coincide
when #̇global is above #̇critical and differ below it; while the
measurements at imposed stress should give an infinite vis-
cosity, the steady state measurements at imposed shear rate
should give rise to a stress plateau according to the lever
rule. Using imposed shear rate and imposed stress experi-
ments, excellent qualitative agreement with the model pre-
dictions and quantitative agreement with the critical shear
rate found from the MRI measurements is obtained !Fig. 3".

To obtain the negative slope of the flow curve, we note
that all points in Fig. 2!b" can be visited, if only temporarily.
In general, a point above the steady state flow curve of Fig.
2!b" is a fluid subject to a stress that is too high for its cluster
size to be stable, so it decreases in time and leads to a lower
viscosity. Under an imposed shear stress the resulting shear
rate increases in time and the flow point moves to the right.
Conversely, if one starts out at a point below the steady state
flow curve the point moves to the left. The flow curve !in
particular the unstable part of it" can then be obtained by
looking at the transition between points that move to the
right and to the left, as is done in Fig. 4, where it is evident
that indeed the flow curve has a negative slope below the
critical shear rate. In addition to qualitative agreement be-
tween our model and data a quantitative fit of the full flow
curve can be made using Eq. !1", which describes the data
very well.

Perhaps the strongest prediction of the model is that, if
shear banding is observed, the state of the fluid in the flow-
ing part should be significantly different from that in the
quiescent part. This contradicts the classical yield stress pic-
ture, which claims that shear banding is due to stress inho-
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FIG. 4. !Color online" Full steady state flow curve found using
two different types of measurements. The stable branch is simply
found from imposing the shear stress, while the unstable branch can
be pinned from the left and right by !for each of several material
ages" finding initial $-#̇ points that respectively slow down and
speed up under imposed shear stress. From the lower right corner
the aging time after preshear at 150 s−1 is 0, 10, 500, and 3000 s.
The model is also seen to provide an excellent fit to the data. The
fitted parameters n!3−df"=0.11 and s=2.62 are of the right order of
magnitude; the value for n!3−df" is slightly lower than expected,
but not inconsistent with a fractal dimension well above that of,
e.g., DLCA, due to compaction under shear.

SHEAR BANDING AND YIELD STRESS IN SOFT GLASSY… PHYSICAL REVIEW E 77, 041507 !2008"

041507-3

field through an axial plane of the cell with a 0.125 mm axial
and 1.2 mm radial space resolution, and with !40 "m /s
typical standard deviation on velocity values. For each MRI
measurement, a new sample is loaded into the cell and pres-
heared at 150 s−1 for 5 min to have a controlled shear his-
tory of the sample. Subsequently, the globally imposed shear
rate is lowered to the one chosen for the experiment and the
sample is allowed 5 min to reach a steady state before the
MRI measurement is begun. Results for several imposed
shear rates are shown in Fig. 1. At 60 s−1 and above, no
shear banding is observed. Below 60 s−1 the shear rate is not
homogeneous but zero in some parts and high in others, and
while the fraction of the fluid that is sheared increases with
#̇global, #̇local in the flowing region is constant. Clearly, quite
distinct shear banding occurs even in a homogeneous stress
field. That the shear banding is uniquely determined by the
macroscopically imposed shear rate is shown in Fig. 2!a",
where the fraction of sheared material is given by a simple
lever rule: In the sheared region #̇local= #̇critical, and the frac-
tion sheared is given by f = #̇global / #̇critical #7$. The critical
shear rate can be extracted from Fig. 2!a" using both methods
and they both give #̇critical=60!1 s−1. Another important
observation is that the transition between the sheared and the
unsheared regions is very abrupt and the shear rate in the
sheared region is constant in space, which is incompatible
with a simple yield stress fluid behavior.

For micellar systems somewhat similar shear banding is
observed and well understood as a coexistence of two phases
in steady state coexistence—with viscosities differing by one
to two orders of magnitude #23,24$. Our system is distinctly

different in at least three aspects: !i" it is not in a steady state
at low and zero shear rates where it is aging; !ii" it has a
stress plateau between a low-viscosity branch and an infinite-
viscosity branch, that is, it has a yield stress; and !iii" micel-
lar systems are nonthixotropic in the sense that, given an
imposed shear stress !except the plateau stress", they end up
in the same final state independent of the initial state, but our
system is very strongly thixotropic in the sense that a given
imposed stress can result in completely different behavior
depending on the initial state of the fluid. Point !i" is dem-
onstrated in Fig. 5, point !ii" in Fig. 3, and point !iii" in Fig.
4. Hence the models for micellar fluids do not apply to our
system, which needs a new theoretical understanding, to be
provided below.

Although not exactly zero, the relative stress variation in a
4° cone-plate geometry is less than 0.005 and effectively
negligible !as shown by the constant shear rate in the sheared
band". In addition, results with an 8° cone-plate device !hav-
ing a stress heterogeneity four times as large" yielded similar
results, showing that the shear banding is not due to stress
heterogeneities. To understand shear banding in a homoge-
neous stress field, we develop a simple model to take into
account the interplay between viscosity, flow, and the colloi-
dal microstructure in the fluid. To qualitatively capture the
observed thixotropic behavior of the gel, we assume the fol-
lowing.

!i" In time the colloidal particles aggregate into fractal
clusters that are nondraining #25$; $=$!t" is then the “hy-
drodynamic” volume fraction determined by the aggregate
radius R!t", rather than the much smaller actual volume frac-
tion $0 of particles with radius R0. The number of fractal
aggregates decreases in inverse proportion to the aggregate
mass M %Rdf, while their hydrodynamic volume scales as
R3, so $!t" /$0= #R!t" /R0$3−df. Since df %3 it is clear that
continued aggregation will lead with time to a percolating
gel.
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FIG. 1. !Color online" Velocity profiles in a 4° cone-plate ge-
ometry for different globally imposed shear rates. Fluid velocity !a"
in rad/s and !b" normalized by the cone velocity.
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FIG. 2. !Color online" !a" The lever rule giving the fraction of
the fluid that is sheared and the shear rate in that fraction depending
on the critical shear rate. The data points are extracted from the fits
in Fig. 1. !b" Steady state flow curve as given by the model. The
branch to the right of the critical shear rate is stable while the
branch to the left is unstable.
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FIG. 3. !Color online" Steady state flow curves at imposed shear
rate and shear stress. As predicted by the model the experiments
coincide above the critical shear rate while they differ below—
showing a stress plateau and no flow, respectively. For imposed
shear rates below 20 s−1, the recorded stress value is not stable but
fluctuates, showing stick-slip behavior. This may be an indicator
that the width of the sheared band becomes as small as the steady
state cluster size in the band, leading to jamming. Note that here
and elsewhere the microscopic model is applied only to the liquid
phase, i.e., in steady state only above #̇c—also in the shear banding
regime. The arrow to the left indicates that for a stress 1% lower
than the critical stress the resulting shear rate is 2&10−7 s−1, which
is solid to the resolution of our rheometer.
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• “1st order” shear-induced solid-liquid transition
• coexistence = shear localization in a fluidized region 

yield stress

 ⇒ interplay between aging and shear rejuvenation  

!ii" The effective viscosity ! depends on the hydrody-
namic volume fraction " of the dispersed particles via a
Krieger-Dougherty #26$, mean-field #27,28$, or more general
scaling-type expression ! /!0= !1−" /"p"−s, with !0 the sol-
vent viscosity and "p a gel-percolation point well below
unity; the exponent s will be 2, 2.5"p #26$, 1 #27$, or left as
a fitting parameter, dependent on the chosen expression, but
will anyway be of order unity.

!iii" The flow breaks up the aggregates. Via different
mechanistic assumptions of aggregation and breakup, differ-
ent models can be constructed for the rate of change dM /dt
of the cluster mass. Depending on the stress or strain rate
applied, a steady state dM /dt=0 may or may not be reached
between spontaneous aggregation and flow-induced breakup,
which relates R to #̇. Fairly independently of the specific
model, e.g., diffusion-limited cluster aggregation !DLCA,
df =1.7–1.8" #29$ or shear-induced aggregation #30$, size
scaling in fracture, etc., one arrives at a relation of the form
R /R0= !#̇ / #̇0"−n, with #̇0 some typical high shear rate and n a
model-dependent exponent smaller than unity; e.g., DLCA
with breakup linearly proportional to the shear rate may be
shown to give n=1 /df =0.55–0.60, while for shear-induced
aggregation a value n=1 /3 has been derived, in good agree-
ment with some experimental data #30$. Rheometric studies
with a similar modeling approach also show that shear may
lead to more compact aggregates, with an increase in df to-
ward 2.4–2.5 #31$.

Combination of !i", !ii", and !iii" gives an effective steady
state shear stress that depends on shear rate:

$ss!#̇" = #̇!0%1 − & #̇p

#̇
'!3−df"n(−s

!1"

with #̇p corresponding to the percolation point "p also via

!i"–!iii": #̇p= #̇0!"0 /"p"1/!3−df"n. The resulting steady state
flow curve $ss vs #̇ is shown in Fig. 2!b".

The most important feature of the model is that it gives
rise to a critical shear rate #̇c= #̇p#1+sn!3−df"$1/!3−df"n for
which the slope of stress vs strain rate changes sign #3$. The
negative slope for #̇%#̇c implies that such flows are unstable
#32$ which, as will follow, is the hallmark of shear banding.

Cohen and co-workers recently examined colloidal crystal
subjected to oscillatory shear #14$. They observed that the
colloids shear band into a hcp crystal and a state where crys-
tal layers slide over each other. These two states can in fact
be understood as limiting cases of ours; those of infinite and
unit cluster sizes, respectively. This is consistent with the
finding of Cohen and co-workers that their system shows a
transition between two linearly responding phases—one
solid and one liquid.

We will now test the detailed predictions of the model
using standard rheology. The rheology was done also with a
4° cone-plate cell but now of 2 cm radius in a Rheologica
Stresstech rheometer. The essence of the model is the com-
petition between spontaneous buildup of the colloidal aggre-
gates, increasing the viscosity, and breakdown by the flow,
decreasing it. Thus, either the viscosity becomes infinite, or it
decreases due to the flow to a steady state and rather low
value. If the shear rate is imposed, this can lead to shear
banding !the viscosity being infinite in one part and low in
the other", but if the stress is imposed the whole material is
either solid or fluid #7$. This is known as viscosity bifurca-
tion #6$. The model then predicts that measurements at im-
posed shear stress and imposed shear rate should coincide
when #̇global is above #̇critical and differ below it; while the
measurements at imposed stress should give an infinite vis-
cosity, the steady state measurements at imposed shear rate
should give rise to a stress plateau according to the lever
rule. Using imposed shear rate and imposed stress experi-
ments, excellent qualitative agreement with the model pre-
dictions and quantitative agreement with the critical shear
rate found from the MRI measurements is obtained !Fig. 3".

To obtain the negative slope of the flow curve, we note
that all points in Fig. 2!b" can be visited, if only temporarily.
In general, a point above the steady state flow curve of Fig.
2!b" is a fluid subject to a stress that is too high for its cluster
size to be stable, so it decreases in time and leads to a lower
viscosity. Under an imposed shear stress the resulting shear
rate increases in time and the flow point moves to the right.
Conversely, if one starts out at a point below the steady state
flow curve the point moves to the left. The flow curve !in
particular the unstable part of it" can then be obtained by
looking at the transition between points that move to the
right and to the left, as is done in Fig. 4, where it is evident
that indeed the flow curve has a negative slope below the
critical shear rate. In addition to qualitative agreement be-
tween our model and data a quantitative fit of the full flow
curve can be made using Eq. !1", which describes the data
very well.

Perhaps the strongest prediction of the model is that, if
shear banding is observed, the state of the fluid in the flow-
ing part should be significantly different from that in the
quiescent part. This contradicts the classical yield stress pic-
ture, which claims that shear banding is due to stress inho-
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FIG. 4. !Color online" Full steady state flow curve found using
two different types of measurements. The stable branch is simply
found from imposing the shear stress, while the unstable branch can
be pinned from the left and right by !for each of several material
ages" finding initial $-#̇ points that respectively slow down and
speed up under imposed shear stress. From the lower right corner
the aging time after preshear at 150 s−1 is 0, 10, 500, and 3000 s.
The model is also seen to provide an excellent fit to the data. The
fitted parameters n!3−df"=0.11 and s=2.62 are of the right order of
magnitude; the value for n!3−df" is slightly lower than expected,
but not inconsistent with a fractal dimension well above that of,
e.g., DLCA, due to compaction under shear.
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field through an axial plane of the cell with a 0.125 mm axial
and 1.2 mm radial space resolution, and with !40 "m /s
typical standard deviation on velocity values. For each MRI
measurement, a new sample is loaded into the cell and pres-
heared at 150 s−1 for 5 min to have a controlled shear his-
tory of the sample. Subsequently, the globally imposed shear
rate is lowered to the one chosen for the experiment and the
sample is allowed 5 min to reach a steady state before the
MRI measurement is begun. Results for several imposed
shear rates are shown in Fig. 1. At 60 s−1 and above, no
shear banding is observed. Below 60 s−1 the shear rate is not
homogeneous but zero in some parts and high in others, and
while the fraction of the fluid that is sheared increases with
#̇global, #̇local in the flowing region is constant. Clearly, quite
distinct shear banding occurs even in a homogeneous stress
field. That the shear banding is uniquely determined by the
macroscopically imposed shear rate is shown in Fig. 2!a",
where the fraction of sheared material is given by a simple
lever rule: In the sheared region #̇local= #̇critical, and the frac-
tion sheared is given by f = #̇global / #̇critical #7$. The critical
shear rate can be extracted from Fig. 2!a" using both methods
and they both give #̇critical=60!1 s−1. Another important
observation is that the transition between the sheared and the
unsheared regions is very abrupt and the shear rate in the
sheared region is constant in space, which is incompatible
with a simple yield stress fluid behavior.

For micellar systems somewhat similar shear banding is
observed and well understood as a coexistence of two phases
in steady state coexistence—with viscosities differing by one
to two orders of magnitude #23,24$. Our system is distinctly

different in at least three aspects: !i" it is not in a steady state
at low and zero shear rates where it is aging; !ii" it has a
stress plateau between a low-viscosity branch and an infinite-
viscosity branch, that is, it has a yield stress; and !iii" micel-
lar systems are nonthixotropic in the sense that, given an
imposed shear stress !except the plateau stress", they end up
in the same final state independent of the initial state, but our
system is very strongly thixotropic in the sense that a given
imposed stress can result in completely different behavior
depending on the initial state of the fluid. Point !i" is dem-
onstrated in Fig. 5, point !ii" in Fig. 3, and point !iii" in Fig.
4. Hence the models for micellar fluids do not apply to our
system, which needs a new theoretical understanding, to be
provided below.

Although not exactly zero, the relative stress variation in a
4° cone-plate geometry is less than 0.005 and effectively
negligible !as shown by the constant shear rate in the sheared
band". In addition, results with an 8° cone-plate device !hav-
ing a stress heterogeneity four times as large" yielded similar
results, showing that the shear banding is not due to stress
heterogeneities. To understand shear banding in a homoge-
neous stress field, we develop a simple model to take into
account the interplay between viscosity, flow, and the colloi-
dal microstructure in the fluid. To qualitatively capture the
observed thixotropic behavior of the gel, we assume the fol-
lowing.

!i" In time the colloidal particles aggregate into fractal
clusters that are nondraining #25$; $=$!t" is then the “hy-
drodynamic” volume fraction determined by the aggregate
radius R!t", rather than the much smaller actual volume frac-
tion $0 of particles with radius R0. The number of fractal
aggregates decreases in inverse proportion to the aggregate
mass M %Rdf, while their hydrodynamic volume scales as
R3, so $!t" /$0= #R!t" /R0$3−df. Since df %3 it is clear that
continued aggregation will lead with time to a percolating
gel.
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FIG. 1. !Color online" Velocity profiles in a 4° cone-plate ge-
ometry for different globally imposed shear rates. Fluid velocity !a"
in rad/s and !b" normalized by the cone velocity.
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FIG. 2. !Color online" !a" The lever rule giving the fraction of
the fluid that is sheared and the shear rate in that fraction depending
on the critical shear rate. The data points are extracted from the fits
in Fig. 1. !b" Steady state flow curve as given by the model. The
branch to the right of the critical shear rate is stable while the
branch to the left is unstable.
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FIG. 3. !Color online" Steady state flow curves at imposed shear
rate and shear stress. As predicted by the model the experiments
coincide above the critical shear rate while they differ below—
showing a stress plateau and no flow, respectively. For imposed
shear rates below 20 s−1, the recorded stress value is not stable but
fluctuates, showing stick-slip behavior. This may be an indicator
that the width of the sheared band becomes as small as the steady
state cluster size in the band, leading to jamming. Note that here
and elsewhere the microscopic model is applied only to the liquid
phase, i.e., in steady state only above #̇c—also in the shear banding
regime. The arrow to the left indicates that for a stress 1% lower
than the critical stress the resulting shear rate is 2&10−7 s−1, which
is solid to the resolution of our rheometer.
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Seen in :
colloidal gels                    pastes                     and clay suspensions

Shear banding in yield stress fluids

see talk by Thibaut Divoux on Wednesday

“Avalanche-like fluidization of a colloidal gel”



casein gels

• irreversible fluidization
• fracture growth
• well-defined wavelength
• macroscopic phase separation

Other instability modes

Regime 1: at small deformations �⇥⌅, the gels have an elastic behavior corresponding
to a homogeneous strain field. Above a critical strain �⇥c⌅, the material is deformed as a
function of the apparent shear rate applied, according to one of the following regimes �2,
3, or 4⌅.
Regime 2: at low apparent shear rates �falling branch of the flow-curve⌅, shear is

located within a fine layer of the sample. The steady stress level falls as the apparent
shear rate rises. Within the range of apparent shear rates studied, stick slip similar to the
dry friction of an elastic mass occurs within the fracture plane beyond a certain volume
fraction �⇧v ⇤ 1.2 vol %⌅, when only a small space is left free for the particles. This
stick-slip effect is no longer observed with lower volume fractions close to the sol–gel
transition �⇧v � 0.48 vol %⌅, when the distance between particles is approximately equal
to three times the mean particle diameter.
Regime 3: at intermediate apparent shear rates �minimum stress area⌅, shear remains

within a layer whose thickness depends on the apparent shear rate and volume fraction.
With a rising apparent shear rate, the steady stress level is constant and equal to the
minimum stress. For a given volume fraction, the fine sheared layer thickens as the
apparent shear rate increases. A uniformly sheared band is then sandwiched between two
elastically deformed rigid bands.
Regime 4: at high apparent shear rates �rising branch of the flow curve⌅, the uniformly

sheared band extends across the entire gap between cone and plate. Homogeneous shear
is obtained throughout the bulk of the sample. At the highest volume fractions, this flow
regime shifts towards high apparent shear rates that could not be reached with the ex-
perimental conditions created here.
The various responses of the material to each of these four flow regimes will be

examined below.

FIG. 3. Typical flow curve of suspension of Laponite and changes in the strain field inside the bulk of the
sample. Regime 1: small deformation, the strain field is homogeneous. Changes in the sheared layer according
to regimes 2, 3, and 4 of the flow curve. e is the thickness of the sheared layer, h is the height of the mark
between cone and plate inside the bulk of the sample, b is the order of magnitude of the suspended objects or
the range of particle interaction.
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 ⇒ does homogeneous, continuous yielding exist at all?  opposite direction to that of shearing. Meanwhile, the rotating lower plane carries the
lower block along with it in the direction of shearing. At the end of the falling part of the
stress, the two blocks stick, they are again elastically strained, and the process starts
again.
During the rising part of the oscillation that corresponds to elastic strain throughout

the sample, no slip was detected at the previous slipping interface. Calculations to deter-
mine the elastic modulus ⇥⌃⌥/⌃⇤⌅ of the linear increase in stress give the same result as
that for the elastic modulus G� determined under dynamic shear ⇥Fig. 7⌅. At this range of
shear rate, in the calculation of the real strain ⇥⌃⇤⌅ of the sample it will be necessary to

FIG. 6. Transient response of the stress during setup in regime 2 shear rate, and visualization of the strain field
inside the bulk of the sample at 1.6 vol %. At t ⇥ 0 s the rheometer was started at a steady shear rate of 10�3

s�1. The shear was then localized at half-height of the sample. At t ⇥ 3500 s the elastic mass was in steady
‘‘dry’’ stick slip, inside the sheared layer. pH ⇥ 9.5, ⇧NaCl� ⇥ 10�3 mol/l , tp ⇥ 150 days.

FIG. 7. Transient response of the stress at a steady shear rate of 10�4 s�1 of regime 2, and visualization of the
strain field. Fracture within the suspension at 1.6 vol %, and dry stick slip inside the fracture at half-height of
the sample. The stress rise fits with an elastic deformation of the sample. The stress fall fits with a slip within
the plane of fracturing, pH ⇥ 9.5, ⇧NaCl� ⇥ 10�3 mol/l , tp ⇥ 150 days.
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IV.RESPONSESTOSTRESSANDASSOCIATEDSTRAINFIELD

A.Regime1:behavioratsmalldeformations
Generallyspeaking,whenthesampleissubjectedtoalevelofshearrate,stresswithin
thematerialincreasesinlinearrelationtotime,reachesamaximumandthenfallsmono-
tonicallywithtimeuntilasteadystateisestablished⇥Fig.4⌅.Forallthevolumefractions
studiedhereandirrespectiveoftheshearrateapplied,theriseinstressuptomaximum
isaccompaniedbyhomogeneousstrainingofthesample.Thispartofthestress/time
curveis,therefore,indicativeofthebulkpropertiesofthesuspension.Acriticalstrain
correspondstothismaximumstress.Beyondthiscriticalstrainlevel,thestrainfieldand
formoftheresponseunderstressdependheavilyonthevolumefractionandtheshear
rateapplied.

Withdynamicshearatincreasingstrainamplitude,itwaspossibletoobservethesame
typeoftransitionneartoacriticalstrain⇥Fig.5⌅.Belowthiscriticalstrainamplitude,the
suspensionisuniformlydeformed.Theelasticmoduli⇥G8⌅aretwentytothirtytimes
higherthantheviscousmoduli⇥G9⌅.Thevalueoftheelasticmodulusisidenticaltothat
whichmaybecalculatedinasimplesheartest,bymeasuringtheslope⇥⌃⌥/⌃⇤⌅ofthe
linearsectionoftherisingstress.Thedeformation⇥⌃⇤⌅isequaltotheshearratemulti-
pliedbydurationtime(⌃t)ofthisrisingstress.Thematerialis,thus,affectedprimarily
intermsofitselasticity.Withagivenvolumefraction,thiscriticalstrainisidenticalto
thatobtainedinthefirstmomentsofthesetuptestswithsimplesheardescribedprevi-
ously⇧Pignonetal.⇥1994⌅�.Abovethecriticalstrainlevel,shearislocatedathalf-height
ofthesample.Thisisaccompaniedbyachangeinthematerial’sviscoelasticproperties.
TheelasticmoduliG8breakdownandtheresponsetostressisnolongerlinear.

FIG.4.Transientresponseofstressduringsetupinshearrate,andvisualizationofthestrainfieldinsidethe
bulkofthesampleat0.48vol%.Theshearislocalizedathalf-heightofthesample.Att⇥0stherheometer
wasstartedatasteadyshearrateof10�2s�1.Att⇥80s,belowthecriticalstrain,deformationofthesample
washomogeneous.Att⇥360s,theshearingislocalizedinafinelayer.Aboveandbelowthelayerthesample
isonlyelasticallystrained,pH⇥9.5,⇧NaCl�⇥10�3M,tp⇥75days.
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Simple yield stress fluids

• “2nd order” shear-induced solid-liquid transition
• homogeneously sheared flow

Seen in :
emulsions                  microgels             and foams
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Herschel-Bulkley (1926)

Divoux et al., Soft Matter 8, 4151-4164 (2012)
carbopol microgel (ETD 2050)
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Fig. 1 Velocity profiles ⇤v(r)⌅ averaged over a time window of 150
to 600 s in the steady-state regime for (a) �̇ = 0.7 s�1, (b)
�̇ = 1.2 s�1, (c) �̇ = 3.0 s�1, and (d) �̇ = 6.0 s�1. The red solid lines
are the velocity profiles predicted using the Herschel-Bulkley
behaviour derived from the global rheological data of Fig. 2. The
upper limit of the vertical scale corresponds to the rotor velocity v0.
Experiments performed in a smooth Couette cell of gap width 3 mm.

600 s and the steady-state is reached after 10 to 103 s. In all
cases, the steady-state velocity profiles are homogeneous and
do not present any shear banding. The curvature of the veloc-
ity profiles for the lowest shear rates is both due to the rather
large stress variation of about 25 % from the rotor to the sta-
tor and to the proximity of the yield stress. As the shear rate
is increased and the shear stress departs from the yield stress,
velocity profiles become closer to linear.

The local shear rate �̇(r) is easily extracted from steady-
state velocity profiles using Eq. (4). On the other hand, ⇤1 is
directly deduced from the torque G(t) recorded by the rheome-
ter [see Eq. (3)] and averaged over the same time window as
that used for the velocity profile. The local shear stress ⇤(r) is
then computed from Eq. (2). For each applied shear rate, the
⇤(r) vs �̇(r) data are reported in Fig. 2. The experimental dis-
persion mainly arises from the estimation of the derivative in
Eq. (4) which is based on a simple first-order approximation.
This local flow curve is also compared to the global rheologi-
cal data in Fig. 2. In order to check that variations in the global
flow behaviour remain small in spite of the very long durations
of the start-up experiments, we first measured a flow curve ⇤
vs �̇ before starting the series of start-up experiments. Once
start-up experiments were completed, another flow curve was
recorded using the same protocol, namely a decreasing ramp
of applied shear rate (from 100 s�1 down to 1.710�2 s�1) with
a waiting time of 20 s per point. The data shown in Fig. 2 cor-
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Fig. 2 Local rheology ⇤(r) vs �̇(r) (gray dots) extracted from the
steady-state velocity profiles of Fig. 1 (see text) and compared to the
global rheological data ⇤ vs �̇ (•). The global flow curve was
obtained by averaging two independent decreasing shear rate ramps
(from 100 s�1 down to 1.710�2 s�1) with a waiting time of 20 s per
point and measured respectively before and after the series of
start-up experiments under given applied shear rates. The error bars
show the difference between the two flow curve measurements. The
red line shows the best Herschel-Bulkley fit of the global flow curve
for �̇ > 3.510�2 s�1: ⇤ = ⇤c + ⇥̃ �̇n, where ⇤c = 25.7 Pa, n = 0.50,
and ⇥̃ = 17.1 Pa sn. Inset: full set of global rheological data.
Experiments performed in a smooth Couette cell of gap width 3 mm.

responds to the average of these two flow curves and the error
bars indicate their difference. This difference reflects a global
shift of the flow curve by a few pascals, which we attribute to
a slow drift of the material properties due to repeated shear-
ing protocols over more than 104 s. The average flow curve is
perfectly fit by a Herschel-Bulkley behaviour, ⇤ = ⇤c + ⇥̃ �̇n,
for shear rates larger than 3.510�2 s�1. At low shear rates,
the deviation from Herschel-Bulkley behaviour (see inset of
Fig. 2) is attributed to paramount wall slip effects as already
reported in the literature53,54.

The agreement between local and global rheology shown
in Fig. 2 is quite remarkable. It can be further confirmed by
computing the velocity profiles based on the Herschel-Bulkley
behaviour inferred from the global rheological measurements
and transferred locally:

⇤(r) = ⇤c + ⇥̃ �̇(r)n for ⇤(r)⇥ ⇤c . (5)

Indeed, inserting Eq. (5) into Eq. (4) and integrating over r
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Fig. 1 Velocity profiles ⇤v(r)⌅ averaged over a time window of 150
to 600 s in the steady-state regime for (a) �̇ = 0.7 s�1, (b)
�̇ = 1.2 s�1, (c) �̇ = 3.0 s�1, and (d) �̇ = 6.0 s�1. The red solid lines
are the velocity profiles predicted using the Herschel-Bulkley
behaviour derived from the global rheological data of Fig. 2. The
upper limit of the vertical scale corresponds to the rotor velocity v0.
Experiments performed in a smooth Couette cell of gap width 3 mm.

600 s and the steady-state is reached after 10 to 103 s. In all
cases, the steady-state velocity profiles are homogeneous and
do not present any shear banding. The curvature of the veloc-
ity profiles for the lowest shear rates is both due to the rather
large stress variation of about 25 % from the rotor to the sta-
tor and to the proximity of the yield stress. As the shear rate
is increased and the shear stress departs from the yield stress,
velocity profiles become closer to linear.

The local shear rate �̇(r) is easily extracted from steady-
state velocity profiles using Eq. (4). On the other hand, ⇤1 is
directly deduced from the torque G(t) recorded by the rheome-
ter [see Eq. (3)] and averaged over the same time window as
that used for the velocity profile. The local shear stress ⇤(r) is
then computed from Eq. (2). For each applied shear rate, the
⇤(r) vs �̇(r) data are reported in Fig. 2. The experimental dis-
persion mainly arises from the estimation of the derivative in
Eq. (4) which is based on a simple first-order approximation.
This local flow curve is also compared to the global rheologi-
cal data in Fig. 2. In order to check that variations in the global
flow behaviour remain small in spite of the very long durations
of the start-up experiments, we first measured a flow curve ⇤
vs �̇ before starting the series of start-up experiments. Once
start-up experiments were completed, another flow curve was
recorded using the same protocol, namely a decreasing ramp
of applied shear rate (from 100 s�1 down to 1.710�2 s�1) with
a waiting time of 20 s per point. The data shown in Fig. 2 cor-
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Fig. 2 Local rheology ⇤(r) vs �̇(r) (gray dots) extracted from the
steady-state velocity profiles of Fig. 1 (see text) and compared to the
global rheological data ⇤ vs �̇ (•). The global flow curve was
obtained by averaging two independent decreasing shear rate ramps
(from 100 s�1 down to 1.710�2 s�1) with a waiting time of 20 s per
point and measured respectively before and after the series of
start-up experiments under given applied shear rates. The error bars
show the difference between the two flow curve measurements. The
red line shows the best Herschel-Bulkley fit of the global flow curve
for �̇ > 3.510�2 s�1: ⇤ = ⇤c + ⇥̃ �̇n, where ⇤c = 25.7 Pa, n = 0.50,
and ⇥̃ = 17.1 Pa sn. Inset: full set of global rheological data.
Experiments performed in a smooth Couette cell of gap width 3 mm.

responds to the average of these two flow curves and the error
bars indicate their difference. This difference reflects a global
shift of the flow curve by a few pascals, which we attribute to
a slow drift of the material properties due to repeated shear-
ing protocols over more than 104 s. The average flow curve is
perfectly fit by a Herschel-Bulkley behaviour, ⇤ = ⇤c + ⇥̃ �̇n,
for shear rates larger than 3.510�2 s�1. At low shear rates,
the deviation from Herschel-Bulkley behaviour (see inset of
Fig. 2) is attributed to paramount wall slip effects as already
reported in the literature53,54.

The agreement between local and global rheology shown
in Fig. 2 is quite remarkable. It can be further confirmed by
computing the velocity profiles based on the Herschel-Bulkley
behaviour inferred from the global rheological measurements
and transferred locally:

⇤(r) = ⇤c + ⇥̃ �̇(r)n for ⇤(r)⇥ ⇤c . (5)

Indeed, inserting Eq. (5) into Eq. (4) and integrating over r
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Fig. 1 Velocity profiles ⇤v(r)⌅ averaged over a time window of 150
to 600 s in the steady-state regime for (a) �̇ = 0.7 s�1, (b)
�̇ = 1.2 s�1, (c) �̇ = 3.0 s�1, and (d) �̇ = 6.0 s�1. The red solid lines
are the velocity profiles predicted using the Herschel-Bulkley
behaviour derived from the global rheological data of Fig. 2. The
upper limit of the vertical scale corresponds to the rotor velocity v0.
Experiments performed in a smooth Couette cell of gap width 3 mm.

600 s and the steady-state is reached after 10 to 103 s. In all
cases, the steady-state velocity profiles are homogeneous and
do not present any shear banding. The curvature of the veloc-
ity profiles for the lowest shear rates is both due to the rather
large stress variation of about 25 % from the rotor to the sta-
tor and to the proximity of the yield stress. As the shear rate
is increased and the shear stress departs from the yield stress,
velocity profiles become closer to linear.

The local shear rate �̇(r) is easily extracted from steady-
state velocity profiles using Eq. (4). On the other hand, ⇤1 is
directly deduced from the torque G(t) recorded by the rheome-
ter [see Eq. (3)] and averaged over the same time window as
that used for the velocity profile. The local shear stress ⇤(r) is
then computed from Eq. (2). For each applied shear rate, the
⇤(r) vs �̇(r) data are reported in Fig. 2. The experimental dis-
persion mainly arises from the estimation of the derivative in
Eq. (4) which is based on a simple first-order approximation.
This local flow curve is also compared to the global rheologi-
cal data in Fig. 2. In order to check that variations in the global
flow behaviour remain small in spite of the very long durations
of the start-up experiments, we first measured a flow curve ⇤
vs �̇ before starting the series of start-up experiments. Once
start-up experiments were completed, another flow curve was
recorded using the same protocol, namely a decreasing ramp
of applied shear rate (from 100 s�1 down to 1.710�2 s�1) with
a waiting time of 20 s per point. The data shown in Fig. 2 cor-
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Fig. 2 Local rheology ⇤(r) vs �̇(r) (gray dots) extracted from the
steady-state velocity profiles of Fig. 1 (see text) and compared to the
global rheological data ⇤ vs �̇ (•). The global flow curve was
obtained by averaging two independent decreasing shear rate ramps
(from 100 s�1 down to 1.710�2 s�1) with a waiting time of 20 s per
point and measured respectively before and after the series of
start-up experiments under given applied shear rates. The error bars
show the difference between the two flow curve measurements. The
red line shows the best Herschel-Bulkley fit of the global flow curve
for �̇ > 3.510�2 s�1: ⇤ = ⇤c + ⇥̃ �̇n, where ⇤c = 25.7 Pa, n = 0.50,
and ⇥̃ = 17.1 Pa sn. Inset: full set of global rheological data.
Experiments performed in a smooth Couette cell of gap width 3 mm.

responds to the average of these two flow curves and the error
bars indicate their difference. This difference reflects a global
shift of the flow curve by a few pascals, which we attribute to
a slow drift of the material properties due to repeated shear-
ing protocols over more than 104 s. The average flow curve is
perfectly fit by a Herschel-Bulkley behaviour, ⇤ = ⇤c + ⇥̃ �̇n,
for shear rates larger than 3.510�2 s�1. At low shear rates,
the deviation from Herschel-Bulkley behaviour (see inset of
Fig. 2) is attributed to paramount wall slip effects as already
reported in the literature53,54.

The agreement between local and global rheology shown
in Fig. 2 is quite remarkable. It can be further confirmed by
computing the velocity profiles based on the Herschel-Bulkley
behaviour inferred from the global rheological measurements
and transferred locally:

⇤(r) = ⇤c + ⇥̃ �̇(r)n for ⇤(r)⇥ ⇤c . (5)

Indeed, inserting Eq. (5) into Eq. (4) and integrating over r
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Fig. 1 Velocity profiles ⇤v(r)⌅ averaged over a time window of 150
to 600 s in the steady-state regime for (a) �̇ = 0.7 s�1, (b)
�̇ = 1.2 s�1, (c) �̇ = 3.0 s�1, and (d) �̇ = 6.0 s�1. The red solid lines
are the velocity profiles predicted using the Herschel-Bulkley
behaviour derived from the global rheological data of Fig. 2. The
upper limit of the vertical scale corresponds to the rotor velocity v0.
Experiments performed in a smooth Couette cell of gap width 3 mm.

600 s and the steady-state is reached after 10 to 103 s. In all
cases, the steady-state velocity profiles are homogeneous and
do not present any shear banding. The curvature of the veloc-
ity profiles for the lowest shear rates is both due to the rather
large stress variation of about 25 % from the rotor to the sta-
tor and to the proximity of the yield stress. As the shear rate
is increased and the shear stress departs from the yield stress,
velocity profiles become closer to linear.

The local shear rate �̇(r) is easily extracted from steady-
state velocity profiles using Eq. (4). On the other hand, ⇤1 is
directly deduced from the torque G(t) recorded by the rheome-
ter [see Eq. (3)] and averaged over the same time window as
that used for the velocity profile. The local shear stress ⇤(r) is
then computed from Eq. (2). For each applied shear rate, the
⇤(r) vs �̇(r) data are reported in Fig. 2. The experimental dis-
persion mainly arises from the estimation of the derivative in
Eq. (4) which is based on a simple first-order approximation.
This local flow curve is also compared to the global rheologi-
cal data in Fig. 2. In order to check that variations in the global
flow behaviour remain small in spite of the very long durations
of the start-up experiments, we first measured a flow curve ⇤
vs �̇ before starting the series of start-up experiments. Once
start-up experiments were completed, another flow curve was
recorded using the same protocol, namely a decreasing ramp
of applied shear rate (from 100 s�1 down to 1.710�2 s�1) with
a waiting time of 20 s per point. The data shown in Fig. 2 cor-

90

80

70

60

50

40

30

σ
 (

P
a

)

0.1 1 10

γ (s
-1
)

.

200

150

100

50

0

σ
 (

P
a

)

10
-2  10

0  10
2

γ (s
-1

)
.

Fig. 2 Local rheology ⇤(r) vs �̇(r) (gray dots) extracted from the
steady-state velocity profiles of Fig. 1 (see text) and compared to the
global rheological data ⇤ vs �̇ (•). The global flow curve was
obtained by averaging two independent decreasing shear rate ramps
(from 100 s�1 down to 1.710�2 s�1) with a waiting time of 20 s per
point and measured respectively before and after the series of
start-up experiments under given applied shear rates. The error bars
show the difference between the two flow curve measurements. The
red line shows the best Herschel-Bulkley fit of the global flow curve
for �̇ > 3.510�2 s�1: ⇤ = ⇤c + ⇥̃ �̇n, where ⇤c = 25.7 Pa, n = 0.50,
and ⇥̃ = 17.1 Pa sn. Inset: full set of global rheological data.
Experiments performed in a smooth Couette cell of gap width 3 mm.

responds to the average of these two flow curves and the error
bars indicate their difference. This difference reflects a global
shift of the flow curve by a few pascals, which we attribute to
a slow drift of the material properties due to repeated shear-
ing protocols over more than 104 s. The average flow curve is
perfectly fit by a Herschel-Bulkley behaviour, ⇤ = ⇤c + ⇥̃ �̇n,
for shear rates larger than 3.510�2 s�1. At low shear rates,
the deviation from Herschel-Bulkley behaviour (see inset of
Fig. 2) is attributed to paramount wall slip effects as already
reported in the literature53,54.

The agreement between local and global rheology shown
in Fig. 2 is quite remarkable. It can be further confirmed by
computing the velocity profiles based on the Herschel-Bulkley
behaviour inferred from the global rheological measurements
and transferred locally:

⇤(r) = ⇤c + ⇥̃ �̇(r)n for ⇤(r)⇥ ⇤c . (5)

Indeed, inserting Eq. (5) into Eq. (4) and integrating over r
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Fig. 1 Velocity profiles ⇤v(r)⌅ averaged over a time window of 150
to 600 s in the steady-state regime for (a) �̇ = 0.7 s�1, (b)
�̇ = 1.2 s�1, (c) �̇ = 3.0 s�1, and (d) �̇ = 6.0 s�1. The red solid lines
are the velocity profiles predicted using the Herschel-Bulkley
behaviour derived from the global rheological data of Fig. 2. The
upper limit of the vertical scale corresponds to the rotor velocity v0.
Experiments performed in a smooth Couette cell of gap width 3 mm.

600 s and the steady-state is reached after 10 to 103 s. In all
cases, the steady-state velocity profiles are homogeneous and
do not present any shear banding. The curvature of the veloc-
ity profiles for the lowest shear rates is both due to the rather
large stress variation of about 25 % from the rotor to the sta-
tor and to the proximity of the yield stress. As the shear rate
is increased and the shear stress departs from the yield stress,
velocity profiles become closer to linear.

The local shear rate �̇(r) is easily extracted from steady-
state velocity profiles using Eq. (4). On the other hand, ⇤1 is
directly deduced from the torque G(t) recorded by the rheome-
ter [see Eq. (3)] and averaged over the same time window as
that used for the velocity profile. The local shear stress ⇤(r) is
then computed from Eq. (2). For each applied shear rate, the
⇤(r) vs �̇(r) data are reported in Fig. 2. The experimental dis-
persion mainly arises from the estimation of the derivative in
Eq. (4) which is based on a simple first-order approximation.
This local flow curve is also compared to the global rheologi-
cal data in Fig. 2. In order to check that variations in the global
flow behaviour remain small in spite of the very long durations
of the start-up experiments, we first measured a flow curve ⇤
vs �̇ before starting the series of start-up experiments. Once
start-up experiments were completed, another flow curve was
recorded using the same protocol, namely a decreasing ramp
of applied shear rate (from 100 s�1 down to 1.710�2 s�1) with
a waiting time of 20 s per point. The data shown in Fig. 2 cor-
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Fig. 2 Local rheology ⇤(r) vs �̇(r) (gray dots) extracted from the
steady-state velocity profiles of Fig. 1 (see text) and compared to the
global rheological data ⇤ vs �̇ (•). The global flow curve was
obtained by averaging two independent decreasing shear rate ramps
(from 100 s�1 down to 1.710�2 s�1) with a waiting time of 20 s per
point and measured respectively before and after the series of
start-up experiments under given applied shear rates. The error bars
show the difference between the two flow curve measurements. The
red line shows the best Herschel-Bulkley fit of the global flow curve
for �̇ > 3.510�2 s�1: ⇤ = ⇤c + ⇥̃ �̇n, where ⇤c = 25.7 Pa, n = 0.50,
and ⇥̃ = 17.1 Pa sn. Inset: full set of global rheological data.
Experiments performed in a smooth Couette cell of gap width 3 mm.

responds to the average of these two flow curves and the error
bars indicate their difference. This difference reflects a global
shift of the flow curve by a few pascals, which we attribute to
a slow drift of the material properties due to repeated shear-
ing protocols over more than 104 s. The average flow curve is
perfectly fit by a Herschel-Bulkley behaviour, ⇤ = ⇤c + ⇥̃ �̇n,
for shear rates larger than 3.510�2 s�1. At low shear rates,
the deviation from Herschel-Bulkley behaviour (see inset of
Fig. 2) is attributed to paramount wall slip effects as already
reported in the literature53,54.

The agreement between local and global rheology shown
in Fig. 2 is quite remarkable. It can be further confirmed by
computing the velocity profiles based on the Herschel-Bulkley
behaviour inferred from the global rheological measurements
and transferred locally:

⇤(r) = ⇤c + ⇥̃ �̇(r)n for ⇤(r)⇥ ⇤c . (5)

Indeed, inserting Eq. (5) into Eq. (4) and integrating over r
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Fig. 1 Velocity profiles ⇤v(r)⌅ averaged over a time window of 150
to 600 s in the steady-state regime for (a) �̇ = 0.7 s�1, (b)
�̇ = 1.2 s�1, (c) �̇ = 3.0 s�1, and (d) �̇ = 6.0 s�1. The red solid lines
are the velocity profiles predicted using the Herschel-Bulkley
behaviour derived from the global rheological data of Fig. 2. The
upper limit of the vertical scale corresponds to the rotor velocity v0.
Experiments performed in a smooth Couette cell of gap width 3 mm.

600 s and the steady-state is reached after 10 to 103 s. In all
cases, the steady-state velocity profiles are homogeneous and
do not present any shear banding. The curvature of the veloc-
ity profiles for the lowest shear rates is both due to the rather
large stress variation of about 25 % from the rotor to the sta-
tor and to the proximity of the yield stress. As the shear rate
is increased and the shear stress departs from the yield stress,
velocity profiles become closer to linear.

The local shear rate �̇(r) is easily extracted from steady-
state velocity profiles using Eq. (4). On the other hand, ⇤1 is
directly deduced from the torque G(t) recorded by the rheome-
ter [see Eq. (3)] and averaged over the same time window as
that used for the velocity profile. The local shear stress ⇤(r) is
then computed from Eq. (2). For each applied shear rate, the
⇤(r) vs �̇(r) data are reported in Fig. 2. The experimental dis-
persion mainly arises from the estimation of the derivative in
Eq. (4) which is based on a simple first-order approximation.
This local flow curve is also compared to the global rheologi-
cal data in Fig. 2. In order to check that variations in the global
flow behaviour remain small in spite of the very long durations
of the start-up experiments, we first measured a flow curve ⇤
vs �̇ before starting the series of start-up experiments. Once
start-up experiments were completed, another flow curve was
recorded using the same protocol, namely a decreasing ramp
of applied shear rate (from 100 s�1 down to 1.710�2 s�1) with
a waiting time of 20 s per point. The data shown in Fig. 2 cor-

90

80

70

60

50

40

30

σ
 (

P
a
)

0.1 1 10

γ (s
-1
)

.

200

150

100

50

0

σ
 (

P
a
)

10
-2  10

0  10
2

γ (s
-1

)
.

Fig. 2 Local rheology ⇤(r) vs �̇(r) (gray dots) extracted from the
steady-state velocity profiles of Fig. 1 (see text) and compared to the
global rheological data ⇤ vs �̇ (•). The global flow curve was
obtained by averaging two independent decreasing shear rate ramps
(from 100 s�1 down to 1.710�2 s�1) with a waiting time of 20 s per
point and measured respectively before and after the series of
start-up experiments under given applied shear rates. The error bars
show the difference between the two flow curve measurements. The
red line shows the best Herschel-Bulkley fit of the global flow curve
for �̇ > 3.510�2 s�1: ⇤ = ⇤c + ⇥̃ �̇n, where ⇤c = 25.7 Pa, n = 0.50,
and ⇥̃ = 17.1 Pa sn. Inset: full set of global rheological data.
Experiments performed in a smooth Couette cell of gap width 3 mm.

responds to the average of these two flow curves and the error
bars indicate their difference. This difference reflects a global
shift of the flow curve by a few pascals, which we attribute to
a slow drift of the material properties due to repeated shear-
ing protocols over more than 104 s. The average flow curve is
perfectly fit by a Herschel-Bulkley behaviour, ⇤ = ⇤c + ⇥̃ �̇n,
for shear rates larger than 3.510�2 s�1. At low shear rates,
the deviation from Herschel-Bulkley behaviour (see inset of
Fig. 2) is attributed to paramount wall slip effects as already
reported in the literature53,54.

The agreement between local and global rheology shown
in Fig. 2 is quite remarkable. It can be further confirmed by
computing the velocity profiles based on the Herschel-Bulkley
behaviour inferred from the global rheological measurements
and transferred locally:

⇤(r) = ⇤c + ⇥̃ �̇(r)n for ⇤(r)⇥ ⇤c . (5)

Indeed, inserting Eq. (5) into Eq. (4) and integrating over r
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⇒ focus on fluidization dynamics in simple YSF



Slow fluidization dynamics in carbopol

poly(acrylic acid) polymer
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 ⇒ long-lasting transient shear-banding

 ⇒ fluctuations and “sudden” fluidization at τf
 ⇒ rheological signature : “kink” around τf
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Gutowski et al., Rheol. Acta
51, 441-450 (2012)



γ➚.

• independent of gap width and wall roughness
• dependent on carbopol batch (preparation, concentration)

Shear-rate controlled experiments
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 ⇒ what about imposing the shear stress (creep)?  



Stress-controlled experiments
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Stress-controlled experiments

• independent of gap width and wall roughness
• dependent on carbopol batch (preparation, concentration)
• estimate of σc consistent with steady-state flow curve
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0.7, 1 and 3% wt. In this case, the samples are free of seeding glass

spheres. The shear rate responses _g(t) (not shown) present the
same characteristics as those of Fig. 2(a) and Fig. 3(a). The

corresponding fluidization times, extracted from the second

inflection point of _g(t), are shown in Fig. 4. First, for the four

concentrations explored, we observe a power-law similar to the

one found above in the Couette geometry. The exponent is

an increasing function of the carbopol weight fraction C

(see Table 1). Second, we checked on a sample of concentration

C ¼ 1% wt. that the power law does not depend significantly on

the gap width (1 < e < 3 mm) or on the BC. Moreover, since the

roughness of the plate surfaces was changed either by using glass

plates or by gluing sandpaper, we also infer that the chemical

properties of the surfaces do not play any noticeable role in the

fluidization process. Thus, we conclude that for a given batch,

the power-law behaviour of sf vs s does not depend on the gap

width or on the BC.

4 Discussion

4.1 Ruling out any fracture-like scenario

In light of previous works, let us first justify our choice of

a power law to fit the sf vs s data. Indeed various other scalings

have been proposed in the literature to account for stress-induced

fluidization. Analogies with fracture in elastic solids8 lead to sf ¼
s0 exp [(s0/s)

m], with m ¼ 1 for time-dependent rupture in glasses

and m ¼ 2 (m ¼ 4 resp.) for nucleation of critical cracks that

follow the Griffith’s criterion in 2D (3D resp.) geometries.29

Activated processes have also been invoked to support an

exponential scaling sf ¼ s0 exp(– s/s0) found in colloidal gels

made of attractive carbon black particles.30 Fig. 5(c) and 5(d)

clearly show that the last two scalings cannot account for our

carbopol data. Still fracture-like processes with m ¼ 1 or m ¼ 2

do fit our data correctly as found in (8) but the small range of s

(less than one decade) does not allow for a definite conclusion

derived from rheology alone.

Here, however, one can go one step further since ultrasonic

echography provides crucial clues on the local yielding dynamics

that rule out a fracture scenario. Indeed Fig. 6, which is typical of

all shear stresses in rough BC, shows that the backscattered

pressure signals do not present any discontinuity in the bulk from

one incident pulse to another. This allows us to exclude the

presence of fractures at least on scales above a few microns, in

contrast with previous observations on a thixotropic organogel

(see for instance figures 16 and 17 in reference 31). Moreover, at

short times (t ( 60 s), the slopes of the echoes progressively

decrease from the rotor to the stator, which is the signature of the

homogeneous creep deformation seen in Fig. 1(a). For t x 60 s,

the whole sample suddenly stops as the material fails at the rotor

(see the discontinuity at r x 0 for t x 60 s) and subsequently

undergoes total wall slip with a vanishing local shear rate. We

interpret the complex shape of the echoes in the slip regime (see,

e.g., the red box in Fig. 6) as the consequence of elastic bulk

deformations due to the large roughness (60 mm) of the moving

wall. Indeed such erratic motions are not seen with smooth BC.

Finally the material also fails at the stator at tx 120 s (red arrow

in Fig. 6) so that it slips at both walls and undergoes a solid-body

rotation, which is also typical of the slip regime in smooth BC.

We can thus keep in mind that fracture planes similar to those

found in solids can be ruled out and that carbopol microgels

rather fluidize continuously in a liquid-like fashion through the

slow growth of a transient shear band.

4.2 What can we learn from the creep deformation regime

observed with rough BC?

Let us now recall that at short times under applied shear stress

and for rough boundary conditions [Fig. 1 and Fig. 2(a)], the

shear rate follows a slow decay characterized by a power law _g(t)
f t"2/3 known as the Andrade’s law and often observed in solid

materials.27,32 Such a result may seem to contradict our previous

paragraph in which we have dismissed the idea of any fracture-

like scenario or solid-like behaviour in the fluidization process of

carbopol microgels. Actually, there is no contradiction and we

shall explain why in this section.

In crystalline materials, creep deformation originates from the

collective dynamics of dislocations26 which is intermittent at the

mesoscopic scale33 but results in an average slow power-law

relaxation of the material at a macroscopic scale widely known as

Andrade’s creep.34 The discrete dislocation dynamics model has

revealed that sufficient – if not necessary – ingredients to observe

Andrade’s scaling law appear to be (i) long range anisotropic

interactions and (ii) topological constraints.26,34 Dealing with (i),

carbopol microgels are composed of highly crosslinked mole-

cules and thus certainly present long range interactions. Besides,

Fig. 4 Fluidization time sf extracted from the second inflection point of

_g(t) vs the reduced shear stress s " sc for various carbopol concentra-

tions in a rough plate-plate geometry of gap 1 mm: [symbol, % wt., sc
(Pa)]: (A, 0.5, 17.3); (:, 0.7, 30.3); (C, 1, 30); (-, 3, 56.5). For the same

batch of concentration 1% wt., we test the influence of the boundary

conditions and of the gap width: (symbol, gap, BC): (C, 1 mm, rough);

(B, 3 mm, rough); (5, 1 mm, smooth). Here, smooth BC correspond to

glass plates.

Table 1 Evolution of the fluidization exponent b and prefactor B with
the carbopol concentration C

C (% wt.) B (Pab.s) b

0.5 1.48$105 3.4 # 0.1
0.7 17.44$105 3.75 # 0.10
1 5.86$1013 7, 0 # 0.6
3 1.19$1021 8.0 # 0.3
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the time to observe a linear velocity profile, scales as a power law

of the applied shear rate: sf f _g!a. It is crucial to emphasize that

the whole fluidization sequence is the same under controlled

shear rate and under controlled shear stress and that in both

cases the fluidization time decreases as a power law of the applied

variable. The only difference between these two fluidization

processes lies in the duration of the total wall slip regime, which is

much shorter in the case of applied shear rate experiments. In the

following, we make a connection between the two fluidization

dynamics and the steady-state behaviour.

4.4 Link between transient and steady-state rheology

4.4.1 From transient to steady-state rheology. The use of the

power law s(s)f h sf ¼ B/(s ! sc)
b to describe stress-induced

fluidization allows for a remarkable connection with independent

experiments under imposed shear rate and global steady-state

rheology. Indeed, as recalled above, controlled shear rate fluid-

ization on the same carbopol microgels was also shown to

involve transient shear banding governed by a power-law

behaviour: s( _g)f ¼ A/ _ga, where a only depends on the batch

preparation.11 Since s( _g)f and s(s)f characterize the same physical

process, we may crudely, but rather naturally, write that the two

fluidization timescales are proportional:

s(s)f ¼ ls( _g)f , (3)

where l is a dimensionless constant. This proportionality directly

leads to:

s ¼ sc + ~h _gn, (4)

with n ¼ a/b and ~h ¼ (B/lA)1/b. In other words the HB behaviour

that characterizes the steady-state rheology of our simple YSF is

recovered from the two power-law behaviours of the fluidization

times in independent transient experiments. Let us first test this

result quantitatively before trying to build it on more solid

ground.

4.4.2 Quantitative test. This link between local fluidization

dynamics and global rheology is tested quantitatively in Fig. 7

for batches 1 and 2 and different BC. Going back to the s( _g)f vs _g
data (insets of Fig. 7), we predict n ¼ 2.3/4.0 ¼ 0.57 for batch 1

and rough BC and n ¼ 2.93/5.75 ¼ 0.51 for batch 2 and smooth

BC. These exponents are in very good agreement with those

extracted from the best HB fits of the flow curves, n ¼ 0.53. It is

also quite remarkable that the values of sc inferred from our

fitting procedure of s(s)f (sc ¼ 28.3 and 28.1 Pa, Fig. 2) coincide

with those of the best HB fits (sc ¼ 27.8 and 30.4 Pa) to within

10%. As a consequence the HB models inferred from the fluid-

ization times are undistinguishable from the best HB fits of the

steady-state rheology provided l is left as a free parameter to

achieve the correct values of ~h from the prefactors A and B of the

two power laws. We get l ¼ 10.2 for batch 1 and 9.1 for batch 2,

which means that fluidization under a given s is roughly ten times

slower than fluidization under the corresponding _g. This differ-
ence most probably results from the fact that our YSF undergoes

a long-lasting slip regime under stress while the slip regime is

much shorter under imposed shear rate.

4.4.3 Discussion. Let us now further justify writing that the

two fluidization timescales s( _g)f and s(s)f are proportional. First, we

emphasize once again that both fluidization processes under

imposed shear rate and under imposed shear stress are rigorously

the same in that they present the exact same sequence of local

events. Second, although the first two steps of the fluidization

process, namely the homogeneous strain and the total wall slip

regimes, present a shorter duration in the case of applied shear

rate, the fluidization times are of the same order of magnitude for

both applied shear rate and applied shear stress. Third, a pro-

portionality law is the simplest link one can think of between two

timescales without artificially invoking another characteristic

time whose origin and interpretation would be unclear. The fact

that we can make any additional timescale irrelevant will be

confirmed in the next section.

Now, our interpretation of the HB exponent as the ratio of two

fluidization exponents allows us to revisit some recent observa-

tions. Indeed, quite similar results have been observed on acidic

solutions of type I collagen by Gobeaux et al.39 On the one hand,

the steady-state rheology of type I collagen molecules is well

described by a power law s¼K _gn, with nx 0.27, i.e. a HBmodel

with no yield stress. On the other hand, creep experiments have

revealed that the fluidization occurs after a lag time tc that scales

Fig. 7 (a) Flow curve s vs _g obtained by decreasing _g from 100 to 0.01 s

with a waiting time of 30 s per point for batch 1 and rough BC. The gray

line is the best fit by the HB model [Eqn (1)] with sc ¼ 27.8 Pa, n ¼ 0.53,

and ~h ¼ 11.3 Pa$s!n. The black dashed line is the HB model derived from

fluidization times with sc ¼ 28.3 Pa, n ¼ 0.57, and ~h ¼ 9.4 Pa$s!n (see

text). Inset: fluidization time s( _g)f vs _g in controlled shear rate experiments

for batch 1 in rough BC, fromDivoux et al.11 The line is s( _g)f ¼A/ _ga withA

¼ 472 # 11 and a ¼ 2.30 # 0.10. (b) Same as (a) for batch 2 and smooth

BC. The best HB fit (gray line) performed on 0.2 < _g < 100 s!1 yields sc ¼
30.4 Pa, n ¼ 0.53, and ~h ¼ 10.3 Pa$s!n and fluidization times (black

dashed line) lead to sc¼ 28.1 Pa, n¼ 0.51, and ~h¼ 11.7 Pa$s!n. The shape

of this flow curve for _g < 0.1 s!1 is typical of slip phenomena.36–38 Inset:

for batch 2 in smooth BC with e¼ 0.5 mm, the best power-law fit of s( _g)f vs

_g yields A ¼ 1375 # 46 and a ¼ 2.93 # 0.15.
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the time to observe a linear velocity profile, scales as a power law

of the applied shear rate: sf f _g!a. It is crucial to emphasize that

the whole fluidization sequence is the same under controlled

shear rate and under controlled shear stress and that in both

cases the fluidization time decreases as a power law of the applied

variable. The only difference between these two fluidization

processes lies in the duration of the total wall slip regime, which is

much shorter in the case of applied shear rate experiments. In the

following, we make a connection between the two fluidization

dynamics and the steady-state behaviour.

4.4 Link between transient and steady-state rheology

4.4.1 From transient to steady-state rheology. The use of the

power law s(s)f h sf ¼ B/(s ! sc)
b to describe stress-induced

fluidization allows for a remarkable connection with independent

experiments under imposed shear rate and global steady-state

rheology. Indeed, as recalled above, controlled shear rate fluid-

ization on the same carbopol microgels was also shown to

involve transient shear banding governed by a power-law

behaviour: s( _g)f ¼ A/ _ga, where a only depends on the batch

preparation.11 Since s( _g)f and s(s)f characterize the same physical

process, we may crudely, but rather naturally, write that the two

fluidization timescales are proportional:

s(s)f ¼ ls( _g)f , (3)

where l is a dimensionless constant. This proportionality directly

leads to:

s ¼ sc + ~h _gn, (4)

with n ¼ a/b and ~h ¼ (B/lA)1/b. In other words the HB behaviour

that characterizes the steady-state rheology of our simple YSF is

recovered from the two power-law behaviours of the fluidization

times in independent transient experiments. Let us first test this

result quantitatively before trying to build it on more solid

ground.

4.4.2 Quantitative test. This link between local fluidization

dynamics and global rheology is tested quantitatively in Fig. 7

for batches 1 and 2 and different BC. Going back to the s( _g)f vs _g
data (insets of Fig. 7), we predict n ¼ 2.3/4.0 ¼ 0.57 for batch 1

and rough BC and n ¼ 2.93/5.75 ¼ 0.51 for batch 2 and smooth

BC. These exponents are in very good agreement with those

extracted from the best HB fits of the flow curves, n ¼ 0.53. It is

also quite remarkable that the values of sc inferred from our

fitting procedure of s(s)f (sc ¼ 28.3 and 28.1 Pa, Fig. 2) coincide

with those of the best HB fits (sc ¼ 27.8 and 30.4 Pa) to within

10%. As a consequence the HB models inferred from the fluid-

ization times are undistinguishable from the best HB fits of the

steady-state rheology provided l is left as a free parameter to

achieve the correct values of ~h from the prefactors A and B of the

two power laws. We get l ¼ 10.2 for batch 1 and 9.1 for batch 2,

which means that fluidization under a given s is roughly ten times

slower than fluidization under the corresponding _g. This differ-
ence most probably results from the fact that our YSF undergoes

a long-lasting slip regime under stress while the slip regime is

much shorter under imposed shear rate.

4.4.3 Discussion. Let us now further justify writing that the

two fluidization timescales s( _g)f and s(s)f are proportional. First, we

emphasize once again that both fluidization processes under

imposed shear rate and under imposed shear stress are rigorously

the same in that they present the exact same sequence of local

events. Second, although the first two steps of the fluidization

process, namely the homogeneous strain and the total wall slip

regimes, present a shorter duration in the case of applied shear

rate, the fluidization times are of the same order of magnitude for

both applied shear rate and applied shear stress. Third, a pro-

portionality law is the simplest link one can think of between two

timescales without artificially invoking another characteristic

time whose origin and interpretation would be unclear. The fact

that we can make any additional timescale irrelevant will be

confirmed in the next section.

Now, our interpretation of the HB exponent as the ratio of two

fluidization exponents allows us to revisit some recent observa-

tions. Indeed, quite similar results have been observed on acidic

solutions of type I collagen by Gobeaux et al.39 On the one hand,

the steady-state rheology of type I collagen molecules is well

described by a power law s¼K _gn, with nx 0.27, i.e. a HBmodel

with no yield stress. On the other hand, creep experiments have

revealed that the fluidization occurs after a lag time tc that scales

Fig. 7 (a) Flow curve s vs _g obtained by decreasing _g from 100 to 0.01 s

with a waiting time of 30 s per point for batch 1 and rough BC. The gray

line is the best fit by the HB model [Eqn (1)] with sc ¼ 27.8 Pa, n ¼ 0.53,

and ~h ¼ 11.3 Pa$s!n. The black dashed line is the HB model derived from

fluidization times with sc ¼ 28.3 Pa, n ¼ 0.57, and ~h ¼ 9.4 Pa$s!n (see

text). Inset: fluidization time s( _g)f vs _g in controlled shear rate experiments

for batch 1 in rough BC, fromDivoux et al.11 The line is s( _g)f ¼A/ _ga withA

¼ 472 # 11 and a ¼ 2.30 # 0.10. (b) Same as (a) for batch 2 and smooth

BC. The best HB fit (gray line) performed on 0.2 < _g < 100 s!1 yields sc ¼
30.4 Pa, n ¼ 0.53, and ~h ¼ 10.3 Pa$s!n and fluidization times (black

dashed line) lead to sc¼ 28.1 Pa, n¼ 0.51, and ~h¼ 11.7 Pa$s!n. The shape

of this flow curve for _g < 0.1 s!1 is typical of slip phenomena.36–38 Inset:

for batch 2 in smooth BC with e¼ 0.5 mm, the best power-law fit of s( _g)f vs

_g yields A ¼ 1375 # 46 and a ¼ 2.93 # 0.15.
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t(s)
f = b/(s �sc)

b
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t(s)
f = lt(ġ)f
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t(ġ)f = a/ġ a
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“Squishy” materials summary

heterogeneous flow homogeneous flow

field through an axial plane of the cell with a 0.125 mm axial
and 1.2 mm radial space resolution, and with !40 "m /s
typical standard deviation on velocity values. For each MRI
measurement, a new sample is loaded into the cell and pres-
heared at 150 s−1 for 5 min to have a controlled shear his-
tory of the sample. Subsequently, the globally imposed shear
rate is lowered to the one chosen for the experiment and the
sample is allowed 5 min to reach a steady state before the
MRI measurement is begun. Results for several imposed
shear rates are shown in Fig. 1. At 60 s−1 and above, no
shear banding is observed. Below 60 s−1 the shear rate is not
homogeneous but zero in some parts and high in others, and
while the fraction of the fluid that is sheared increases with
#̇global, #̇local in the flowing region is constant. Clearly, quite
distinct shear banding occurs even in a homogeneous stress
field. That the shear banding is uniquely determined by the
macroscopically imposed shear rate is shown in Fig. 2!a",
where the fraction of sheared material is given by a simple
lever rule: In the sheared region #̇local= #̇critical, and the frac-
tion sheared is given by f = #̇global / #̇critical #7$. The critical
shear rate can be extracted from Fig. 2!a" using both methods
and they both give #̇critical=60!1 s−1. Another important
observation is that the transition between the sheared and the
unsheared regions is very abrupt and the shear rate in the
sheared region is constant in space, which is incompatible
with a simple yield stress fluid behavior.

For micellar systems somewhat similar shear banding is
observed and well understood as a coexistence of two phases
in steady state coexistence—with viscosities differing by one
to two orders of magnitude #23,24$. Our system is distinctly

different in at least three aspects: !i" it is not in a steady state
at low and zero shear rates where it is aging; !ii" it has a
stress plateau between a low-viscosity branch and an infinite-
viscosity branch, that is, it has a yield stress; and !iii" micel-
lar systems are nonthixotropic in the sense that, given an
imposed shear stress !except the plateau stress", they end up
in the same final state independent of the initial state, but our
system is very strongly thixotropic in the sense that a given
imposed stress can result in completely different behavior
depending on the initial state of the fluid. Point !i" is dem-
onstrated in Fig. 5, point !ii" in Fig. 3, and point !iii" in Fig.
4. Hence the models for micellar fluids do not apply to our
system, which needs a new theoretical understanding, to be
provided below.

Although not exactly zero, the relative stress variation in a
4° cone-plate geometry is less than 0.005 and effectively
negligible !as shown by the constant shear rate in the sheared
band". In addition, results with an 8° cone-plate device !hav-
ing a stress heterogeneity four times as large" yielded similar
results, showing that the shear banding is not due to stress
heterogeneities. To understand shear banding in a homoge-
neous stress field, we develop a simple model to take into
account the interplay between viscosity, flow, and the colloi-
dal microstructure in the fluid. To qualitatively capture the
observed thixotropic behavior of the gel, we assume the fol-
lowing.

!i" In time the colloidal particles aggregate into fractal
clusters that are nondraining #25$; $=$!t" is then the “hy-
drodynamic” volume fraction determined by the aggregate
radius R!t", rather than the much smaller actual volume frac-
tion $0 of particles with radius R0. The number of fractal
aggregates decreases in inverse proportion to the aggregate
mass M %Rdf, while their hydrodynamic volume scales as
R3, so $!t" /$0= #R!t" /R0$3−df. Since df %3 it is clear that
continued aggregation will lead with time to a percolating
gel.
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FIG. 1. !Color online" Velocity profiles in a 4° cone-plate ge-
ometry for different globally imposed shear rates. Fluid velocity !a"
in rad/s and !b" normalized by the cone velocity.
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FIG. 2. !Color online" !a" The lever rule giving the fraction of
the fluid that is sheared and the shear rate in that fraction depending
on the critical shear rate. The data points are extracted from the fits
in Fig. 1. !b" Steady state flow curve as given by the model. The
branch to the right of the critical shear rate is stable while the
branch to the left is unstable.
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FIG. 3. !Color online" Steady state flow curves at imposed shear
rate and shear stress. As predicted by the model the experiments
coincide above the critical shear rate while they differ below—
showing a stress plateau and no flow, respectively. For imposed
shear rates below 20 s−1, the recorded stress value is not stable but
fluctuates, showing stick-slip behavior. This may be an indicator
that the width of the sheared band becomes as small as the steady
state cluster size in the band, leading to jamming. Note that here
and elsewhere the microscopic model is applied only to the liquid
phase, i.e., in steady state only above #̇c—also in the shear banding
regime. The arrow to the left indicates that for a stress 1% lower
than the critical stress the resulting shear rate is 2&10−7 s−1, which
is solid to the resolution of our rheometer.
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measured from atomic force microscopy, which will be referred

to as ‘‘smooth’’ in the following. Other polished Plexiglas rotors

of radii 24.55, 23.5 and 22 mm will be used to vary the gap width,

yielding respectively e ¼ 0.45, 1.5, and 3 mm.

Besides these smoothCouette cells, wewill briefly discuss results

obtained in a rough Couette cell (height 28 mm, rotating inner

cylinder radius 23.5 mm, fixed outer cylinder radius 24.6 mm, gap

width e ¼ 1.1 mm) where sand paper was glued on both shearing

surfaces to provide a roughness of 60 mm. Mixed boundary

conditions will also be tested in a Couette cell of height 28mm and

gap width 1.6 mm where only the rotating cylinder was covered

with sandpaperof roughness 60mmwhile thefixedouter cylinder is

the same as for smooth Couette cells. Finally, a rough plate-and-

plate geometry (radius 21 mm, gap width e ¼ 1 mm, roughness

162 mm) as well as a smooth aluminum cone-and-plate geometry

(radius 25 mm, cone angle 2") will be used to check for the rheo-

logical signature of transient shear banding in complementary

geometries.

Before starting an experiment, preshear is applied for 1 min at

+1000 s#1 and for 1 min at #1000 s#1 to erase the loading

history.47,48 The viscoelastic moduli are then monitored for

2 min. We found that both the elastic and the viscous moduli no

longer vary significantly after 2 min. Finally, the sample is left at

rest for 1 min to ensure that a reproducible initial state is reached.

The reader is referred to ref. 34 for more details about the

rheological protocol and the viscoelastic properties of our

samples at rest.

2.3 Ultrasonic velocimetry

In the Couette geometry, velocity profiles across the gap can be

recorded with a spatial resolution of 40 mm using ultrasonic

speckle velocimetry (USV). Full technical details about USV can

be found in ref. 46. Here, the sample velocity field is measured at

about 15 mm from the cell bottom simultaneously to the global

rheological response. This allows for a direct correlation between

time-resolved velocimetry and rheological data. The temporal

resolution depends on the imposed shear rate and varies from

about 50 s per velocity profile at the lowest shear rates ( _g( 0.5 s#1)

to less than 1 s for _g T 10 s#1.

3 Results

3.1 Herschel–Bulkley behaviour and homogeneous steady-state

velocity profiles

Before addressing the issue of transient fluidization, it is imper-

ative to check that our microgel samples behave as expected for

simple yield stress fluids, i.e. (i) that their steady-state flow curve

follows the Herschel–Bulkley model and (ii) that the steady-state

flow behaviour is characterized by homogeneous velocity profiles

consistent with the global rheological data. One way to perform

this check is to focus on local rheology by combining standard

rheology and velocimetry in order to plot the local flow curve s(r)

vs _g(r). Indeed, in the Couette geometry, the local stress reads:

sðrÞ ¼ s1

!
R1

R1 þ r

"2

; (2)

the stress at the rotor s1 being given by:

s1 ¼
G

2phR 2
1

; (3)

where G is the torque exerted on the rotor and h is the height of

the cell. On the other hand, the local shear rate can be directly

extracted from the velocity profiles through:

_gðrÞ ¼ #ðR1 þ rÞ v
vr

!
vðrÞ

R1 þ r

"
: (4)

The local flow curve can then be compared to the global flow

behaviour. Recently, such an analysis has been used to address

the link between local and global behaviours in various systems

ranging from emulsions20,21,49,50 and granular pastes51 to indus-

trial materials.52 In the case of a simple yield stress fluid and in

the absence of strong confinement, it is expected that the local

and global data collapse.50 In the following, we focus on the data

collected in the smooth Couette geometry of gap width e¼ 3 mm

since it presents the largest stress heterogeneity, i.e. the largest

range of local shear rates and stresses for a given applied shear

rate.

Fig. 1 gathers a few velocity profiles for e ¼ 3 mm obtained by

averaging over 100 to 500 individual velocity profiles in the

steady-state, i.e. when all the fluidization process that will be

described later is completed. Depending on the shear rate, this

average corresponds to a time span of 150 to 600 s and the

steady-state is reached after 10 to 103 s. In all cases, the steady-

state velocity profiles are homogeneous and do not present any

shear banding. The curvature of the velocity profiles for the

lowest shear rates is both due to the rather large stress variation

of about 25% from the rotor to the stator and to the proximity of

the yield stress. As the shear rate is increased and the shear stress

Fig. 1 Velocity profiles hv(r)i averagedover a timewindowof 150 to 600 s

in the steady-state regime for (a) _g¼ 0.7 s#1, (b) _g¼ 1.2 s#1, (c) _g¼ 3.0 s#1,

and (d) _g ¼ 6.0 s#1. The red solid lines are the velocity profiles predicted

using the Herschel–Bulkley behaviour derived from the global rheological

data of Fig. 2. The upper limit of the vertical scale corresponds to the rotor

velocity v0. Experiments performed in a smooth Couette cell of gap width

3 mm.
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Fig. 3. Distribution of shear-banding and homogeneous
regimes as a function of the apparent (macroscopic) shear rate
and the ratio of the two characteristic times of the material ac-
cording to the model (assuming γc = 1). According to various
observations (see text) attractive colloids, cement pastes, smec-
tite clays, etc., should be situated on the left of the diagram
while Carbopol gels, emulsions and foams would be situated
on the right.

of this shear-banding region, either by increasing µ/G, de-
creasing θ or increasing γ̇app, the thickness of the sheared
band increases and finally the flow becomes homogeneous.
These results may be represented in a two-dimensional
phase diagram (see fig. 3).

At this stage we have obtained two important results:
– A simple model with attractive links only is able to

reproduce the different flow types (shear-banding or
homogeneous flows).

– The transition from homogeneous flows to shear-
banding is governed by a parameter D which is the
ratio of two characteristics times of the material: the
“restructuring time” θ which relates to the kinetics of
the particle link restoration after breakage, and the
“relaxation time” µ/G related to the viscoelastic be-
havior of the material.

3 Comparison with experimental data

Due to the specific structure of concentrated emulsions,
foams or microgels the relaxation time and the restruc-
turing time of these materials have a similar physical ori-
gin related to the viscoelastic characteristic time µ/G: a
recovery of some deformation of an element within the
surrounding liquid and under the action of the neighbour-
ing elements acting on it. As a consequence we can expect
some similar values of these two characteristic times for
various such materials, leading to a value for D of the
order of 1. This is indeed what we find from literature
data. The restructuring time θ for such systems can be
estimated from measurements made [27] for foams, of the
characteristic times for T1 events associated with an el-
ementary unjamming event, which typically takes values

Fig. 4. Steady-state shear stress vs. shear rate for the pure
(circles) and loaded (grey squares) emulsions of [28]. The solid
lines correspond to the model fitted to data keeping the same
viscous term (k = 10.8 Pa s0.4, n = 0.4) with τc = 6.3 Pa and
θ/γc = 1 s for the pure emulsion; τc = 420 Pa and θ/γc = 10 s
for the loaded one.

below 1 s. Besides, for concentrated emulsions, microgels
or foams we have k/τc of the order of 1 (in proper units).
As a consequence, for these materials D is larger or very
close to Dc so that either there is no critical shear rate
or it is so small that under usual flow conditions γ̇ ≫ γ̇c

and there is no shear-banding. Such results are consistent
with the NMR observations of the effective flow curve (de-
termined from local velocity measurements) for a “pure”
concentrated emulsion [28], a Carbopol gel [8] and var-
ious home-made foams [29] (previous data on a specific
foam [30] were probably affected by experimental arte-
facts).

We can act on the restructuring process of the pure
emulsion by adding appropriate colloidal particles which
tend to create attractive links between the droplets [28].
There is now some significant restructuring process oc-
curring in the “loaded” emulsion as evidenced by the sig-
nificant increase of the elastic modulus over duration of
several hundreds of seconds. Thus here θ is much larger
than, say 10 s, and the parameter τc related to the strength
of the link is also larger than for the pure emulsion so
that we get D < 0.025, which predicts a strong shear-
banding effect in steady state. This result is in agreement
with experimental data [28]: the effective flow curve of
the loaded emulsion starts beyond a critical shear rate
but it is similar to that of the pure emulsion at suffi-
ciently large shear rates, when the additional restructur-
ing process becomes negligible. Note that these data were
obtained from direct MRI observations of the local flow
characteristics which provide the effective flow curve of
the material (shear stress vs. shear rate at different places
within the material), and not the apparent (macroscopic)
one which may suffer from interpretation bias. Finally our
model can quantitatively predict this transition from a

Coussot & Ovarlez, Eur. Phys. J E 33, 183-188 (2010)
Fall et al., PRL 105, 225502 (2010)

bridged emulsion

Bécu et al., PRL 96, 138302 (2006)

shear rate _!!x" according to
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2#hr2 and _!!x" # $r @
@x

v!x"
r
; (1)

where r # R1 % x. The resulting "!x" vs _!!x" data are
plotted in Fig. 5 and compared to the " vs _! data measured
by the rheometer (hereafter referred to as ‘‘engineering’’
data). For both emulsions the local flow curve deviates

strongly from the engineering flow curve which shows no
sign of a yield stress, at least in the investigated range of
shear rates. This is clearly due to wall slip, since the
engineering shear rate is estimated from v0 and may differ
from the actual shear rate in the bulk by orders of magni-
tude. When the local shear rate is considered, yielding is
easily evidenced.

However, the local flow curves for the two emulsions
have very different characteristics. In the case of the non-
adhesive emulsion, the "!x" vs _!!x" data can be accurately
fitted by the Herschel-Bulkley (HB) model [23]

"!x" # "0 % A _!!x"n; (2)

with a yield stress "0 # 58:0 Pa and a shear-thinning
exponent n # 0:45 very close to previous measurements
[15,21]. The very same parameters can further be used to
nicely predict the velocity profiles for all the investigated
shear rates above the yield stress. The solid lines in
Figs. 3(c) and 3(d) were obtained by combining Eqs. (1)
and (2) to get the following integral expression for the
velocity profile:

v!x"
R1 % x

# v2

R2
%
Z R2

R1%x

dr
r

!
!=!2#hr2" $ "0

A

"
1=n
; (3)

where v2 is the slip velocity at the outer cylinder of radius
R2 # R1 % e. The self-consistency of our data allows us to
conclude that the yielding transition in the nonadhesive
emulsion is continuous and follows the HB model.

The picture that can be drawn for the adhesive emulsion
is rather different. First, the existence of inhomogeneous
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FIG. 4. Velocity profiles in the adhesive emulsion for
(a) v0 # 0:49, (b) v0 # 0:98 (&), 1.17 (!), (c) v0 # 1:47
(&), 1.96 (!), and (d) v0 # 4:78 (&), 9.78 (!), and
19:5 mm s$1 ("). Arrows indicate the wall velocity v0. The
solid lines correspond to solid body rotation in (a) and to the
Herschel-Bulkley model with "0 # 88:9 Pa, A # 11:0, and n #
0:41 in (d) [see Eq. (3)].
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FIG. 5. Local flow curve "!x" vs _!!x" (!) compared to the
engineering flow curve ("). (a) Nonadhesive emulsion. The
solid line is the best fit by the Herschel-Bulkley model with
"0 # 58:0 Pa, A # 11:4, and n # 0:45. (b) Adhesive emulsion.
The shaded area indicates the range of stresses where inhomoge-
neous flows are observed. The solid lines are the Herschel-
Bulkley model with "0 # 88:9 Pa, A # 11:0, and n # 0:41
(lower curve) and with "0 # 115 Pa, A # 5:8, and n # 0:41
(top curve).
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FIG. 3. Velocity profiles in the nonadhesive emulsion for
(a) v0 # 0:98, (b) v0 # 1:47, (c) v0 # 1:96, and (d) v0 # 2:94
(&), 4.90 (!), and 9:79 mm s$1 ("). Arrows indicate the wall
velocity v0. The solid lines correspond to solid body rotation in
(a) and (b) and to the Herschel-Bulkley model with "0 #
58:0 Pa, A # 11:4, and n # 0:45 in (c) and (d) [see Eq. (3)].
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where r # R1 % x. The resulting "!x" vs _!!x" data are
plotted in Fig. 5 and compared to the " vs _! data measured
by the rheometer (hereafter referred to as ‘‘engineering’’
data). For both emulsions the local flow curve deviates

strongly from the engineering flow curve which shows no
sign of a yield stress, at least in the investigated range of
shear rates. This is clearly due to wall slip, since the
engineering shear rate is estimated from v0 and may differ
from the actual shear rate in the bulk by orders of magni-
tude. When the local shear rate is considered, yielding is
easily evidenced.

However, the local flow curves for the two emulsions
have very different characteristics. In the case of the non-
adhesive emulsion, the "!x" vs _!!x" data can be accurately
fitted by the Herschel-Bulkley (HB) model [23]

"!x" # "0 % A _!!x"n; (2)

with a yield stress "0 # 58:0 Pa and a shear-thinning
exponent n # 0:45 very close to previous measurements
[15,21]. The very same parameters can further be used to
nicely predict the velocity profiles for all the investigated
shear rates above the yield stress. The solid lines in
Figs. 3(c) and 3(d) were obtained by combining Eqs. (1)
and (2) to get the following integral expression for the
velocity profile:

v!x"
R1 % x

# v2

R2
%
Z R2

R1%x

dr
r

!
!=!2#hr2" $ "0

A

"
1=n
; (3)

where v2 is the slip velocity at the outer cylinder of radius
R2 # R1 % e. The self-consistency of our data allows us to
conclude that the yielding transition in the nonadhesive
emulsion is continuous and follows the HB model.

The picture that can be drawn for the adhesive emulsion
is rather different. First, the existence of inhomogeneous
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FIG. 4. Velocity profiles in the adhesive emulsion for
(a) v0 # 0:49, (b) v0 # 0:98 (&), 1.17 (!), (c) v0 # 1:47
(&), 1.96 (!), and (d) v0 # 4:78 (&), 9.78 (!), and
19:5 mm s$1 ("). Arrows indicate the wall velocity v0. The
solid lines correspond to solid body rotation in (a) and to the
Herschel-Bulkley model with "0 # 88:9 Pa, A # 11:0, and n #
0:41 in (d) [see Eq. (3)].
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 nonadhesive        vs      adhesive emulsion

(cyanoacrylate) glue that wrinkles upon drying; gluing a
layer of micrometric beads onto the surfaces had similar
efficiency for suppressing slip.

For the pure emulsions, the flow is homogeneous even
for the lowest shear rates (Fig. 7) and in the small-gap cell
used here. This is nontrivial; in [12] for small gaps shear
banding always happens due to a flow-concentration cou-
pling, however others state that this need not necessarily
happen [13]. Our data show that with the correct boundary
condition, the shear banding effect may be suppressed
completely in a simple emulsion. For the thixotropic emul-
sions, on the other hand, as soon as the applied shear rate is
below the critical one, we clearly observe localization, in
agreement with detailed MRI experiments [14].

In sum, our detailed study of thixotropic and normal
yield stress fluids in a single system shows that a careful
distinction needs to be made between thixotropic and ideal
yield stress materials [1–5,15]. Thixotropy is due to the
existence of a microstructure that confers elasticity and
hence a yield stress to the material. However, more often
than not, such structures are modified by the flow, leading
to a yield stress that depends on the (shear) history. There
are few yield stress materials that do not show thixotropy;
so far ideal yield stress behavior has been reported for
(stable) foams, emulsions and carbopol suspensions [4].
These are all materials for which the yield stress is due to
repulsions between bubbles, droplets and swollen microgel
particles, respectively: there is no percolated structure in
these materials that is destroyed by the flow. It follows that
for ideal yield stress materials, static and dynamic yield
stresses are the same, as is evident from the coincidence of
the up-and-down stress sweeps in Fig. 2. Hence, there is no
problem in defining the yield stress. For thixotropic yield
stress materials, the static yield stress will depend on time,
due to the aging of the microstructure. The dynamic yield
stress, on the other hand, is a material parameter: the

up-and-down stress sweep of Fig. 4 corresponds to the
steady states of the curves of Fig. 5 and hence do not
depend on time. The observation that we can reach a steady
state immediately implies that the competition between
shear-induced breakup and spontaneous buildup of the
microstructure at rest results in a steady-state structure
that is independent of the (shear) history of the sample,
in agreement also with the results of a number of model
calculations and simulations on glassy systems [16]. The
dynamic yield stress is then the lowest stress for which
such a steady state can be reached, and is then a time- and
preparation independent material parameter. In a shear-
banded situation, there could still be a perhaps undetect-
ably small time dependence due to the aging of the
nonflowing part of the sample, which certainly evolves
with time. In this case, the dynamic yield stress would in
fact be time independent only in theoretical models for
ideal equilibrium glasses [17]. However, in practice the
time dependence, if present, is so small that it is undetect-
able. Thus, although indeed there is a problem defining a
static yield stress for thixotropic systems, the dynamic
yield stress appears to be a well-defined material property.
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FIG. 7 (color online). Direct visual observation of the shear
localization in the two emulsions at 0:025 s!1 imposed in a
cone-plate geometry for: the pure emulsion (blue squares) and a
1% loaded emulsion (red circles). Measurements started after
shear rate was imposed for 900 sec (strain " 2250%). It took
around 2400 sec to get a complete velocity profile (strain "
6000%). Some local rearrangements make that the average
velocity is nonzero in the almost quiescent region for the
thixotropic system.
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I. Surfactant solutions
from gradient banding to elastic turbulence to vorticity banding

II. Yielding in soft glassy (“squishy”) materials
from steady shear localization to critical-like fluidization dynamics
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III. What about dense suspensions?
similarities and differences with other complex fluids 



What is a “dense suspension”?

suspensions involve 
non-Brownian 
particles (?)

“dense” = concentrated enough to 
lead to non-Newtonian behaviour (?)



The flow of dense colloidal “dispersions”

no yield stress

hard-sphere-like dispersions (e.g. stabilized PMMA particles ∅ < 1μm) 

0.494 0.545 0.7405 

crystal 
close 

packing 

liquid liquid 
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crystal 

Brownian 
hard spheres 

≈ 0.58 ≈ 0.64 
colloidal 

glass 

random 
close 

packing 

yield stress materials

Ackerson & Pusey,
PRL 61, 1033-1036 (1988)

oscillatory
shear

Chen et al.,
PRL 69, 688-691 (1992)

The results showed no systematic differences between these
protocols; stress-controlled measurements also showed no
significant changes.

For ! * !g, the bulk rheology is as previously re-
ported, Fig. 1(a), with flow curves of Herschel-Bulkley
(HB) form: !! !y / _"n, with n ’ 0:4–0:5. The strong
increase of !y with !, due to the vanishing of free volume
as ! ! 1 [30], is consistent with !yð!Þ ’ !0ð1!!Þ!p

with p ’ 3 and !0 ’ 0:01kBT=a
3, Fig. 1(b).

Until now, HB and similar monotonic flow curves for
glasses have not been linked to nontransient shear banding.
However, the underlying velocity profiles, shown in
Fig. 1(c) for zg ¼ 170 #m and ! ¼ 0:933, exhibit a
marked change when we decrease the imposed shear rate
_" ¼ R

_"ðzÞdz=zg (here _"ðzÞ % @zv). At large _", vðzÞ is
linear, but for _" ¼ 0:2 s!1 vðzÞ becomes highly nonlinear,
with an enhanced rate near the plate and a progressive
reduction towards the cone. For even smaller rates, _" &
0:05 s!1, the nonlinearity grows and _"ðzÞ decreases contin-
uously from a value ' _" near the plate to _"ðzÞ ’ 0 for
larger z. The width of the fluidized band appears to saturate
for low _" at (80a (not shown); we find no evidence for a
minimum strain rate in this band [31]. The behavior for zg ¼
60 #m and 90 #m is essentially the same. Such continu-
ously varying flow profiles strongly contrast with the distinct
solid and fluid bands in thixotropic yield-stress fluids [9,10].
HS glasses, which show only very weak aging of quiescent
properties [30], are thus distinct from such systems. Note
from Figs. 1(c) and 2(b) that vðzÞ has no unique ‘‘symme-
try’’: the fluidized band may appear near either the plate or

the cone. This rules out sedimentation or specific wall
rheology [15] as explanations [32]. The growth of the fluid-
ized band with _" also contrasts with the rate dependence (or
lack thereof) of the cooperativity length found in [15,20].
Next, we discuss the concentration dependence of the

observed behavior, Fig. 2. For both! ¼ 0:895 [just within
the glass, Fig. 2(a)] and for a much higher concentration
! ¼ 0:948, Fig. 2(b), we again observe a transition to a
nonlinear velocity profile as _" is lowered, but the shear rate
at which this occurs is, respectively, much smaller and
higher than for ! ¼ 0:933, Fig. 1(c). On decreasing _",
we define the critical shear rate, _"c, to be that point at
which the maximum deviation from linearity of the nor-
malized velocity profile, jvðzÞ ! _"zj=vcone, first exceeds
0.1. Results for the critical Péclet number, Pec ¼ _"c$B
(where $B ¼ 6%&sa

3=kBT is the Brownian time) are
shown as a function of ! in Fig. 3.
To begin to interpret our observations, we first show that

the observed velocity profiles can be reconciled with HB
behavior, simply by postulating a small concentration
variation '!ðzÞ across the gap. Writing the HB form as
_"$ ¼ ½ð!=!yð!ÞÞ! 1*1=n with !yð!Þ ¼ !0ð1!!Þ!3 as

before, we can then calculate vðz;!Þ ¼ Rz
0 _"ð "!þ

'!ðz0Þ;!Þdz0 for a given mean concentration "! and a
choice of '!ðzÞ. In Fig. 4(a) we do this for a uniform
gradient @'!ðzÞ=@z ¼ j'!j=zg with j'!j= "! ¼ 0:002, at

various values of the reduced stress !=!yð "!Þ. When !

approaches !yð "!Þ, vðzÞ changes from weakly to strongly
nonlinear, reflecting the progressive localization of shear
within regions of the sample with the lowest yield stress
!yð!ðzÞÞ, i.e., with the lowest !ðzÞ. These results strik-
ingly resemble the experimental data in Fig. 1(b), although
'! is too small to be directly measured [33]; different
symmetries of vðzÞ in other experiments can also be ex-
plained by corresponding changes in '!ðzÞ. Note that the
mean shear rate _" ¼ vðzg;!;!ðzÞÞ=zg differs from

_"ð!; "!Þ, but the effective flow curves !ð _";!ðzÞÞ deviate
only slightly from the uniform !ð _"; "!Þ; see Fig. 4(b).
While concentration gradients can thus account for the

results, their origin and the enhanced shear localization
with increasing "! remain to be explained. We now show
that both are explicable via the SCC instability scenario of
[22]. Fluctuations in concentration ('!) and shear rate
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(! _") evolve via the diffusion and Navier-Stokes equations,
in which shear-induced migration and the! dependence of
the shear stress must be included [22]. For small fluctua-
tions along z we have (to linear order in !!, ! _"):

@t!! ¼ " ~r # ~J ’ Mð"!@
2
z!!þ" _"@

2
z! _"Þ; (1)

@t! _" ¼ #"1@2z$ ’ #"1ð$!@
2
z!!þ $ _"@

2
z! _"Þ: (2)

Here we have introduced the shorthand " _" ' @"=@ _"j!,
likewise"!, $ _" and $!;M is a collective mobility and #

the density. The migration current ~J arises from particle
pressure gradients @z"ð!; _"Þ due to variations in both !
and _" [24,35]. The terms involving " _" and $! in Eqs. (1)
and (2) cause, respectively, particle migration towards
regions of low shear rate, and accelerated shear in regions
of low concentration; together, these amplify fluctuations.
That is, a fluctuation towards higher ! in some region
creates a lower shear rate there. This promotes inward
particle migration, giving a positive feedback effect. This
tendency is counteracted by the remaining terms which

describe stable diffusive spreading of both particles and
momentum (or equivalently shear rate). Rewriting Eqs. (1)
and (2) as @t#i ¼ Lij@

2
z#j with #i ¼ ð!!;! _"Þ, we see

that instability sets in when detLij ¼ Mð"!$ _" "
" _"$!Þ=# becomes negative, or equivalently, as first
derived in [22,35], when

F ' " _"$!

"!$ _"
> 1: (3)

To evaluate F, we first write the HB form for $ in terms of
the Péclet number Pe ¼ _"%B:

$¼ $0

ð1"!Þp ½1þ sð!ÞPen); sð!Þ ¼ Að1"!Þn: (4)

The first term is $y and n ’ 0:4–0:5, as before. Typical
values for A from our experiments are A ¼ 10–20. The
particle pressure " for HS colloids has a similar form:

"¼ "0!

ð1"!Þ ½1þgð!ÞPem); gð!Þ 'Bð1"!Þ1"r: (5)

Here,"0 ¼ 2:175&mkBT='a
3; the first term then approx-

imates the osmotic pressure at rest [36], the second term is
the contribution due to shear. For the latter, a Pe2 depen-
dence was found in [36,37], but this is restricted to a
linearly viscous regime ($ / Pe) at very small Pe, in which
Eq. (3) yields F / Pe2 resulting in stable flow. However,
this regime is hard to access, and indeed completely absent
when $y is nonzero (!>!g), where it is replaced by a
non-Newtonian regime in which both $ and " increase
sublinearly with Pe. From simulations for! & !g [24,37],
we extract m ¼ 0:4–0:5, (and B ’ 0:003, r ’ 3), so that
m ’ n, as also seen in simulations of 2D foams [38]. For
! * !g, and for glassy flow in general, we expect m and
n to remain similar (e.g., within mode coupling theory,
m ¼ n seems probable [19]).
Using Eqs. (4) and (5), we obtain a limiting value for F

at large Pe as F1 ¼ mðp" nÞ=nr. The flow is thus stable
in this regime provided r > p" n; to explain our experi-
ments we require r * 2:5. More interesting is the result for
small Pe, where we obtain

F ! Pem"n mpgð!Þ!
nsð!Þ ’ mpB!

nAð1"!Þrþn"1 ¼ F0: (6)

Here, F0ð!Þ is a quasiplateau value maintained while
Pem"n ’ 1 (and a true limiting value if m ¼ n). It follows
that homogeneous flow at low Pe is unstable for concen-
trations !>!c, where F0ð!cÞ ¼ 1. We argue that it is
this SCC-induced instability that creates the small varia-
tions !!ðzÞ that were assumed in Fig. 4(a), and which
account for the experimentally observed localized flow at
small _". Because, as in [22], our analysis is limited to
linear stability, we do not have a clear idea of the mecha-
nism limiting the growth of !!. However, the extreme
nonlinear dependence of both $ and " on ! as ! ! 1
makes it plausible that !! remains small.
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The results showed no systematic differences between these
protocols; stress-controlled measurements also showed no
significant changes.

For ! * !g, the bulk rheology is as previously re-
ported, Fig. 1(a), with flow curves of Herschel-Bulkley
(HB) form: !! !y / _"n, with n ’ 0:4–0:5. The strong
increase of !y with !, due to the vanishing of free volume
as ! ! 1 [30], is consistent with !yð!Þ ’ !0ð1!!Þ!p

with p ’ 3 and !0 ’ 0:01kBT=a
3, Fig. 1(b).

Until now, HB and similar monotonic flow curves for
glasses have not been linked to nontransient shear banding.
However, the underlying velocity profiles, shown in
Fig. 1(c) for zg ¼ 170 #m and ! ¼ 0:933, exhibit a
marked change when we decrease the imposed shear rate
_" ¼ R

_"ðzÞdz=zg (here _"ðzÞ % @zv). At large _", vðzÞ is
linear, but for _" ¼ 0:2 s!1 vðzÞ becomes highly nonlinear,
with an enhanced rate near the plate and a progressive
reduction towards the cone. For even smaller rates, _" &
0:05 s!1, the nonlinearity grows and _"ðzÞ decreases contin-
uously from a value ' _" near the plate to _"ðzÞ ’ 0 for
larger z. The width of the fluidized band appears to saturate
for low _" at (80a (not shown); we find no evidence for a
minimum strain rate in this band [31]. The behavior for zg ¼
60 #m and 90 #m is essentially the same. Such continu-
ously varying flow profiles strongly contrast with the distinct
solid and fluid bands in thixotropic yield-stress fluids [9,10].
HS glasses, which show only very weak aging of quiescent
properties [30], are thus distinct from such systems. Note
from Figs. 1(c) and 2(b) that vðzÞ has no unique ‘‘symme-
try’’: the fluidized band may appear near either the plate or

the cone. This rules out sedimentation or specific wall
rheology [15] as explanations [32]. The growth of the fluid-
ized band with _" also contrasts with the rate dependence (or
lack thereof) of the cooperativity length found in [15,20].
Next, we discuss the concentration dependence of the

observed behavior, Fig. 2. For both! ¼ 0:895 [just within
the glass, Fig. 2(a)] and for a much higher concentration
! ¼ 0:948, Fig. 2(b), we again observe a transition to a
nonlinear velocity profile as _" is lowered, but the shear rate
at which this occurs is, respectively, much smaller and
higher than for ! ¼ 0:933, Fig. 1(c). On decreasing _",
we define the critical shear rate, _"c, to be that point at
which the maximum deviation from linearity of the nor-
malized velocity profile, jvðzÞ ! _"zj=vcone, first exceeds
0.1. Results for the critical Péclet number, Pec ¼ _"c$B
(where $B ¼ 6%&sa

3=kBT is the Brownian time) are
shown as a function of ! in Fig. 3.
To begin to interpret our observations, we first show that

the observed velocity profiles can be reconciled with HB
behavior, simply by postulating a small concentration
variation '!ðzÞ across the gap. Writing the HB form as
_"$ ¼ ½ð!=!yð!ÞÞ! 1*1=n with !yð!Þ ¼ !0ð1!!Þ!3 as

before, we can then calculate vðz;!Þ ¼ Rz
0 _"ð "!þ

'!ðz0Þ;!Þdz0 for a given mean concentration "! and a
choice of '!ðzÞ. In Fig. 4(a) we do this for a uniform
gradient @'!ðzÞ=@z ¼ j'!j=zg with j'!j= "! ¼ 0:002, at

various values of the reduced stress !=!yð "!Þ. When !

approaches !yð "!Þ, vðzÞ changes from weakly to strongly
nonlinear, reflecting the progressive localization of shear
within regions of the sample with the lowest yield stress
!yð!ðzÞÞ, i.e., with the lowest !ðzÞ. These results strik-
ingly resemble the experimental data in Fig. 1(b), although
'! is too small to be directly measured [33]; different
symmetries of vðzÞ in other experiments can also be ex-
plained by corresponding changes in '!ðzÞ. Note that the
mean shear rate _" ¼ vðzg;!;!ðzÞÞ=zg differs from

_"ð!; "!Þ, but the effective flow curves !ð _";!ðzÞÞ deviate
only slightly from the uniform !ð _"; "!Þ; see Fig. 4(b).
While concentration gradients can thus account for the

results, their origin and the enhanced shear localization
with increasing "! remain to be explained. We now show
that both are explicable via the SCC instability scenario of
[22]. Fluctuations in concentration ('!) and shear rate
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the shear zone are considered. Also, we work at gaps large
enough to avoid confinement effects [20].

We summarize our data by plotting z as a function of
ju!z"j for a wide range of f and !app (Fig. 1). In each plot, f
is fixed and flow profiles at different !app are compared.
For low !app, we observe a homogenous linear gradient in
the displacement amplitude of the crystal, ju!z"j# z for all
values of f [first two profiles in Figs. 1(a)–1(e)]. At higher
strains the crystal yields, and the flow profiles show a
surprising f dependence: for f < 3 Hz a region close to
the upper static plate exhibits a significantly larger strain
than that near the lower oscillating plate; this indicates
shear banding. The only observed difference in the struc-
tures of the two phases is a slightly larger interlayer sepa-
ration ($0:1 "m) in the flowing hcp phase [21]. The
highly strained portion of the sample increases with !app

[Figs. 1(a)–1(c)]. Moreover, the size of the highly strained
region increases with f. For f > 3 Hz the strain extends
across the whole sample [Figs. 1(d) and 1(e)]. While a
homogenous crystalline structure is unlikely to exist at
such high strains, it is not obvious if the profiles reflect a
homogenous response of a noncrystalline phase throughout
the gap or thin and thick shear bands corresponding to
crystalline and noncrystalline phases, respectively.

Finally, in all the profiles the displacement amplitude of
the oscillating plate (solid symbol) is larger than the am-
plitude of the colloidal hcp sheet adjacent to it (open
symbols). Hence there is slip between the plates and the
suspension. To characterize the slip, we define the strain
induced in the colloidal suspension as !ind %
&ju!top layer"j' ju!bottom layer"j(=L [22] and plot it ver-
sus !app for f % 60 Hz [Fig. 1(f)]. The lower slope char-
acterizing the points !ind & 0:1 indicates a greater fraction
of the applied strain is taken up by slip at low !app.

Shear banding is traditionally studied in samples under
steady shear. The standard argument is that shear banding
arises from a nonlinear, multivalued rheology [6–8]
[Fig. 2(a)]. Since flows where d#

d _! < 0 are unstable, non-
inertial homogenous flows with _!1 < _!app < _!2 must split
into bands with distinct values of _!, but identical stress
[Fig. 2(a)]. For oscillatory strain the stress must oscillate
and change sign. This has two consequences for the non-
linear model: first, since the high shear rate band continu-

ously changes between positive and negative values of _!,
the flow must exhibit discontinuous behavior during a full
period of oscillation. Second, any nonlinearity in # would
cause the displacement field to respond anharmonically. To
test the applicability of such models we measured the
temporal flow patterns of different layers in a highly
shear-banded flow [Fig. 2(b)]. Remarkably, the colloidal
sheets flow in a smooth sinusoidal fashion at the applied f
throughout the gap. This striking observation indicates
shear banding in our suspension does not reflect a non-
linear local rheology but rather, a linear yet nonuniform
response to shear that is characteristic of coexistence be-
tween two distinct phases [23].

To model the linear response at low !we note that at rest
the suspension forms a rhcp crystal. This phase remains
stable and occupies the entire gap for small strains !ind <
!yield, where !yield is the yield strain of the crystal. Previous
studies established that near equilibrium the crystal stress
can be modeled as a sum of viscous and elastic components
with effective viscosity $s and shear modulus G [24,25].
For larger strains !ind > !yield a second phase appears, in
which the hcp colloidal sheets flow freely over each other
signaling a vanishing shear modulus. We model this phase
as a Newtonian fluid with effective viscosity $f. At a given
f, the stress in both phases is linearly proportional to the
strain [Fig. 2(c)]. The linear rheology of both phases results
in harmonic stress response to oscillatory displacements,
consistent with the flow pattern in Fig. 2(b).

To account for slip, we also consider flows in the two
viscous solvent layers coupling the suspension to the shear-
ing plates. Since $0 ) $s, $f, the strain in the solvent
layers is much larger than in the suspension, leading to the
observed slip. For shear flow along x̂with gradient along ẑ,
the off-diagonal components of the stress tensor corre-
sponding to shear stress in the various phases are

 #s % G!s * $s _!s #f % $f _!f #b;t % $0 _!b;t;

(1)

where ! % @u=@z is the local strain. Here !s, !f, !b, and
!t represent time-dependent strains in the solid and fluid-
like phases, and bottom and top solvent layers, respec-
tively. Neglecting inertia, ! is uniform in each phase, and
#s % #f % #b;t. For a harmonic response, the coefficients

 

FIG. 1 (color online). Flow profiles for various values of !app and f. Figures (a)–(e) correspond to f of 0.02, 0.11, 0.5, 15, 60 Hz,
respectively. Shown are maximal displacements ju!z"j at several values of z (open symbols). All lengths are normalized by the gap
width L. For each profile, the point !ju!0"j; 0" represents the applied amplitude (solid symbols). (f) Plot of !ind vs !app for f % 60 Hz.
The shallow and steep solid lines are linear fits to the !ind < 0:1 and !ind > 0:1 data, respectively.
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What about dense non-Brownian “suspensions”?

no Brownian motion
⇒ no yield stress

see also Brown & Jaeger, Rep. Prog. Phys. 77, 046602 (2014)
Denn et al. Soft Matter 14, 170-184 (2018)

Fall et al., PRL 103, 178301 (2009)

also allows to tune the density difference. The error bar on
the density matching is of order 0:001 g ! cm"3, which is
rather good compared to previous experiments [4]. For
most experiments presented, the solvent is denser than
the particles, and the particles cream rather than sediment.

Macroscopic rheometric experiments are performed
with a vane-in-cup geometry (inner radius Ri ¼
12:5 mm, outer Re ¼ 18:5 mm) on a Bohlin 200 rheom-
eter. MRI rheometry is performed in a wide-gap Couette
geometry (Ri ¼ 41:5 mm, Re ¼ 60 mm). Local velocity
and concentration profiles in the flowing sample were
obtained through techniques described in detail in [19];
’ can be obtained with an accuracy of 0.2% by measuring
the local density of protons from thewater [5]. The velocity
profiles can also be measured [19,20]. For all experiments,
in order to avoid slip at the walls, sandpaper is glued on the
walls; on the velocity profiles there is no observable slip.

The MRI velocity profiles reveal an important difference
between suspensions that are density matched and those
that are not (Fig. 1). The latter shows marked shear banding
for the lowest!, that is not present for the density-matched
system. Since the shear stress varies in the Couette cell as
!ðrÞ ¼ !ðRiÞR2

i =r
2, the transition between flow and no

flow directly demarcates the yield stress [16].
Importantly, the experiments also indicate the existence
of a critical shear rate: the velocity profile falls down
abruptly to 0 with a slope different from 0 and the inter-
face; i.e., there is a shear rate discontinuity between the
sheared and the unsheared zone. This defines the critical
shear rate _"c & ð0:05' 0:02Þ s"1 below which no stable
flow exists.

Our observations point out for the first time that a slight
density mismatch has most probably been at the origin of
all previous observations of yield stresses and shear band-
ing in granular suspensions. Sedimentation or creaming
may lead to the creation of a dense zone in which the
particles are sufficiently densely packed that a yield stress
emerges. This is confirmed by our direct MRI measure-
ments of the density profiles of the density matched and
mismatched systems (Fig. 2).

We observe that the density-matched system is perfectly
homogeneous, but for "# ¼ 0:15 g ! cm"3 there is signifi-
cant creaming (under zero shear rate) with a velocity of the

order of 20 $m=s, leading to a material of 63% volume
fraction.
In the absence of flow there are no other interactions

between noncolloidal particles than contact interactions
and the existence of a yield stress can only be ascribed to
the formation of a jammed contact network: the yield stress
emerges around’ ¼ 63%. This directly shows that gravity
plays two roles: (i) it allows for the creation of this contact
network thanks to the creaming of the system; (ii) it pro-
vides the normal forces that are necessary to stabilize the
granular system. The latter observation solves the problem
of the observation of yield stresses without apparent nor-
mal forces [4]: the latter were in fact present due to a slight
density mismatch.
It turns out that when everything is flowing, the system

becomes homogeneous again: there is shear-induced re-
suspension of the particles [21] that creates normal forces
that in turn lead to a particle flux opposed to that of
creaming or sedimentation [6,9]. Therefore, in our system
the yield stress and critical shear rate are closely related,
and both find their origin in the gravitational forces. This
provides a theoretical limit for the emergence of a yield
stress, and also implies that shear banding appears when
normal stresses generated by the flow can no longer bal-
ance gravity forces. In dense suspensions, the normal
stresses are predicted to be of the same order of magnitude
and to diverge like the viscous shear stresses as the volume
fraction is increased [10]. The transition between the
sheared and unsheared zone should then correspond to a
simple balance between gravitational and viscous stresses:
% _" ¼ "#gR where % is the macroscopic viscosity of the
suspension. Interestingly, this analysis predicts that the
yield stress is accompanied by a shear-banding phenome-
non even in a homogeneous stress field, i.e., a critical shear
rate below which no flow is observed _"c ¼ "#gR=%, akin
to what is observed for thixotropic gels [8,11]. The critical
shear rate from the MRI is in very good agreement with the
simple theory we provide above. With % ¼ 1 Pa ! s, the
macroscopically measured viscosity of the paste, we find
_"c ¼ 0:03 s"1. Note, moreover, that (i) the predicted 1=%
scaling of _"c is in agreement with the findings of [4] who
varied the interstitial liquid viscosity over 3 decades, and
(ii) that by varying "# we show that the "# scaling is also
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also allows to tune the density difference. The error bar on
the density matching is of order 0:001 g ! cm"3, which is
rather good compared to previous experiments [4]. For
most experiments presented, the solvent is denser than
the particles, and the particles cream rather than sediment.

Macroscopic rheometric experiments are performed
with a vane-in-cup geometry (inner radius Ri ¼
12:5 mm, outer Re ¼ 18:5 mm) on a Bohlin 200 rheom-
eter. MRI rheometry is performed in a wide-gap Couette
geometry (Ri ¼ 41:5 mm, Re ¼ 60 mm). Local velocity
and concentration profiles in the flowing sample were
obtained through techniques described in detail in [19];
’ can be obtained with an accuracy of 0.2% by measuring
the local density of protons from thewater [5]. The velocity
profiles can also be measured [19,20]. For all experiments,
in order to avoid slip at the walls, sandpaper is glued on the
walls; on the velocity profiles there is no observable slip.

The MRI velocity profiles reveal an important difference
between suspensions that are density matched and those
that are not (Fig. 1). The latter shows marked shear banding
for the lowest!, that is not present for the density-matched
system. Since the shear stress varies in the Couette cell as
!ðrÞ ¼ !ðRiÞR2

i =r
2, the transition between flow and no

flow directly demarcates the yield stress [16].
Importantly, the experiments also indicate the existence
of a critical shear rate: the velocity profile falls down
abruptly to 0 with a slope different from 0 and the inter-
face; i.e., there is a shear rate discontinuity between the
sheared and the unsheared zone. This defines the critical
shear rate _"c & ð0:05' 0:02Þ s"1 below which no stable
flow exists.

Our observations point out for the first time that a slight
density mismatch has most probably been at the origin of
all previous observations of yield stresses and shear band-
ing in granular suspensions. Sedimentation or creaming
may lead to the creation of a dense zone in which the
particles are sufficiently densely packed that a yield stress
emerges. This is confirmed by our direct MRI measure-
ments of the density profiles of the density matched and
mismatched systems (Fig. 2).

We observe that the density-matched system is perfectly
homogeneous, but for "# ¼ 0:15 g ! cm"3 there is signifi-
cant creaming (under zero shear rate) with a velocity of the

order of 20 $m=s, leading to a material of 63% volume
fraction.
In the absence of flow there are no other interactions

between noncolloidal particles than contact interactions
and the existence of a yield stress can only be ascribed to
the formation of a jammed contact network: the yield stress
emerges around’ ¼ 63%. This directly shows that gravity
plays two roles: (i) it allows for the creation of this contact
network thanks to the creaming of the system; (ii) it pro-
vides the normal forces that are necessary to stabilize the
granular system. The latter observation solves the problem
of the observation of yield stresses without apparent nor-
mal forces [4]: the latter were in fact present due to a slight
density mismatch.
It turns out that when everything is flowing, the system

becomes homogeneous again: there is shear-induced re-
suspension of the particles [21] that creates normal forces
that in turn lead to a particle flux opposed to that of
creaming or sedimentation [6,9]. Therefore, in our system
the yield stress and critical shear rate are closely related,
and both find their origin in the gravitational forces. This
provides a theoretical limit for the emergence of a yield
stress, and also implies that shear banding appears when
normal stresses generated by the flow can no longer bal-
ance gravity forces. In dense suspensions, the normal
stresses are predicted to be of the same order of magnitude
and to diverge like the viscous shear stresses as the volume
fraction is increased [10]. The transition between the
sheared and unsheared zone should then correspond to a
simple balance between gravitational and viscous stresses:
% _" ¼ "#gR where % is the macroscopic viscosity of the
suspension. Interestingly, this analysis predicts that the
yield stress is accompanied by a shear-banding phenome-
non even in a homogeneous stress field, i.e., a critical shear
rate below which no flow is observed _"c ¼ "#gR=%, akin
to what is observed for thixotropic gels [8,11]. The critical
shear rate from the MRI is in very good agreement with the
simple theory we provide above. With % ¼ 1 Pa ! s, the
macroscopically measured viscosity of the paste, we find
_"c ¼ 0:03 s"1. Note, moreover, that (i) the predicted 1=%
scaling of _"c is in agreement with the findings of [4] who
varied the interstitial liquid viscosity over 3 decades, and
(ii) that by varying "# we show that the "# scaling is also
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FIG. 1. Dimensionless velocity profiles for steady flows of a
60% suspension, at various rotational velocities !. (a) "# ¼ 0;
the dashed line is the theoretical velocity profile for a Newtonian
fluid. (b) With "# ¼ 0:15 g ! cm"3.
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FIG. 2. (a) Radial concentration profile during flow for "# ¼
0:15 g ! cm"3. Inset: Vertical concentration profile during flow
for "# ¼ 0:0 g ! cm"3. (b) Time evolution of the concentration
under zero shear for the "# ¼ 0:15 g ! cm"3 suspension.
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PS spheres ∅ 40 μm

shear-thickening
is ubiquitous in dense suspensions

glass spheres ∅ 88-125 μm cornstarch

decreasing stress ramps at different ramp rates to check for
hysteresis, thixotropy, and transients. We used measure-
ments for different gap sizes to check for finite size effects,
and different plate surfaces to check for slip. No differ-
ences were found that are significant enough to affect the
conclusions presented here. Since glass spheres are denser
than mineral oil, measurements were performed in the
parallel plate geometry with a gap size of 0.5 mm to
minimize possible sedimentation effects. At this gap size
we confirmed the results are the same as in a density-
matched fluid.

Figure 1 shows stress vs shear rate traces for different
packing fractions. On a log-log plot a slope of 1 corre-
sponds to Newtonian flow (indicated by dashed lines for
reference), a slope between zero and unity corresponds to
shear thinning, while a slope greater than unity signals
shear thickening. The overall steepness of the traces within
the shear thickening region is seen to increase with ! and
to approach a vertical line where shear thickening becomes
discontinuous. Another feature is that shear thickening
occurs over an intermediate stress range that varies little
with packing fraction when the yield stress is well below
this range. For stresses either larger than the upper limit of
the shear thickening region or smaller than the shear thick-
ening onset, shear thinning behavior is observed. At lower
! the slopes gradually approach 1 at all stress ranges so
there is a gradual transition to Newtonian flow. The behav-
ior described above is similar to what has been found by
careful measurements in shear thickening colloids [26].
This is notable because it is usually assumed that
Brownian motion and electrostatics are important factors
in shear thickening [3]; both are insignificant for our larger
particles. At sufficiently large !, the traces exhibit a non-
zero stress value in the limit of zero shear rate, i.e., a yield
stress. Given a stress resolution around 10!2 Pa with our
rheometer, this is most clearly seen in the cornstarch data
where the yield stress is larger. The yield stress is seen to
encroach on the shear thickening stress range at high
packing fractions above which there is only shear thinning.

To quantify the stress-strain relationship in the shear
thickening region, we fit the traces locally to a power law

" / #1!$ which is equivalent to # / _%1=$ but it does not
diverge so it can be fit more conveniently. The parameter $
depends on the packing fraction and corresponds to the
inverse slope of the traces in Fig. 1. Newtonian flow
corresponds to $ ¼ 1, and a stress discontinuity corre-
sponds to $ ¼ 0. In Figs. 2(a) and 2(b), the $ values plotted
are from fits around the steepest portions of the stress-shear
rate traces. For both starch particles and glass spheres, $
approaches zero at a critical packing fraction !c where the
slope of the viscosity curve becomes divergent. Previous
reports have suggested there is a packing fraction above
which the stress-shear rate curve becomes discontinuous
[26], implying the possibility of $ ¼ 0 over a range of !.
However, the fact that $ only approaches zero at !c

suggests the discontinuity is better thought of as a limiting
behavior of shear thickening. The value of !c is obtained
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heterogeneous due to particle migration, and that consequently the macroscopic stress–
strain rate relationship cannot be directly related to the local constitutive behavior and
thus in particular to the shear thickening.

Here, we compare local and global measurements for what is perhaps the best-known
example of a shear-thickening suspension: cornstarch particles suspended in water. We
show that the shear thickening can in fact be viewed as a re-entrant solid transition in this
system: (i) at rest the material is solid because it has a (small) yield stress; (ii) for low
shear rates, shear banding (localization) occurs, and the flowing shear band grows with
increasing shear rate, the shear thus liquefies the material; (iii) shear thickening happens
at the end of the localization regime, where all the material flows, subsequently it sud-
denly becomes ‘‘solid’’ again. In addition, and (iv) we find a pronounced dependence of
the critical shear rate for the onset of shear thickening on the gap of the measurement
geometry, which can be explained by the tendency of the sheared system to dilate. This is
confirmed by an independent measurement of the dilation of the suspension as a function
of the shear rate. It also explains the MRI observations: when flow is localized, the non-
flowing region plays the role of a “dilatancy reservoir” which allows the material to be
sheared without jamming.

This paper follows up on our earlier work on shear thickening of cornstarch [Fall et al.
(2008)] but is much more detailed in that here we present also the MRI measurements of
the concentration, more detailed measurements of the velocity profiles, plate–plate meas-
urements, oscillation measurements and more detailed measurements of the variation of
the gap of the plate–plate cell under an imposed normal stress. In order for these new
data to be comprehensible, we do have to repeat some of the earlier data and discussion.
In this way, we obtain a more complete picture of the shear-thickening behavior.

II. MATERIALS AND METHODS

The cornstarch particles (from Sigma Aldrich) are relatively monodisperse particles
with, however, irregular shapes (Fig. 1). Suspensions are prepared by mixing the corn-
starch with a 55 wt. % solution of CsCl in demineralized water. The CsCl allows one to
perfectly match the solvent and particle densities [Merkt et al. (2004)]. We study suspen-
sions of volume fraction ranging between 38% and 46%, and focus here mainly on the

FIG. 1.Micrograph of the cornstarch particles.
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measured on the inner cylinder during a 3 min logarithmic
ramp of Ω (the inner cylinder rotation rate) from 5 × 10−2

to 2 × 103 rpm. Near the inner cylinder, the local stress is

τðRi;ΩÞ ¼ TðΩÞ=ð2πR2
i hÞ; ð1Þ

and the local strain rate is a priori unknown, but is
classically estimated as

_γðRi;ΩÞ≃ 2ΩR2
o=ðR2

o − R2
i Þ: ð2Þ

Combining Eq. (1) and (2) yields the apparent viscosity
η≡ τ=_γ vs _γ relation reported on Fig. 1(b). Note that at low
η macroscopic inertial effects may arise (Taylor-Couette
instabilities), which limit the accessible _γ range at low ϕ
values.
At low _γ, the response is clearly shear thinning. It crosses

over to CST around a characteristic strain rate _γCST defined
at that where η reaches a minimum. Viscosity jumps at
some higher strain rate _γDST, which characterizes the onset
of DST.
The classical estimate of _γðRiÞ as Eq. (2), which is based

on the Newtonian solution, remains unsatisfactory. An
exact expression exists so long as the material is homo-
geneous in the studied torque range

_γðRi;T0Þ ¼ 2
X∞

n¼0

!
T
dΩ
dT

"####
T¼T0½ðRi=RoÞ%2n

: ð3Þ

It cannot be used around the DST transition, however,
because the apparent singularity of dT=dΩ cannot be
resolved experimentally. Nevertheless, we have checked
that using the first two terms of Eq. (3) gives the same
qualitative behavior as in Fig. 1(b) up to DST. Wewill show
below that the flow does remain homogeneous below DST,
which allows us to use Eq. (3) to accurately compute the
_γCST and _γDST values that are reported on Fig. 1(c).
Interestingly, (i) at any volume fraction CST is always
observed before DST, and (ii) both _γCST and _γDST seem to
vanish around the same volume fraction ϕc which we
estimate to be ≈45% ≪ ϕRCP by linear extrapolation.
Now we turn to velocity-controlled MRI rheometry.

Our Couette cell has inner and outer radii Ri ¼ 3 cm and
Ro ¼ 5 cm (respectively) and inner cylinder height
h ¼ 11 cm. Both cylinders are roughened to avoid
slip, which we checked from velocity profiles. All experi-
ments discussed below are performed by preparing a
homogeneous material with mean volume fraction ϕ0 ¼
43.9% (experiments at 40%, 41%, and 42.5% show similar
features). Note that our MRI cell dimensions differ from
those of the cell used to obtain the macroscopic data of
Fig 1. Hence, to capture DSTwith this new cell, the range of
rotation velocities must be adapted: at ϕ0 ¼ 43.9%, we use
Ω values between 5 and 100 rpm. In each MRI experiment,
Ω is held fixed until steady state is reached.
Our MRI [13,23] provides the stationary packing frac-

tion ϕðr;ΩÞ and azimuthal velocity vðr;ΩÞ at any radial
position r. From the latter, we extract the local strain rate
_γðr;ΩÞ ¼ v=r − ∂v=∂r. We do not have access to torque
measurement. But, since the local stress is τðr;ΩÞ ¼
τðRi;ΩÞR2

i =r
2 in the Couette geometry, we can estimate

the local viscosity profile as

ηðr;ΩÞ ¼ τðRi;ΩÞ
_γðr;ΩÞ

R2
i

r2
ð4Þ

up to the unknown prefactor τðRi;ΩÞ.
In Fig 2, we plot the steady velocity and concentration

profiles thus measured for a few Ω values. Velocity is
normalized by its value at the inner cylinder.
For smallΩ values (5 and 7 rpm), we find that the density

profile is homogeneous while the flow extends throughout
the gap. It is known that non-Brownian suspensions may
slowly become inhomogeneous due to shear-induced
migration and sedimentation [13,14]. We checked that this
does not occur before strains larger than a few thousands,
which is much larger than the strain range over which we
collect data. Since density is uniform, we can access the
local rheology ηð_γ;ϕ0Þ as follows. For each Ω, matching
the single parameter τðRi;ΩÞ in Eq. (4) provides the
complete ηðr;ΩÞ profile, which can thus be plotted vs

FIG. 1 (color online). Macroscopic rheometry data. (a) Torque
T vs rotation rate Ω during a logarithmic ramp at various packing
fractions ϕ. (b) Apparent viscosity vs apparent shear rate
extracted from (a). (c) Critical shear rates _γCST and _γDST vs ϕ.
(d) Reversibility test at ϕ ¼ 43.9%: succession of up, down, and
up ramps.
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_γðr;ΩÞ. These values are compared in Fig. 3(a) with the
local rheology data obtained from macroscopic rheometry
using Eqs. (1) and (3) to evaluate the local stress and strain
rate near the inner cylinder. Clearly, in the shear-thinning
regime, the stationary local response within the gap
matches our macroscopic measurements.
This local homogeneous response is observed so long as

the maximal local strain rate, which is reached at the inner
cylinder, lies below the _γDSTðϕ0Þ value identified in macro-
scopic rheometry [Fig. 1(c)]. Homogeneity and locality
then enable us to estimate the critical rotation rate at which
DST is expected as ΩDSTðϕ0Þ≃ 8 rpm.
A sudden transition occurs as soon as Ω crosses

ΩDSTðϕ0Þ. As shown in Fig. 2(a), the flow then abruptly
stops in a large region. Namely, the velocity profile jumps
from one of the rightmost curves, corresponding to homo-
geneous flows, to the leftmost one, i.e., the most strongly
localized flow. Note that measuring a single velocity profile
requires accumulating MRI data over ∼30 s, which corre-
sponds here to a strain of order 50. Upon crossing

ΩDSTðϕ0Þ, the first measurable velocity profile is already
localized. The flow subsequently remains steady over
thousands units of strains. DST is thus clearly concomitant
with shear localization.
AsΩ increases further, the velocity profiles progressively

extend to the right (i.e., towards the outer cylinder). In all
cases, the system remains separated into a flowing layer near
the inner cylinder and a jammed region near the outer one.
The fractionof thegap that is jammed is reported onFig. 3(b):
it jumps at ΩDSTðϕ0Þ and then slowly decreases.
Comparing these velocity profiles [Fig. 2(a)] with local

density data [Fig. 2(b)], we find that, quite strikingly, the
flow localization at Ω ¼ 10 rpm≳ ΩDSTðϕ0Þ is associated
with the sudden emergence of density inhomogeneities.
Namely, the volume fraction decreases in the flowing layer,
while it increases in the jammed region, as required by the
conservation of particle number. As Ω increases beyond
ΩDSTðϕ0Þ, the progressive extension of the flowing layer is
accompanied by a broadening of the low-density region. At
high strain rates, the density saturates, in the flowing layer,
at a packing fraction ϕmin ≃ 33%≲ 35%≃ ϕRLP and, in
the jammed region, at ϕ ∼ ϕRCP. It is noteworthy that the
density profile can achieve multiple forms depending on
shear history [24].
Let us emphasize that the change of density created by

the DST transition is irreversible. Indeed, once a stationary
profile ϕðr;Ω1Þ had been produced by ramping Ω up to
some arbitrary Ω1 > ΩDST, we found that the density
profile remained the same under any subsequent lowering
of Ω. This irreversibility shows up in our macroscopic
rheometry setup (the small Couette cell) as illustrated in
Fig. 1(d) where we plot the torque T vs Ω during (i) an
initial up ramp that drives the system through the DST
transition followed by (ii) a down ramp. The torques
measured during the up and down ramps clearly lie on
different branches. However, if we subsequently (iii) rein-
crease Ω, torque TðΩÞ tracks the data previously obtained
on the down ramp. Hence, we reason that on the down (ii)

(a)

(b)

FIG. 2. Steady MRI data for a ϕ0 ¼ 43.9% cornstarch suspen-
sion and different rotational velocities Ω. (a) Velocity profiles.
(b) Density profiles; solid lines indicate ϕRLP and ϕRCP.

(a) (b)

FIG. 3 (color online). (a) Comparison of local rheometry data
obtained from MRI measurements (open symbols) and near the
inner cylinder in macroscopic rheometry (filled symbols) in
homogeneous conditions. Upper data: ϕ ¼ 43.9%; lower data:
ϕ ≈ 33.5%. (b) From the velocity profiles [Fig. 2(a)]: fraction of
the gap which is jammed vs Ω.
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_γðr;ΩÞ. These values are compared in Fig. 3(a) with the
local rheology data obtained from macroscopic rheometry
using Eqs. (1) and (3) to evaluate the local stress and strain
rate near the inner cylinder. Clearly, in the shear-thinning
regime, the stationary local response within the gap
matches our macroscopic measurements.
This local homogeneous response is observed so long as

the maximal local strain rate, which is reached at the inner
cylinder, lies below the _γDSTðϕ0Þ value identified in macro-
scopic rheometry [Fig. 1(c)]. Homogeneity and locality
then enable us to estimate the critical rotation rate at which
DST is expected as ΩDSTðϕ0Þ≃ 8 rpm.
A sudden transition occurs as soon as Ω crosses

ΩDSTðϕ0Þ. As shown in Fig. 2(a), the flow then abruptly
stops in a large region. Namely, the velocity profile jumps
from one of the rightmost curves, corresponding to homo-
geneous flows, to the leftmost one, i.e., the most strongly
localized flow. Note that measuring a single velocity profile
requires accumulating MRI data over ∼30 s, which corre-
sponds here to a strain of order 50. Upon crossing

ΩDSTðϕ0Þ, the first measurable velocity profile is already
localized. The flow subsequently remains steady over
thousands units of strains. DST is thus clearly concomitant
with shear localization.
AsΩ increases further, the velocity profiles progressively

extend to the right (i.e., towards the outer cylinder). In all
cases, the system remains separated into a flowing layer near
the inner cylinder and a jammed region near the outer one.
The fractionof thegap that is jammed is reported onFig. 3(b):
it jumps at ΩDSTðϕ0Þ and then slowly decreases.
Comparing these velocity profiles [Fig. 2(a)] with local

density data [Fig. 2(b)], we find that, quite strikingly, the
flow localization at Ω ¼ 10 rpm≳ ΩDSTðϕ0Þ is associated
with the sudden emergence of density inhomogeneities.
Namely, the volume fraction decreases in the flowing layer,
while it increases in the jammed region, as required by the
conservation of particle number. As Ω increases beyond
ΩDSTðϕ0Þ, the progressive extension of the flowing layer is
accompanied by a broadening of the low-density region. At
high strain rates, the density saturates, in the flowing layer,
at a packing fraction ϕmin ≃ 33%≲ 35%≃ ϕRLP and, in
the jammed region, at ϕ ∼ ϕRCP. It is noteworthy that the
density profile can achieve multiple forms depending on
shear history [24].
Let us emphasize that the change of density created by

the DST transition is irreversible. Indeed, once a stationary
profile ϕðr;Ω1Þ had been produced by ramping Ω up to
some arbitrary Ω1 > ΩDST, we found that the density
profile remained the same under any subsequent lowering
of Ω. This irreversibility shows up in our macroscopic
rheometry setup (the small Couette cell) as illustrated in
Fig. 1(d) where we plot the torque T vs Ω during (i) an
initial up ramp that drives the system through the DST
transition followed by (ii) a down ramp. The torques
measured during the up and down ramps clearly lie on
different branches. However, if we subsequently (iii) rein-
crease Ω, torque TðΩÞ tracks the data previously obtained
on the down ramp. Hence, we reason that on the down (ii)

(a)

(b)

FIG. 2. Steady MRI data for a ϕ0 ¼ 43.9% cornstarch suspen-
sion and different rotational velocities Ω. (a) Velocity profiles.
(b) Density profiles; solid lines indicate ϕRLP and ϕRCP.

(a) (b)

FIG. 3 (color online). (a) Comparison of local rheometry data
obtained from MRI measurements (open symbols) and near the
inner cylinder in macroscopic rheometry (filled symbols) in
homogeneous conditions. Upper data: ϕ ¼ 43.9%; lower data:
ϕ ≈ 33.5%. (b) From the velocity profiles [Fig. 2(a)]: fraction of
the gap which is jammed vs Ω.
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Fig. 4 Comparison of the rheograms—shear stress versus shear rate—
of a suspension of calcium carbonate at volume fraction ! = 60%
without dispersant (upper curve) and with each of the three polymers

them; the curve for PPP44 is slightly different with a yield
stress around 1 Pa and a smaller final viscosity. Also the
suspension is slightly shear thickening. It is worth noting
that if we decrease the concentration of polymer by a factor
of two, the yield stress remains low but the shear thickening
behavior is much larger.

At higher volume fraction and keeping a high concen-
tration of polymer: c = 0.2 wt% to be sure that we are
well on the adsorption plateau, we obtained the evolution
shown in Fig. 5 for the PCP45. At ! = 62% we observe
a quite strong shear thickening but the rheogram remains
smooth; at ! = 63% the slope is steeper and we begin
to observe a few sudden decrease of the shear rate; this is
amplified at 64% and finally at 65% we have the onset of
a negative differential viscosity followed by a quasi-vertical
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Fig. 5 Evolution of the rheology of the suspension of calcium carbon-
ate at different volume fractions adjuvanted with PCP45 at 0.2 wt%.
The increase of volume fraction goes from the right to the left

evolution corresponding to an infinite differential viscosity.
This behavior is rather different to the one observed on other
suspensions showing DST where, after the jamming transi-
tion, the differential viscosity recovers a value close to the
one observed before the DST (Pan et al. 2015).

All the suspensions were prepared in the same way: small
quantities (typically 50 g of CaCO3) were mixed on a vortex
during 5 min with the water adjuvanted by the fluidizer, then
the suspension was placed during 15 min in an ultrasonic
bath and still placed 5 min on the vortex. The more impor-
tant cause of uncertainty was the precision of the filling
process since the suspension must match as well as possi-
ble with the rim of the upper plate which is not so easy with
serrated plates. Possible drying on the edge of the plate can
also be a source of error so it was systematically checked by
repeating the same experiment as the first one from time to
time; if the result was different, another sample was loaded.
Another possible cause of error is due to the wall slip which
manifests by different rheological curves for different gaps;
in this case it is possible to remove the slipping velocity and
obtain the right shear rate (Chryss et al. 2005; Buscall 2010).
In our case we have done the experiments with PCP45 for
three different gaps: 0.5, 1, and 1.5 mm taking 10 curves for
each gap. The maximum difference between the three aver-
age values was of 13% and without tendency. As examples
we have shown the curves in Figs 6 and 7 for three differ-
ent gaps and two different molecules: PCP45 and PPP44. In
Fig. 6, up to the jamming transition, the curves are practi-
cally superposed; it is after the transition that the behavior
becomes quite different with amplitude of the fluctuations
which is much smaller for the gap of 0.5 mm than for the
two other ones. For the PPP44 the difference between the
curves obtained with different gaps is small and not contin-
uous with the gap since the lower curve corresponds to a gap
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which could explain the lowering of the critical stress with
the volume fraction. It should be possible to relate the shear
thickening behavior to the typical size of the clusters, but
the concentration of stress which will trigger the jamming
transition also strongly depends on the connectivity of the
particles inside the clusters (Bossis et al. 1991). For the
comb polymers, the transition is more abrupt because of the
softness of the repulsive barrier and so of the large change
of separation distance for a small increase of stress. A last
point to note is that the ratio of critical stresses (10) for
different polymers does not depend on the size of the par-
ticles since, whatever the polymer, the size of the particle
intervenes in the prefactor. This is also the case for a poly-
disperse suspension because the repulsive force between
two particles of radius Ri and Rj , in the Derjaguin approx-
imation (White 1983), as well as the Van Der Waals force,
are proportional to 2RiRj /(Ri + Rj ) instead of R in Eq. 9,
and the section for the stress on two particles will be simply
(Ri + Rj )

2 instead of 4 R2. So only the prefactor in Eq. 10
will contain the radii of the particles. It will be different for
a polydisperse suspension but remains as a prefactor which
will disappear if we are dealing with the ratio of critical
stresses between different fluidizer molecules. Of course, it
is not the case for the absolute value of the critical stress
which varies as 1/R for monodisperse suspensions or in a
more complicated way for polydisperse suspensions, but not
difficult to express if the size distribution is known. The
question of the influence of the irregular shape is of the same
nature as the polydispersity since these will be the local cur-
vature radii around the contact zones instead of the radii of
the particles which will come into account and here too it
will affect the absolute value of the critical stress but not the
comparison of the critical stress between different polymers.

Oscillation regime above the critical stress

Above the jamming transition, strong oscillations of the
stress are observed if the shear rate is imposed (Lootens
et al. 2003) or of the shear rate if it is the stress which
is imposed. This is also the case in yield stress fluids at
low shear rate after yielding (Nagahiro et al. 2013) In yield
stress fluids different models can predict these oscillations
by introducing a “structure variable” whose time evolution
is coupled to the shear rate (Nagahiro et al. 2013; Lopez-
Lopez et al. 2013; Head et al. 2002). These oscillations are
usually interpreted as resulting from an instability related to
the negative differential viscosity which appears in the form
of an S shape in the stress versus shear rate curve. In our
suspension we observe strong oscillations of the shear rate
above the jamming point as can be seen in Figs. 6 and 7 for
a ramp of stress. If we impose a constant stress above the
critical one, then we obtain a series of regular oscillations

as the one presented in Fig. 17 for an imposed stress of 50
Pa just above the jamming transition. These oscillations are
very regular and characteristics of a kind of stick-slip behav-
ior with an asymmetric shape made of a progressive increase
of shear rate followed by an abrupt decrease during the jam-
ming phase. This kind of regular oscillation with an abrupt
decrease of the shear rate was already reported (Larsen et al.
2014) on suspensions in water of polystyrene particle coated
with Pluronic F-68 surfactant. Note that in our case it even
presents a negative part meaning that the upper plate is rotat-
ing back a short moment after the jamming. The red dots in
Fig. 17 represent the evolution of the normal stress, which is
constant and close to zero except during a short time of 0.01
to 0.02 s where we have a positive peak of normal force.

As previously described (Larsen et al. 2014) the inertia
can strongly modify the real stress applied on the suspen-
sion since, when the percolated network suddenly blocks the
rotation, the inertia term Id2θ /dt2 gives an additional torque
which can be much higher than the applied one. Including
the inertia we have the following equations of motion:

I

C
γ̈ (t) = σa(t) − η(f (t))γ̇ (t) or σs(t) = σa(t)

− I

C
γ̈ (t) = η(f (σs))γ̇ (t) (11)

C = πR4/2h is a constant relative to the plate-plate geom-
etry with a gap h and a radius R. and σs is the real stress
applied on the sample which includes the contribution of the
inertial one. The total inertia of the tool and motor was I =
9.36 ×10−5 kg m2 and the constant C = 2.51 ×10−4. We
have introduced a dependence of the viscosity in a structure
variable f (t) instead of the shear rate, since, as we have seen
before, the onset of jamming is not related to a critical shear
rate but rather to a critical stress itself related to a critical
fraction of frictional contacts. As shown by the simulations
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stress. These suspensions present a strong DST transition
with an important decrease of the shear rate at a critical
stress. Knowing the main characteristic of the polymer and
the ionic content of the suspension we shall compare the
repulsive force to the one applied on the suspension by the
shear in order to evaluate the critical stress for DST. These
theoretical values will be compared with the experimental
ones for the three molecules we have used. In the last section
we shall present a model to explain the origin of a regular
stick-slip behavior observed when the stress is maintained
at a constant value just above the critical one.

Materials

The suspension we have chosen is made of commercial
calcium carbonate particles (BL200 from Omya). Calcium
carbonate particles are used industrially to coat paper; they
are also used as a filler to improve the mechanical proper-
ties of thermoplastics. In our case this mineral was chosen
as a model of more complex materials like cement where
the interactions between the calcium ions and the polyelec-
trolytes play a major role to reduce the yield stress and
facilitate the flow of cement paste and concrete. The rhe-
ology of suspensions of CaCO3 in water was previously
studied in the presence of sodium polyacrylate as dispersant
(Deng et al. 2010) and also in the context of shear thick-
ening by Egres and Wagner (2005). In this last case the
particles were acicular and dispersed in polyethylene glycol
and the emphasis was on the effect of different aspect ratios
on shear thickening and DST. The shape of our particles is
irregular but more or less rhomboidal as can be seen on the
picture (Fig. 1) obtained by electronic microscopy. In Fig. 2,

Fig. 1 MEB view of calcium carbonate particles

Diameter (µm)
0.1 1 10 100

%

0

5

10

15

20

25

30
% Number (MEB)
% Volume (L.S.) 

Fig. 2 Size distribution obtained by counting the particles above 1µm
from MEB pictures and from light scattering (L.S.) with Mastersizer
2000 from Malvern

the size distribution in volume obtained by light scattering
(with the Mastersizer 2000) is represented by the open tri-
angles; it shows two populations, one of them being formed
by particles of diameter below 1 µm. The second curve with
solid diamonds was obtained by classifying 350 particles
from MEB pictures. We found a proportion of about 30%
of particles smaller than 1 µm which we did not take into
account because, as we shall see later, the jamming transi-
tion is related to the formation of a percolation network of
particles pushed again each other by the shear force. The
smallest particles can occupy the spaces between large ones
and furthermore the shear forces between particle scales as
the square of their radii so they will likely not be directly
involved in the balance of forces which will allow to deduce
a critical shear stress The average size of particles above 1
µm is 5.5 µm. We did not use the size distribution obtained
by light scattering because the change to a number distri-
bution is not guaranteed at all, especially with particles of
irregular shape with two modes in the size distribution.

The density of the particles was 2525 kg/m3 and the mea-
surement of their specific surface by BET gave 0.88 m2/g.
The dispersant molecules were two comblike polymers
called PCP45 and PCP114 with a polymethacrylate back-
bone and side chains made of polyethylene oxide (PEO) and
a small molecule where the backbone was replaced by a
polyphosponate group and called PPP44. The numbers 45,
114, and 44 in the name indicate the number of units in the
PEO chain. The average number of monomers between two
side chains was n = 5 both for PCP45 and PCP114.

The three molecules are represented in Fig. 3. The molar
mass of a PEO chain with P = 45 units was 1804 g/mol and
the PCP45 has n = 10 side chains with a total molar mass

Stick-slip-like oscillations in shear-thickening

PS particles ∅ 5.8 μm calcium carbonate ∅ 5.5 μm

competition between dilatancy

and wall slip through

flow-concentration coupling

coupling between elasticity of

the frictional particle network

and instrument inertia
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Fig. 1 (Color online) Flow curves from stress-controlled experiments.
Values of (a) ηapp and (b) Napp

1 tend to increase with σ , revealing shear
thickening and dilatancy, respectively. (c) A plot of ηapp as a func-
tion of γ̇app reveals discontinuous shear thickening. Data are shown
for spherical particles at volume fraction ϕ = 57.3 % (diamonds, gap
height, d = 1,050 µm), ϕ = 58.3 % (squares, d = 950 µm), ϕ = 59.4 %
(triangles, d = 1,000 µm). For 0.1 Pa < σ < 45 Pa, data points from
are taken from the second series of ascending (closed symbols) and
descending (open symbols) stress steps performed after the loading
of the sample. This regime exhibits gradual shear thickening. A sub-
sequent series of ascending stress steps (solid symbols) between σ =
45 Pa and σc (vertical lines) reveal a regime of more extreme shear
thickening, or dilatancy. The dilatant regime persists to higher stresses,
as revealed by step stress tests at 200, 400, and 600 Pa (solid symbols)

Because some of our samples exhibit irreversible changes
in ηapp during the experiments, we are careful to perform the
same experiments on all samples in the same order and with
the same timing parameters. Comparisons between samples
are obtained by comparing experiments performed at simi-
lar time points. This is particularly important for comparing
experiments at higher values of σ where more solid-like
behavior is observed.

Moderate stress: onset of solid-like behavior

The transition to solid-like behavior is probed with series of
ascending steps in σ beginning at σ = 45 Pa. Each value
of σ is applied for 6 s, and values of γ̇app are calculated
by averaging the rate of rotation during the final 4 s of the
stress step. These measurements show a continuation of the
plateau in ηapp until σ reaches a critical value, σc, where
there is a second increase in ηapp. For the spherical particles
shown in Fig. 1, σc = 99 Pa for ϕ = 57.3 and 58.3 %, and
σc = 67 Pa for ϕ = 59.4 % (shown by the vertical lines in
Fig. 1(a)).

Near this transition, we visually observe large fluctua-
tions in the rate of rotation of the upper plate. For some
samples, not shown here, we removed the solvent trap to
directly observe the sample. In this regime, the surface of
the sample becomes more matted and solid-like in appear-
ance (O’Brien and Mackay 2000; Cates et al. 2005; Brown
and Jaeger 2012) In some samples, generally those consist-
ing of spherical particles, cracks form on the surface of the
sample, and portions of the sample churn out of the rheome-
ter (Franks et al. 2000). To avoid significant irreversible
changes in the sample, the experiment is stopped after sev-
eral data points are acquired at σ > σc in the solid-like
regime.

High stress: solid-like flow

We then perform a different type of experiment to probe
material properties at values of σ that are significantly
higher than σc. This consists of a series of stress steps in
which σ is varied in a regular pattern of 200, 400, 200, and
600 Pa. Each value of σ is applied for approximately 2 s,
and the pattern is repeated four times. By probing the values
σ = 400 and 600 Pa rapidly, we are able to minimize the
irreversible changes to the sample due to the high stresses.
Moreover, by frequently returning to the same values of σ

throughout the experiment, we are able to monitor the sever-
ity of the time-dependent changes and to distinguish them
from the σ -dependent changes. Because significant fluctu-
ations are present in this regime, a high sampling rate of
the angular position is necessary for accurate measurements
of angular velocity. We resolve the fluctuations in time by
monitoring the angular displacement at a rate of 250 points
per second, using a raw data collection tool provided by the
manufacturer of the rheometer (Larsen et al. 2010). A back-
ward derivative of this data is used to calculate an apparent
shear rate, γ̇app. We then calculate an average apparent shear
rate, ¯̇γapp, by averaging γ̇app over the entire σ step. We
also calculate an apparent viscosity, ηapp, for each σ step,
from the ratio σ/ ¯̇γapp. For clarity of presentation, we plot
in Fig. 1 only the values of ηapp from the first series of
stress steps that consists of the pattern 200, 400, 200, and
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Fig. 3 Time dependence of (a) apparent shear rate, γ̇app, and (b) sam-
ple stress, σS , during the application of constant stress, σ = 140 Pa,
during an ascending stress step experiment on spherical particles at ϕ
= 59.4 %. During each rapid deceleration of the rheometer, the sam-
ple adsorbs significant inertial stress from the rotating rheometer. Each
time the rheometer subsequently accelerates, it moves along the same
line in the space (γ̇app, σs), as shown in (c). This near-Newtonian line
corresponds to the time-averaged measurements of γ̇app and σ pro-
vided by the rheometer in the range of 10 Pa < σ < σc, as shown by
the diamond symbols. Following acceleration, the rheometer does not
reach a steady rate of rotation. Values of σS remain below the applied
stress, σ = 140 Pa, shown by the horizontal line in (c), until another
rapid deceleration occurs, thereby starting the cycle again

persistent values of low γ̇app corresponds to a significant
increase in the value of N

app
1 that is measured by the

rheometer (Fig. 1(a)). We therefore associate the low γ̇app
values with the dilatant regime. For this reason, we con-
clude that the temporary periods of solid-like behavior
observed during the fluctuations are transient manifestations
of dilatancy.

Slip analysis

To investigate the extent to which spatial heterogeneities
may be responsible for the observed temporal fluctuations,

Fig. 4 Time dependence of (a) apparent shear rate, γ̇app, and (b) sam-
ple stress, σS , during the application of constant stress, σ = 180 Pa,
during an ascending stress step experiment on spherical particles at ϕ
= 59.4 %. During each of the five rapid deceleration events shown,
the sample adsorbs significant inertial stress from the rotating rheome-
ter. Each time the rheometer subsequently accelerates, it moves along
the same line in the space (γ̇app, σs), as shown in (c). This line corre-
sponds to the time-averaged measurements of γ̇app and σ provided by
the rheometer in the range of 10 Pa < σ < σc, as shown by the dia-
mond symbols. Following acceleration, the rheometer does not reach a
steady rate of rotation. Values of σS remain below the applied stress, σ
= 180 Pa, shown by the horizontal line in (c), until another rapid decel-
eration occurs, thereby starting the cycle again. The large fluctuations
persist for approximately the first 0.5 s of the σ step, after which the
sample transitions to a persistent state of dilatancy, characterized by
smaller fluctuations

we measure the flow curves of one of our samples (spheri-
cal particles at ϕ = 58.3 %) at gap heights, d, of 1250, 950,
750, and 550 µm. In the gradual shear thickening regime
for σ < 10 Pa, values of ηapp are consistent for all gap
heights, as shown in Fig. 5(a). At higher σ , samples at all
d exhibit a plateau in ηapp. In this region, the plateau values
of ηapp increase with increasing d. This indicates that the
assumption of homogeneous flow in the gap is violated in
this portion of the flow curve.



Unstable dynamics during shear-thickening

Rathee et al., PNAS 114, 8740-8745 (2017)

⇒ is unsteadiness inherent to the flow of dense suspensions?  While the jamming events in region B are sparsely dis-
tributed and seem to occur randomly in time, they become
very regular with a well-defined frequency at r ! 0:2p?, re-
gime C Fig. 2(f). This is visible macroscopically as periodic
jerks of the rheometer top plate. The minimum shear rate
reached during a jamming event is variable, Fig. 2(c), while
the shear rate in the flowing state is approximately the same
and corresponds to the right-hand limit of the horizontal lines
in Fig. 2(f). These oscillations remain over long times and
only change over the course of hours (presumably as the
sample dries out). The frequency of the oscillations increases
linearly with the applied stress, Fig. 3(a). Each sudden
decrease in _c is accompanied by a localized deformation of
the air-sample interface. A small area of the interface compa-
rable to the gap height bulges out slightly, while the sur-
rounding area curves slightly inward. The interface recovers
a smooth profile as the plate accelerates back to the steady-
state value. Note that these localized jams are not an artifact
of the cross-hatched plates; they start to appear at the same
stresses with smoother surfaces, albeit in the presence of sig-
nificant wall slip, as well as in Couette geometries [Fig.
4(b)].

In region D, Fig. 2(f), periodic jamming coexists tempo-
rally with bursts of unpredictable fluctuations, as shown in

Fig. 2(e). During the periodic intervals, the air-sample inter-
face behaves the same as in region C, with short-lived, static
jammed regions appearing at the same time as the drop in
shear rate. During the random bursts, more irregular surface
deformations are observed that are long lived and move
around the interface opposite to the direction of flow [see
Figs. 3(b)–3(d)]. Usually, only one or two transient deforma-
tions appear during each intermittent event and disappear
when the periodic oscillations resume.

At the highest stresses r=p? ! 1, in region E, Fig. 2(f), the
periodic jamming and unjamming are absent, and only
random-looking fluctuations are observed, Fig. 2(e). This
behavior, and the series of events at lower stresses that pre-
cede it, are similar to the development of rheochaos as
observed in micellar systems [2]. We leave it to future work
to establish whether the flow is really chaotic in a technical
sense; for our purposes, what matters is that it is unsteady,
not readily predictable, and without obvious periodic fea-
tures. In region E, the first normal stress difference is perma-
nently large and positive and anticorrelated with the shear
rate. Very recently, unstable flow, sudden jams and a transi-
tion to what appears to be rheochaos have been observed in
2D computer simulations of inertial frictional grains [22].
Although the origin of the sigmoidal flow curves is different,

FIG. 2. (a)–(e) Apparent shear rate as a function of time for increasing stress, on the left y axis. The thin black lines show the normal pressure nf/rxy on the
right y axis. (f) Apparent shear stress as a function of rim shear rate _cR in absolute and reduced units for corn starch at a mass fraction of /w¼ 0.52, corre-
sponding to a volume fraction just above /m in WC theory. Horizontal lines: raw _cR data at different applied rxy in the stable (dark blue), periodic (red), inter-
mittent (green), and chaotic (cyan) regimes. Symbols: average _cR.
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viscosity, ⌘, as a function of the applied shear stress, �, is strongly
non-Newtonian for concentrations �=Vp/V > 0.3, where Vp

and V are the total particle volume and the system volume,
respectively (Fig. 1A). When � = 0.35, we observe moderate
shear thinning for �< 10 Pa followed by a Newtonian plateau
and finally, shear thickening, indicated by a small increase in
⌘ above an onset or critical shear stress �c (Fig. 1A, white cir-
cles). For concentrations of �� 0.5, strong thinning is followed
by an increase in the plateau viscosity, and above �c , ⌘ scales
with an exponent � (⌘ _ ��) that increases with � (Fig. 1A). As
previously reported, �c does not show significant concentration
dependence (7, 13, 21). For this system, we observe discontinu-
ous thickening �=1 at �=0.58; here, we focus on concentra-
tions below this value.

Although the temporally averaged response provides a bulk
picture of CST, the time-resolved rheology reveals substan-
tial fluctuations. Fig. 1B shows the strain rate reported by the
rheometer as a function of time for suspensions at �=0.56 with
a constant applied stress for 180 s. The fluctuations represent
variations in the shear rate as the rheometer adjusts the rota-
tion rate of the cone that defines the upper boundary of the sus-
pension to maintain a constant total stress. For stresses below
the onset of shear thickening, �c ⇠ 50 Pa, fluctuations are nearly
absent (Fig. S2). We observe that, as the stress is increased above
�c , the rapid increase in the viscosity is associated with a marked
increase in the magnitude of the fluctuations (Fig. 1B). Below
�< 0.54, we do not see any fluctuations in �̇ (Fig. S3), although
⌘ does increase substantially above �c .

BSM
In addition to measuring the system-averaged viscosity vs. time
under constant stress, we measure the spatially resolved bound-
ary stresses at specific locations in the rheometer using BSM.
The deformations of the elastic substrate arise from the stresses
exerted by the suspension at the boundary, �b · n̂ , where �b is the
suspension stress tensor evaluated at the boundary with the sub-
strate, and n̂ is the normal to the boundary surface. We report
the component of the boundary stress �b · n̂ in the velocity (x
direction) represented as �x .

Below the onset of shear thickening, the displacements of the
elastic substrate and therefore the calculated boundary stresses
are spatially and temporally uniform. However, above �c and
for concentrations �� 0.52, we observe the appearance of local-
ized surface displacements that are much higher than the average
displacement.

Fig. 1C shows an example of the spatial map of the com-
ponent of the boundary stress in the velocity direction calcu-
lated from the measured displacement fields. The field of view
is 890⇥ 890 µm2, and the regions of high stresses are large com-
pared with the particle size. Moreover, the total area imaged rep-
resents 0.16% of the total surface area of the system, indicating
that the spatial scale of the stress variation is much smaller than
the scale of the lateral system size (25 mm). Images at higher
spatial resolution do not reveal any significant stress variations
on smaller length scales down to our instrumental resolution of
⇠ 2 µm (20).

The regions of high stress at the boundary appear with increas-
ing frequency as the applied stress is increased above �c . This
increase can be clearly seen in a time series of the average
stress in each image (Fig. 1D). At applied stresses just above
�c , most images do not exhibit high-stress regions and thus, have
a small average stress. High-stress fluctuations are clearly sep-
arated from the smooth background and appear intermittently
separated by large quiescent periods. Even the relatively short
regions of low stress evident in the data at �= 500 Pa indi-
cate a large number of strain units without high-stress fluctua-
tions, such as can be seen by plotting the average stress vs. strain
rather than time (Fig. S4). Significant local stress fluctuations are
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Fig. 1. Rheological and BSM measurements of sheared suspension. (A) Vis-
cosity vs. stress flow curves for suspensions of different concentrations �
with the approximate shear-thickening exponent �. (B) Time dependence
of the viscosity while shearing at constant applied stress (�= 0.56). (C) Snap-
shot of the component of the boundary stress in the velocity direction cap-
tured at �= 0.56 and � = 1,000 Pa. (D) Time series of average stress per
frame from BSM (�= 0.56). The same colors refer to the same stress values in
B and D.
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viscosity, ⌘, as a function of the applied shear stress, �, is strongly
non-Newtonian for concentrations �=Vp/V > 0.3, where Vp

and V are the total particle volume and the system volume,
respectively (Fig. 1A). When � = 0.35, we observe moderate
shear thinning for �< 10 Pa followed by a Newtonian plateau
and finally, shear thickening, indicated by a small increase in
⌘ above an onset or critical shear stress �c (Fig. 1A, white cir-
cles). For concentrations of �� 0.5, strong thinning is followed
by an increase in the plateau viscosity, and above �c , ⌘ scales
with an exponent � (⌘ _ ��) that increases with � (Fig. 1A). As
previously reported, �c does not show significant concentration
dependence (7, 13, 21). For this system, we observe discontinu-
ous thickening �=1 at �=0.58; here, we focus on concentra-
tions below this value.

Although the temporally averaged response provides a bulk
picture of CST, the time-resolved rheology reveals substan-
tial fluctuations. Fig. 1B shows the strain rate reported by the
rheometer as a function of time for suspensions at �=0.56 with
a constant applied stress for 180 s. The fluctuations represent
variations in the shear rate as the rheometer adjusts the rota-
tion rate of the cone that defines the upper boundary of the sus-
pension to maintain a constant total stress. For stresses below
the onset of shear thickening, �c ⇠ 50 Pa, fluctuations are nearly
absent (Fig. S2). We observe that, as the stress is increased above
�c , the rapid increase in the viscosity is associated with a marked
increase in the magnitude of the fluctuations (Fig. 1B). Below
�< 0.54, we do not see any fluctuations in �̇ (Fig. S3), although
⌘ does increase substantially above �c .

BSM
In addition to measuring the system-averaged viscosity vs. time
under constant stress, we measure the spatially resolved bound-
ary stresses at specific locations in the rheometer using BSM.
The deformations of the elastic substrate arise from the stresses
exerted by the suspension at the boundary, �b · n̂ , where �b is the
suspension stress tensor evaluated at the boundary with the sub-
strate, and n̂ is the normal to the boundary surface. We report
the component of the boundary stress �b · n̂ in the velocity (x
direction) represented as �x .

Below the onset of shear thickening, the displacements of the
elastic substrate and therefore the calculated boundary stresses
are spatially and temporally uniform. However, above �c and
for concentrations �� 0.52, we observe the appearance of local-
ized surface displacements that are much higher than the average
displacement.

Fig. 1C shows an example of the spatial map of the com-
ponent of the boundary stress in the velocity direction calcu-
lated from the measured displacement fields. The field of view
is 890⇥ 890 µm2, and the regions of high stresses are large com-
pared with the particle size. Moreover, the total area imaged rep-
resents 0.16% of the total surface area of the system, indicating
that the spatial scale of the stress variation is much smaller than
the scale of the lateral system size (25 mm). Images at higher
spatial resolution do not reveal any significant stress variations
on smaller length scales down to our instrumental resolution of
⇠ 2 µm (20).

The regions of high stress at the boundary appear with increas-
ing frequency as the applied stress is increased above �c . This
increase can be clearly seen in a time series of the average
stress in each image (Fig. 1D). At applied stresses just above
�c , most images do not exhibit high-stress regions and thus, have
a small average stress. High-stress fluctuations are clearly sep-
arated from the smooth background and appear intermittently
separated by large quiescent periods. Even the relatively short
regions of low stress evident in the data at �= 500 Pa indi-
cate a large number of strain units without high-stress fluctua-
tions, such as can be seen by plotting the average stress vs. strain
rather than time (Fig. S4). Significant local stress fluctuations are
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Fig. 1. Rheological and BSM measurements of sheared suspension. (A) Vis-
cosity vs. stress flow curves for suspensions of different concentrations �
with the approximate shear-thickening exponent �. (B) Time dependence
of the viscosity while shearing at constant applied stress (�= 0.56). (C) Snap-
shot of the component of the boundary stress in the velocity direction cap-
tured at �= 0.56 and � = 1,000 Pa. (D) Time series of average stress per
frame from BSM (�= 0.56). The same colors refer to the same stress values in
B and D.
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localized stress fluctuations

giant stress fluctuations

Lootens et al., PRL 90, 178301 (2003)

increase defines a new transition, from the shear-thinning
liquid regime to a jammed state. Jamming appears at
lower stress (or strain) when the volume fraction in-
creases. At high concentration of particles, the liquid
domain disappears, and it becomes impossible to distin-
guish between the gel and the jammed phase. Within
experimental uncertainties, the boundary between liquid
and jammed states does not change when the size of the
particle varies [Fig. 1(a)] and cannot be rescaled the same
way as the stress at the gel/liquid boundary was. This
implies that the stress at which jamming transition occurs
does not rely upon thermal fluctuations on the length
scale of the particles, but that jamming is essentially a
geometrical transition, governed by the free volume of
the suspension.

Let us now apply a constant shear rate. In the ‘‘liquid’’
phase, the stress is well defined and fluctuates around
a mean value, with Gaussian noise of small ampli-
tude [Fig. 2(a)]. Then, when one reaches the transition
shear rate between the liquid and the jammed states, the
stress distribution is no longer Gaussian but assumes an
extreme-value distribution statistics. Nevertheless, the
probability distribution function of the stress exhibits a
well-defined maximum. The most probable stress value
continuously increases as _!! is increased while the ampli-
tude of the fluctuations increases [Fig. 1(b)]. It thus exists
a well-defined low-viscosity branch of flow from which
fluctuations develop. The amplitude of the largest fluctu-
ations may be 10 times higher than the most probable
stress value. The stress distribution function exhibits a
very long power-law tail [Fig. 2(b), from _!! ! 190 to
780 s"1]. At higher strain rates, the fluctuations are cut
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FIG. 2. (a) Time evolution of stress for four different imposed
shear rates (from bottom to top: 80, 190, 1000, and 2200 s"1

(right axis)] of 700 nm particles at a volume fraction of 43%.
For _!! ! 1000 s"1, we indicate the mean stress value and the
width of the Gaussian noise. (b) Probability distribution func-
tions of stress for different shear rates (left to right: 80, 190,
480, 780, 1000, 1200, 1400, 2200 s"1). The fit of the Gaussian
fluctuations is indicated on the 190 and 1000 s"1 curves
(dashed line).
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FIG. 1. (a) Dynamic phase diagram for five particle sizes
[400 nm (!), 700 nm ("), 1 "m (#), 1:5 "m ($), and
2:5 "m (%)]. Filled symbols delimit the gel from the liquid
states, whereas hollow symbols define the liquid from jammed
phases boundary. Inset: boundary between the gel and liquid
states, in adimensional stress units, #a3=kBT. (b) Stress, #, vs
shear rate, _!!, for a suspension of 700 nm particles at $ ! 43%.
Filled symbols are mean stress values, and hollow symbols are
stress most probable values (they cannot be distinguished from
each other for _!! # 300 s"1). The line is a power-law fit of the
average stress in the liquid regime, leading to # / _!!0:63.
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More questions about dense suspensions

⇒ do dense suspensions show vorticity banding?

⇒ back to colloids: role of attractive interactions? link with yield stress?

non-glassy hard-sphere colloids also show shear-thickening

Pednekar et al., Soft Matter 13, 1773-1779 (2017)

Frith et al., J. Rheol. 40, 531-548 (1996)

Gopalakrishnan & Zukoski et al., J. Rheol. 48, 1321-1344 (2004)

but shear-thickening is lost when a yield stress builds up due to attraction

Cates et al., J. Phys.: Condens. Matter 17, S2517 (2005)
Wyart & Cates, PRL 112, 098302 (2014)

so far, no experimental evidence
for steady vorticity bands
Pan et al., PRE 92, 032202 (2015)

III. RESULTS

Figure 1 shows flow curves measured at different mass
fractions, /w (see caption), reported as the reduced shear
stress r/p?, versus the reduced shear rate, _cgs=p?. Here, p? is
the onset pressure for the formation of frictional contacts,
related to the onset stress through r? ¼ lð/Þp?, see Sec. IV.
(Note that we control the shear stress, plotted on the vertical
axis, and measure the shear rate, on the horizontal axis.) At
/w < /w

c $ 0:465, we observe continuous shear thickening
(CST) above an onset pressure p?¼ 20.0 6 5 Pa to a high-
viscosity quasi-Newtonian state (blue curves in Fig. 1). The
steepness of the shear-thickening part of the flow curve
increases with /w until, at /w

x ; d _c=dr ¼ 0 beyond which the
sample discontinuously shear thickens. In contrast to the
continuous case, where the flow is steady throughout the
flow curve, we now observe large shear-rate fluctuations
above the critical stress, resulting in considerable spread in

the data. These fluctuations are also present in constant stress
experiments (as shown in Fig. 2) and remain present for long
times (at least 30 min). Such large fluctuations arise as soon
as the measured flow curve starts bending backwards.
(Hence, there is no inconsistency in the apparent negative
slopes of the empirical, averaged, “flow curves.”)

Just above /w
c [black curve, Fig. 1(a), measured between

hatched parallel plates], there is a narrow concentration
range in which the system can reach a flowing quasi-
Newtonian state at high stresses, as previously reported [20],
although we observe severe deformations of the meniscus in
this regime. Above a second critical concentration /w

m
$ 0:47 [red curve, Figs. 1(a) and 1(b)], no such quasi-
Newtonian regime is found even at the highest observable
stresses; instead the flow is always erratic. We observe very
similar behavior in a Couette geometry, Fig. 1(b). These
time-averaged observations map rather directly onto the WC
theory of steady-state shear thickening if we identify /w

c
with /c, the point where sigmoidal flow curves emerge, and
/w

m with /m, the jamming point for frictional particles. On
the other hand, the theory does not capture the magnitude of
the shear thickening completely, most likely due to the wide
size and shape dispersity in corn-starch, or nonhard interac-
tions, which also give rise to a small yield stress (not
shown).

Significant differences between experiments and theoreti-
cal expectations (see Sec. IV) arise for / > /m. Here, WC
theory leads us to expect that no steady flow is possible
above a threshold of stress, even with shear bands present,
because there is no upper branch to the flow curve. However,
at low stresses, steady flow is possible on the lower branch,
but beyond it, the only steady state either has coexistence of
low and high stress bands, both at _c ¼ 0, or is jammed
homogeneously (again with _c ¼ 0). Thus, one might expect
the system to be able to support a relatively modest static
load without flowing at all.

However, these WC scenarios refer to steady states.
Experimentally, we find instead that the system does flow at
high stresses in this regime, but flows unsteadily. The phe-
nomenology of this “unexpected” flow at / > /m is com-
plex. To begin to explore it, Fig. 2(f) shows the time-
averaged flow curve, as well as the measured fluctuations, in
a sample at /w¼ 0.50, corresponding to a volume fraction
just above /m. At the lowest applied shear stresses, r< 0.lp?,
the shear rate fluctuates only a little around a well-defined
average [see Fig. 2(a)]. The axial stress measured on the top
plate, N, is close to the noise level of the transducer [21].
The meniscus at the air-sample interface remains smooth,
shiny, and undisturbed. We observe a drift in the shear rate
after long times (hours), presumably due to particle migra-
tion, sedimentation, or evaporation.

For 0:1r? ! r ! 0:2p?, region B in Fig. 2(f), the flow is
steady for seconds, but is punctuated by sudden drops in
_cðtÞ; Fig. 2(b). We refer to these events as “jams,” and argue
that they are related to the formation of locally solid regions
within the suspension. During a jamming event, _c (purple
and red lines) drops rapidly, with a concomitant positive
spike in the axial stress (black lines), before increasing
slowly back to the steady-state value.

FIG. 1. (a) Apparent shear stress rxy vs rim shear rate _c for corn-starch sus-
pensions at mass fractions /w¼ 0.45, 0.46, 0.465, 0.47, 0.50, and 0.52 from
right to left. Data represent upward stress sweeps measured between hatched
plates. Stress is reported in Pa (right vertical axis) and in units of the onset
pressure for shear thickening, p?¼ 20.0 Pa (left vertical axis). Shear rate is
reported in s%1 (top horizontal axis) and reduced units _cgs=p? (bottom hori-
zontal axis). Dashed lines: prediction of Eq. (5) at different / (0.50, 0.525,
0.54, 0.565, 0.585, and 0.595) with /m¼ 0.55 and (/RCP¼ 0.66; these volume
fractions were chosen to match experimental data. (b) The same as above but
measured using a Couette geometry, mass fractions /w¼ 0.47, 0.50, and 0.53
from right to left. The dashed lines are predictions from theory for /¼ 0.49,
0.53, 0.545, 0.565, 0.595, and 0.615.
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⇒ can “full jamming” be observed in experiments?

⇒ role of particle-particle interactions and particle-surface interactions?

need for microscopic friction measurements Comtet et al., Nat. Comm. 8, 15633 (2017)
Clavaud et al., PNAS 114, 5147-5152 (2017)
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