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Leukocyte rolling in rat cremaster muscle  
(Courtesy Ingrid Sarelius, U. Rochester) 

Blood flow in the microcirculation 

  “Cell-free” layer 

  “Margination” of white blood 
cells and platelets 

  Plasma-skimming results in 
lower hematocrit in side-
braches 
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Size and deformability of formed elements in blood 

•  “Real-time deformability 
cytometry”: high-
throughput screen of 
whole blood. (Otto et 
al., TU-Dresden)  

(projected area) 

RBCs 

WBCs 

(Otto et al., Nature Methods 2015) 
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Related/prior studies of margination 

  Computational studies:  Gompper/Winkler, Aidun/Neitzel, 
Freund, Bagchi, Shaqfeh, Fogelson, Krüger, Karniadakis/
Caswell, Gekle…  
-  mostly focused on realistic treatment of blood: details 

for one parameter set, not trends as parameters vary 

Theory/mechanism 
-  Eckstein: phenomenological drift-diffusion equation 
-  Fogelson: extracting drift-diffusion parameters from 

simulations 
-  Shaqfeh: statistics of velocity fluctuations, master 

equation model for cell-free layer 
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•  Aims 
•  What factors (size, rigidity, shape…) affect migration and  

margination phenomena? 

•  What mechanisms underlie these phenomena? 

•  Approaches 
•  Direct simulations of idealized model cells/particles in 

confined flow: 
•  Suspensions, single particle and pair collision studies 
•  Effects of stiffness and size contrast 

•  Reduced models that capture essential mechanisms  

•  Experimental corroboration in blood  

Aims and approaches 
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Capillary Number 

Viscosity ratio 

Number fraction of  
particles  

Volume fraction 

µ γ w a
G

1=λ

φ

a

Confinement 
ratio 

 C = H / 2a

Stiff Particle:  G ↑ ↔ Ca ↓ 

Xf & Xs 

Flexible Particle:  G ↓ ↔ Ca ↑ 

(Xf + Xs = 1)  

Reynolds Number ρ γ w H
2

µ
<<1

Neo-Hookean 
membranes 

Binary suspensions: simulation 

2H 
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Red: Flexible     Blue: Stiff 

Cas = 0.2 
Caf = 0.5 
Φ = 0.2 
C = 5.08 
Xf = 0.8 

Stiff particles accumulate in the near wall region: margination 
à Substantial segregation can occur due only to stiffness 

contrast Kumar & G., PRE 2011 

Binary suspension in Couette flow, dilute in stiff 
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Red: Floppy     Blue: Stiff 

Cas = 0.2 
Caf = 0.5 
Φ = 0.2 
C = 5.08 
Xf = 0.2 

Flexible particles accumulate around the centerline: “demargination” 

Binary suspension in Couette flow, dilute in floppy 
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Small particles marginate 

Kumar, Henriquez & G. J Fluid Mech., 2014 

Binary suspension of large and small particles 

size ratio: S = 0.3 
confinement ratio: C = 5.08 
Xs = 0.1 
φ= 0.16 
Cas = Cab = 0.5 
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Cross-Stream displacement in pair collisions à shear-induced 
diffusion 

After Before Collision  
Δsf 

Δfs 

Wall-induced migration 
vm 

Key processes in suspension transport 

Leighton and Acrivos JFM 1987 
Smart and Leighton, Phys. Fluids 1991 

δ 
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Stiff 

Flexible 

Ca 

•  Cross-stream displacement is a weak function of 
Ca 

•  Stiff particles undergo larger cross-stream 
displacement 

•  Similar results occur for heterogeneity in size 
and shape 

•  Small particles displace more (at same Ca) 
•  Oblate (i.e. RBC-like) particles displace less 

at same equatorial radius  
Kumar & G. PRE 2011, Sinha & G. 2016 

Cross-stream displacements in pair collisions 

Homogeneous  
collision 

Heterogeneous  
collision 
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Migration velocity Collisional displacements 

Δ

 
 

vm 

y/2H 

�fs < �↵ < �ss < �sf

Stiff and flexible (δ<1): 

Big and little: 

Pair collisions and migration velocity 

Cas=0.2, Caf=0.5 Cas=0.2, Caf=0.5 

δ 

small<big 
stiff<flexible 
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pair collisions 

Kumar & G. PRL 2012, JFM 2014  

migration 

Master equation: migration and pair collisions 
cf. Zurita-Gotor et al. 2012, Narsimhan & Shaqfeh 2013, Qi & Shaqfeh 2017 

Ø  Numerical solutions are possible using deterministic 
(Shaqfeh) or stochastic methods (Blawzdziewicz, Kumar and 
G.) 

Ø  Simplifications are also possible…  
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Expand master equation for small Δ: 
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•  Good agreement with stochastic simulations of master equation 
•  Near-wall peak in primary ç nonlocal dependence of vd and D 

on n  

Xf=0.99 
φ=0.12 
 
 

Steady state (solve self-
consistently): 

Kumar, Henriquez & G. JFM 2014  

Nonlinear/nonlocal drift-diffusion equation 

nonlocal 
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•  Derived from master equation 
•  Binary suspension 
•  Primary (p) and trace (t) components: 

α = p or t 
•  Collisions dominated by primary – 

trace component is passive  
•  Local approximations in collision 

integral 

Henriquez, Sinha and G., PRL 2015 

Migration Collisional drift Shear-induced  
(collisional) diffusion 

By symmetry, collisional 
drift 
only arises from gradients 

Primary: 

Trace: 

Simplified drift-diffusion model 
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Start with 3D model. Assume homogeneity in z: 

Collision integrals: 

*                            For convergence we need a cutoff due to confinement 
or influence of a third particle. 

* 

Simplified drift-diffusion model: details 
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Simplified drift-diffusion model: simple shear 

Steady solution: 

migration ratio 

collisional transport ratio 

A discriminant for margination! 

•  M > 1: demargination 

•  0 < M < 1: weak margination 
•  no peak in profile 

•  -1 < M < 0: moderate margination 
•  peak at edge of depletion 

layer 

Analytically solvable model that captures key mechanisms and features of 
margination 

•  Blowup (no steady solution) 
when M < -1  

•  Strong margination 
•  all of trace component 

eventually drains into 
marginal layer 

•  strong prediction 

Margination regimes: 

•  M changes with   
rigidity ratio 

•  M  changes with        
size ratio 

Binary suspensions: 
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Master curve for cell-free layer thickness 

Theory captures dependence of cell-free layer thickness on confinement and 
concentration 

Relation between CFL thickness 
and average volume fraction can 
be written: 

This implies that with only one 
adjustable parameter    all CFL 
thickness data should fall onto a 
single master curve… 
(This works better than it should – 
captures tube flow results too) 
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⌘p CFL thickness from direct 
simulations, nonlocal kinetic theory, 
in vitro and in vivo experiments, and 
the master curve. In all cases   0.36 < ⌘p < 0.85
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Margination regimes, M > -1 

 Trace, M = 0  Trace, M = -0.5 

Trace,  M = 1 Trace,  M = 4 Primary 

Demargination à margination as M decreases 
Simplified model fails to capture near-wall peak in primary component 

Number density profiles 

 Trace, M = 0.4 
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•  For M < -1, trace component is 
completely removed from bulk:  
“drainage transition” 

•  For a rigid trace particle with 
deformable primary component 
M is always < -1 

•  Diffusion regularizes this but 
sharp change near M=-1 
remains 

•  Trace component evolves 
toward singular solution – spike 

•  Regularized by trace-trace 
collisions (infinitely dilute 
approx. fails) 

Centerline concentration vs. M 

“Drainage transition”, M < -1 

Time 
dependence 
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Drainage transition in simulations 

Drainage transition occurs with decreasing ratio of flexibility or size 

Centerline concentration vs. S or F Distribution of small in large Distribution of stiff in flexible 
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Poiseuille flow: kinetic theory model 
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Poiseuille flow: kinetic theory model 

Ø  Drift-diffusion model for Poiseuille flow 
Ø  Centerline terms required to prevent blowup 

cf. Miller & Morris, JNNFM 2006  
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Poiseuille flow: effect of confinement 
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As C increases: 
•  Depletion layer thickens (agrees with theory) 
•  Centerline peak increases 
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Poiseuille flow: drainage transition 
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Ø  Complete drainage of the bulk is again 
observed for M sufficiently negative 

0

2

4

6

8

10

-1.5 -1 -0.5 0 0.5 1 1.5

transition

drainage

ation

margin-

strong

margination

gination

demar-

�
tc
/

¯ �
t

Mw

C= 5.08

C= 10

C= 15

Concentration profiles Centerline conc. vs. M 



www.grahamgroup.che.wisc.edu 

Poiseuille flow: simulation results 

•  Centerline peak in primary – also a smaller peak near 
wall (nonlocal theory is required to capture this) 

•  Centerline peak in trace for F above drainage transition 
(predicted by model) 

•  Drainage transition appears 
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•  Segregation can occur by rigidity or size alone: 
-  In suspensions of primarily flexible/large particles, the stiff/

small particles marginate 
-  In suspensions of primarily stiff/small particles, flexible/large 

particles demarginate 

•  Model based on collisions and migration: 
-  Qualitatively reproduces detailed results 
-  Yields analytical discriminant for margination regimes based 

on migration and collisional displacement ratios 
-  Yields expression for cell-free layer thickness that fits 

simulation and experimental data 
-  Predicts drainage transition: regime of complete depletion of 

trace component from bulk 
-  verified in direct simulations 

-  Corroborates ex vivo experimental data  è  There is a 
biomechanical role for drugs in affecting leukocyte dynamics 
in blood 

Conclusions 
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•  More detailed experiments, especially re: parameter 
dependence 
Ø  E.g. perfect drainage is not seen in expts. with platelets (e.g. 

Shaqfeh group) 

•  Extensions of theory and simulations: shape effects, finite 
concentration, RBC aggregation, adhesion to surfaces 

•  Complex geometries: connections to Zweifach-Fung effect, 
separation methods 

•  Time-dependent flows – e.g. LAOS 

•  Physiological relevance e.g. for sickle cell disease 

 
 

Ongoing work… 
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Surfactant micelles 

cetyltrimethylammonium bromide 
(CTAB) 

www.commons.wikimedia.org/wiki/File%3AMicelle_scheme-
en.svg 

www.ethz.ch/ilw/vt/research/projects/vivianel 

cetylpyridinium chloride (CPyCl) 
cetyltrimethylammonium p-
toluenesulfonate (CTAT) 
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Surfactant solutions: applications and phenomena 

  Shear-thinning/thickening, flow-induced 
structure (FIS), shear-banding, etc. 

  Turbulent drag reduction 

  To study flow problems, we need a tractable 
constitutive model — like FENE-P for dilute 
polymer solutions Ohlendorf et al, Rheol. Acta 25 (1986) 

468 

 

District heating Fracking 
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Flow induced structures (FIS) 

Tuan et al, J Rheol. 61 (2017) 83 

 

Berret et al, Eur. Phys. J. E 2 (2000) 343 
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Reentrant/discontinuous behavior 

Liu & Pine, Phys. Rev. Lett. 77 (1996) 2121 

Hu et al, J. Rheol. 42 (1998) 1185 
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Shear banding vs. vorticity banding 

Dhont and Briels, Rheol. Acta 47: 257, 2008. 

Multiple shear  
rates for same 
shear stress 

Multiple shear  
stresses for same 
shear rate 
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Mechanism for FIS formation (Cates & Turner) 

Cates & Turner, Europhys. Lett. 11 (1990) 681, Turner & Cates, J. Phys.:Condens. Matter 4 (1992) 3719 

•  Gelation appears due to divergence of the average rod length at a 
critical deformation rate 

•  Does not provide an expression for the evolution of stress ç Our aim 
here 

Ends of aligned  
micelles react, 
forming longer 
micelles 
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“Reactive rod model” (RRM): setup 

S and L are the degrees of freedom of the RRM 
Dutta & Graham, JNNFM to appear, 
2017. 

Dr =
Dr;0

L⇤3

„
lnL⇤ +m

m

«
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Reactive rod model: evolution of L 

Assume narrow length distribution à only keep track of one 
representative length L (not necessarily a good assumption) 

Surfactant conservation à  nL = n0L0

Evolution equation for L: 
dL⇤

dt⇤
= Ra + Rs

Alignment-induced growth:  Ra = kŜ

Spontaneous growth and breakage:  Rs =
–

1�
“

L⇤

L⇤
max

”
2

(1� L⇤)

L⇤
max

= ¸+
˛

Pe
Hydrodynamic tension limits Rs: 
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Reactive rod model: orientation & stress 

•  Coupling to L evolution is through Dr 
•  Linear viscoelastic behavior is same as simple rigid rods – 

coupling of L to S arises only at O(Pe2) 

K = rvT

dS

dt
= �6Dr

„
S� 1

3
I
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Exact at equilibrium and perfect alignment, satisfies all necessary 
invariances and symmetries 

K : huuuui ⇡ 1

5
(D · S+ S ·D� S · S ·D�D · S · S+ 2S ·D · S+ 3SS : D)
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Shear rheology 
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Extensional rheology 
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Multiplicity regimes in shear and uniaxial 
extension 

Multiplicity regimes 
-  Larger in extension than shear 
-  Starts at lower Pe in extension 
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Comparison with experiments 

Prudhomme & Warr, Langmiur 10 (1994) 3419 
Dehmoune et al, Rheol. Acta 46 (2007) 1121 

Liu & Pine, Phys. Rev. Lett. 77 (1996) 2121 

shear flow extensional flow 

Model predictions (lines) show reasonable agreement with experiments 
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Conclusions 

  RRM predicts shear (extension)-thickening in WMS with subsequent shear 
(extension)-thinning 

  Predicts a multivalued stress at a given strain rate over a wide parameter 
ranges — associated with discontinuous shear thickening & FIS formation 

  Model predictions are in reasonable agreement with experiments 
  Computationally tractable: comparable to FENE-P 

Future work/Open issues 
  Model refinements 
-  Better physical models for micelle growth/breakage 

▸  E.g. make breakage rate scale as chain tension 
▸  Incorporate branching to better model gel-like behavior 

-  More comparisons with expt. (e.g. transients) 
-  Is there a first-principles theory that can be reduced systematically to something 

like this? 
  Fluid dynamics!  Spatiotemporal evolution of FIS 
-  Circular Couette: “interfacial instability” (Pine observations) 
-  How does vorticity banding arise? (Is it related to previous point?) 
-  Turbulence in surfactant solutions 
-  Potentially interesting computational issues: intricate nonequilibrium “phase” 

interfaces  
 

⇠ (nL)�1huui : fi p
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Thank you 


