Models of segregation in softparticle suspensions and reentrant rheology in surfactant solutions

Michael D. Graham

Department of Chemical & Biological Engineering
University of Wisconsin-Madison

Blood flow in the microcirculation

- "Cell-free" layer
- "Margination" of white blood cells and platelets
- Plasma-skimming results in lower hematocrit in sidebraches

Leukocyte rolling in rat cremaster muscle (Courtesy Ingrid Sarelius, U. Rochester)

Size and deformability of formed elements in blood

 "Real-time deformability cytometry": highthroughput screen of whole blood. (Otto et al., TU-Dresden)

Related/prior studies of margination

- Computational studies: Gompper/Winkler, Aidun/Neitzel, Freund, Bagchi, Shaqfeh, Fogelson, Krüger, Karniadakis/ Caswell, Gekle...
 - mostly focused on realistic treatment of blood: details for one parameter set, not trends as parameters vary

Theory/mechanism

- Eckstein: phenomenological drift-diffusion equation
- Fogelson: extracting drift-diffusion parameters from simulations
- Shaqfeh: statistics of velocity fluctuations, master equation model for cell-free layer

Aims and approaches

Aims

- What factors (size, rigidity, shape...) affect migration and margination phenomena?
- What mechanisms underlie these phenomena?

Approaches

- Direct simulations of idealized model cells/particles in confined flow:
 - Suspensions, single particle and pair collision studies
 - Effects of stiffness and size contrast
- Reduced models that capture essential mechanisms
- Experimental corroboration in blood

Binary suspensions: simulation

Capillary Number

$$\frac{\mu\dot{\gamma}_{w}a}{G}$$

Number fraction of <u>particles</u>

$$X_f \& X_s$$
$$(X_f + X_s = 1)$$

Stiff Particle: G ↑ ↔ Ca ↓

Flexible Particle: $G \downarrow \leftrightarrow Ca \uparrow$

Reynolds Number
$$\frac{\rho \dot{\gamma}_w H^2}{\mu} \ll 1$$

Viscosity ratio

Volume fraction

Confinement ratio

$$\lambda = 1$$

Binary suspension in Couette flow, dilute in stiff

Red: Flexible Blue: Stiff

$$Ca_s = 0.2$$

 $Ca_f = 0.5$
 $\Phi = 0.2$
 $C = 5.08$
 $X_f = 0.8$

Stiff particles accumulate in the near wall region: margination

→ Substantial segregation can occur due only to stiffness

Binary suspension in Couette flow, dilute in floppy

$$Ca_s = 0.2$$

 $Ca_f = 0.5$
 $\Phi = 0.2$
 $C = 5.08$
 $X_f = 0.2$

Flexible particles accumulate around the centerline: "demargination"

Binary suspension of large and small particles

size ratio: S = 0.3

confinement ratio: C = 5.08

$$X_s = 0.1$$

$$\phi = 0.16$$

$$Ca_{s} = Ca_{b} = 0.5$$

Small particles marginate

Key processes in suspension transport

Cross-Stream displacement in pair collisions → shear-induced diffusion

Wall-induced migration

Cross-stream displacements in pair collisions

- Cross-stream displacement is a weak function of Ca
- Stiff particles undergo larger cross-stream displacement
- Similar results occur for heterogeneity in size and shape
 - Small particles displace more (at same Ca)
 - Oblate (i.e. RBC-like) particles displace less at same equatorial radius

Pair collisions and migration velocity

Stiff and flexible (δ <1):

$$\Delta^{\mathsf{fs}} < \Delta^{\mathsf{ff}} < \Delta^{\mathsf{ss}} < \Delta^{\mathsf{sf}}$$

Big and little:

$$\Delta^{\mathsf{bl}} < \Delta^{\mathsf{II}} < \Delta^{\mathsf{bb}} < \Delta^{\mathsf{lb}}$$

$$v_m = a\dot{\gamma} f_m(\text{Ca, shape}) \frac{a^2}{y^2}$$
small
stiff

Master equation: migration and pair collisions

cf. Zurita-Gotor et al. 2012, Narsimhan & Shaqfeh 2013, Qi & Shaqfeh 2017

migration

$$\frac{\partial n_{\alpha}(y,t)}{\partial t} = -\frac{\partial}{\partial y} \left(v_{\alpha m}(y) n_{\alpha}(y,t) \right) \\
+ \sum_{\beta=1}^{N_{s}} \left(\int_{-(2H-y)}^{y} \int_{-\infty}^{\infty} \left\{ n_{\alpha}(y - \Delta_{y}^{\alpha\beta}, z - \Delta_{z}^{\alpha\beta}, t) \right. \\
\times n_{\beta}(y - \Delta_{y}^{\alpha\beta} - \delta_{y}, z - \Delta_{z}^{\alpha\beta} - \delta_{z}, t) \\
- n_{\alpha}(y, z, t) n_{\beta}(y - \delta_{y}, z - \delta_{z}, t) \right\} v_{rel}(y, \delta_{y}) d\delta_{z} d\delta_{y} \right)$$

pair collisions

- Numerical solutions are possible using deterministic (Shaqfeh) or stochastic methods (Blawzdziewicz, Kumar and G.)
- Simplifications are also possible...

Nonlinear/nonlocal drift-diffusion equation

Expand master equation for small Δ :

$$\begin{split} \frac{\partial n_{\alpha}}{\partial t} &= -\frac{\partial}{\partial y} \left(v_{d}^{\alpha} n_{\alpha} - \frac{\partial}{\partial y} (D_{\alpha} n_{\alpha}) \right) \\ v_{d}^{\alpha}(y) &= v_{m}^{\alpha}(y) - \sum_{\beta=1}^{N_{s}} \int_{-r_{cut}}^{r_{cut}} n_{\beta}(y-\delta) \Delta^{\alpha\beta}(\delta) \ \dot{\gamma} |\delta| \ d\delta, \\ D_{\alpha}(y) &= \frac{1}{2} \sum_{\beta=1}^{N_{s}} \int_{-r_{cut}}^{r_{cut}} n_{\beta}(y-\delta) \left\{ \Delta^{\alpha\beta}(\delta) \right\}^{2} \ \dot{\gamma} |\delta| \ d\delta. \end{split}$$

Steady state (solve self-consistently):

$$n_{\alpha}(y) = n_{\alpha}(y_0) \frac{D_{\alpha}(y_0)}{D_{\alpha}(y)} e^{\int_{y_0}^{y} -v_d^{\alpha}(y)/D_{\alpha}(y) dy}$$

- Good agreement with stochastic simulations of master equation
- Near-wall peak in primary ← nonlocal dependence of v_d and D

 Kumar, Henriquez & G. JFM 2014

Simplified drift-diffusion model

- Derived from master equation
- Binary suspension
- Primary (p) and trace (t) components:
 α = p or t
- Collisions dominated by primary trace component is passive
- Local approximations in collision integral Migration

Primary:
$$v_{pm} = K_{pm} \left(\frac{1}{y^2} - \frac{1}{(2C - y)^2} \right)$$
 $v_{pc} = -K_{pc} \frac{\partial n_p \dot{\gamma}}{\partial y}$

Trace:
$$v_{tm} = K_{tm} \left(\frac{1}{y^2} - \frac{1}{(2C - y)^2} \right)$$
 $v_{tc} = -K_{tc} \frac{\partial n_p \dot{\gamma}}{\partial y}$

$$\frac{\partial n_{\alpha}}{\partial t} = -\frac{\partial}{\partial y} \left(v_{\alpha d} n_{\alpha} - \frac{\partial}{\partial y} (D_{\alpha} n_{\alpha}) \right)$$

$$v_{\alpha d}(y) = v_{\alpha m}(y) + v_{\alpha c}(y)$$

Collisional drift

Shear-induced (collisional) diffusion

$$u_{
ho c} = - K_{
ho c} rac{\partial n_{
ho} \dot{\gamma}}{\partial v} \qquad \quad D_{
ho} = K_{
ho d} n_{
ho} \dot{\gamma}$$

$$v_{tc} = -K_{tc} \frac{\partial n_p \dot{\gamma}}{\partial v}$$
 $D_t = K_{td} n_p \dot{\gamma}$

By symmetry, collisional drift only arises from gradients_{Henriquez, Sinha and G., PRL 2015}

Simplified drift-diffusion model: details

Start with 3D model. Assume homogeneity in z:

$$\widehat{\Delta_y^{\alpha\rho}}(\delta_y) = \int_{-r_{cut}}^{r_{cut}} \Delta_y^{\alpha\rho}(\delta_y, \delta_z) d\delta_z,$$

$$\widehat{\left(\Delta_y^{\alpha\rho}\right)^2}(\delta_y) = \int_{-\infty}^{\infty} \{\Delta_y^{\alpha\rho}(\delta_y, \delta_z)\}^2 d\delta_z.$$

Collision integrals:

$$K_{\alpha c} = 2 \int_0^{r_{cut}} \widehat{\Delta_y^{\alpha p}}(\delta_y) \delta_y^2 d\delta_y \quad *$$

$$K_{\alpha d} = \int_{0}^{r_{cut}} \widehat{\left(\Delta_{y}^{\alpha p}\right)^{2}} (\delta_{y}) \delta_{y} d\delta_{y}$$

* $\Delta_y^{\alpha\rho}(\delta_y)\sim \delta_y^{-2}$. For convergence we need a cutoff due to confinement or influence of a third particle.

Simplified drift-diffusion model: simple shear

Steady solution:

$$\phi_{p} = \begin{cases} 0, & y < l_{d} \\ \phi_{pc} \left(1 - \frac{2\eta_{p}}{C \phi_{pc}} \frac{(C - y)^{2}}{y(2C - y)}\right), & y > l_{d} \end{cases} \quad \eta_{p} = \frac{\kappa_{pm}}{\kappa_{pc} + 2\kappa_{pd}}$$

$$\Phi_t = \begin{cases} 0, & y < I_d \\ \Phi_{tc} \left(\frac{\Phi_p(y)}{\Phi_{pc}} \right)^{M}, & y > I_d \end{cases} I_d = C \left(1 - \sqrt{\frac{C\Phi_{pc}}{2\eta_p + C\Phi_{pc}}} \right)$$

$$\mathbf{M} = \frac{\kappa_{pc} + 2\kappa_{pd}}{\kappa_{td}} \left(\frac{\kappa_{tm}}{\kappa_{pm}} - \frac{\kappa_{tc} + \kappa_{td}}{\kappa_{pc} + 2\kappa_{pd}} \right)$$

$$\mathbf{migration\ ratio}$$

$$\mathbf{collisional\ transport\ ratio}$$

$$\mathbf{A\ discriminant\ for\ margination!}$$

Margination regimes:

- M > 1: demargination
- 0 < M < 1: weak margination
 - no peak in profile
- -1 < M < 0: moderate margination
 - peak at edge of depletion
 strong prediction layer

- Blowup (no steady solution) when M < -1
 - Strong margination
 - all of trace component eventually drains into marginal layer

Binary suspensions:

- M changes with rigidity ratio
- M changes with size ratio

Analytically solvable model that captures key mechanisms and features of margination

Master curve for cell-free layer thickness

Relation between CFL thickness and average volume fraction can be written:

$$\frac{\bar{\Phi}C}{\eta_{p}} = 2\frac{C}{l_{d}} \frac{(1 - \frac{l_{d}}{C})}{(2 - \frac{l_{d}}{C})} - \ln\left(2\frac{C}{l_{d}} - 1\right)$$
$$= f\left(\frac{l_{d}}{C}\right)$$

This implies that with only one adjustable parameter, all CFL thickness data should fall onto a single **master curve**...

(This works better than it should – captures tube flow results too)

CFL thickness from direct simulations, nonlocal kinetic theory, in vitro and in vivo experiments, and the master curve.0l.6@lkcapses0.85

Theory captures dependence of cell-free layer thickness on confinement and concentration

Margination regimes, M > -1

Number density profiles

Demargination → margination as M decreases
Simplified model fails to capture near-wall peak in primary component

"Drainage transition", M < -1

Centerline concentration vs. M

- For M < -1, trace component is completely removed from bulk: "drainage transition"
- For a rigid trace particle with deformable primary component M is always < -1
- Diffusion regularizes this but sharp change near M=-1

- Trace component evolves toward singular solution – spike
- Regularized by trace-trace collisions (infinitely dilute approx. fails)

Drainage transition in simulations

$$S = \frac{a_t}{a_p}$$
 @ fixed Ca

$$F = rac{G_p}{G_t} = rac{\mathsf{Ca}_t}{\mathsf{Ca}_p}$$

Drainage transition occurs with decreasing ratio of flexibility or size

Poiseuille flow: kinetic theory model

 $r_{cut} < 2|C - y|$ – far from center:

$$\frac{\partial \phi_{\alpha}}{\partial t} = -\frac{\partial}{\partial y} \left\{ v_{\alpha m} \phi_{\alpha} - \left[\frac{\partial}{\partial y} \left(\phi_{\rho} \dot{\gamma} \right) - \frac{f}{2} \phi_{\rho} \frac{d \dot{\gamma}}{d y} \right] \phi_{\alpha} \left(2 \int_{0}^{r_{cut}} \delta |\delta| \Delta d \delta \right) - \frac{\partial}{\partial y} \left(\phi_{\alpha} \phi_{\rho} \dot{\gamma} \right) \left(\int_{0}^{r_{cut}} |\delta| \Delta^{2} d \delta \right) \right\}$$

 $r_{cut} > 2|C - y|$ – near center:

$$\begin{split} \frac{\partial \varphi_{\alpha}}{\partial t} &= -\frac{\partial}{\partial y} \bigg\{ v_{\alpha m} \varphi_{\alpha} - \bigg[\frac{\partial}{\partial y} \bigg(\varphi_{\rho} \dot{\gamma} \bigg) - \frac{f}{2} \varphi_{\rho} \frac{d \dot{\gamma}}{d y} \bigg] \varphi_{\alpha} \bigg(2 \int_{0}^{2|C-y|} \delta |\delta| \Delta d \delta \bigg) \\ &- \frac{\partial}{\partial y} \bigg(\varphi_{\alpha} \varphi_{\rho} \dot{\gamma} \bigg) \bigg(\int_{0}^{2|C-y|} |\delta| \Delta^{2} d \delta \bigg) + \frac{1}{2} \varphi_{\alpha} \frac{\partial \varphi_{\rho}}{\partial y} \frac{d \dot{\gamma}}{d y} \bigg(2 \int_{2|C-y|}^{r_{cut}} \delta^{3} \Delta d \delta \bigg) \\ &+ \frac{1}{2} \frac{\partial}{\partial y} \bigg(\varphi_{\alpha} \varphi_{\rho} \bigg) \frac{d \dot{\gamma}}{d y} \bigg(\int_{2|C-y|}^{r_{cut}} \delta^{2} \Delta^{2} d \delta \bigg) + \varphi_{\alpha} \varphi_{\rho} \dot{\gamma} \bigg(2 \int_{2|C-y|}^{r_{cut}} \delta \Delta d \delta \bigg) \bigg\} \end{split}$$

$$f = \begin{cases} 1, & \text{if } y < C \\ 3, & \text{if } y > C \end{cases}$$

Keep approximate versions of terms that don't vanish on centerline

Shear rate vanishes: Need to keep h.o.t.

Poiseuille flow: kinetic theory model

- Drift-diffusion model for Poiseuille flow
- Centerline terms required to prevent blowup cf. Miller & Morris, JNNFM 2006

Poiseuille flow: effect of confinement

As C increases:

- Depletion layer thickens (agrees with theory)
- Centerline peak increases

Poiseuille flow: drainage transition

Complete drainage of the bulk is again observed for M sufficiently negative

Poiseuille flow: simulation results

Results for segregation by stiffness contrast

- Centerline peak in primary also a smaller peak near wall (nonlocal theory is required to capture this)
- Centerline peak in trace for F above drainage transition (predicted by model)
- Drainage transition appears

Conclusions

- Segregation can occur by rigidity or size alone:
 - In suspensions of primarily flexible/large particles, the stiff/ small particles marginate
 - In suspensions of primarily stiff/small particles, flexible/large particles demarginate
- Model based on collisions and migration:
 - Qualitatively reproduces detailed results
 - Yields analytical discriminant for margination regimes based on migration and collisional displacement ratios
 - Yields expression for cell-free layer thickness that fits simulation and experimental data
 - Predicts drainage transition: regime of complete depletion of trace component from bulk
 - verified in direct simulations
 - Corroborates ex vivo experimental data → There is a biomechanical role for drugs in affecting leukocyte dynamics in blood

Ongoing work...

- More detailed experiments, especially re: parameter dependence
 - E.g. perfect drainage is not seen in expts. with platelets (e.g. Shaqfeh group)
- Extensions of theory and simulations: shape effects, finite concentration, RBC aggregation, adhesion to surfaces
- Complex geometries: connections to Zweifach-Fung effect, separation methods
- Time-dependent flows e.g. LAOS
- Physiological relevance e.g. for sickle cell disease

Surfactant micelles

www.commons.wikimedia.org/wiki/File%3AMicelle_scheme-en.svg

$$CH_3$$
 Br $^-$
 $H_3C(H_2C)_{15}$ $-N^+$ $-CH_3$
 CH_3

cetyltrimethylammonium bromide (CTAB)

www.ethz.ch/ilw/vt/research/projects/vivianel

cetyltrimethylammonium ptoluenesulfonate (CTAT) cetylpyridinium chloride (CPyC

Surfactant solutions: applications and phenomena

Ohlendorf et al, Rheol. Acta 25 (1986)

- Shear-thinning/thickening, flow-induced structure (FIS), shear-banding, etc.
- Turbulent drag reduction
 - To study flow problems, we need a tractable constitutive model like FENE-P for dilute polymer solutions

Flow induced structures (FIS)

Berret et al, Eur. Phys. J. E 2 (2000) 343

Tuan et al, J Rheol. 61 (2017) 83

Reentrant/discontinuous behavior

Liu & Pine, Phys. Rev. Lett. 77 (1996) 2121

shear rate (s⁻¹)

controlled stress

controlled shear rate

100

10⁻³

Shear banding vs. vorticity banding

Multiple shear rates for same shear stress

Multiple shear stresses for same shear rate

Dhont and Briels, Rheol. Acta 47: 257, 2008.

Mechanism for FIS formation (Cates & Turner)

- Gelation appears due to divergence of the average rod length at a critical deformation rate
- Does not provide an expression for the evolution of stress Our aim here

"Reactive rod model" (RRM): setup

Rotational diffusivity:
$$D_{r,0} = \frac{3k_BT}{\pi\eta_sL_0^3}\ln\left(\frac{L_0}{2b}\right)$$

Rotational diffusivity for rod length
$$L$$
: $D_r = \frac{D_{r,0}}{L^{*3}} \left(\frac{\ln L^* + m}{m} \right)$ where $m = \ln \left[L_0 / (2b) \right]$ $L^* = L/L_0$

Orientation tensor:
$$\mathbf{S} = \langle \mathbf{u}\mathbf{u} \rangle$$
 and $\hat{\mathbf{S}} = \mathbf{S} - \frac{1}{3}\mathbf{I}$ (traceless)

Scalar orientation parameter:
$$\hat{S} = \sqrt{\frac{3}{2} \left(\hat{\mathbf{S}} : \hat{\mathbf{S}} \right)} = 0$$
 (isotropic); 1 (fully aligned)

$$Pe = egin{cases} \dot{\gamma}/D_{r,0} & ext{for shear flow} \ \dot{arepsilon}/D_{r,0} & ext{for extensional flow} \end{cases}$$

Nondimensionalization: $t^* = tD_{r,0}$

S and L are the degrees of freedom of the RRM

Reactive rod model: evolution of L

Assume narrow length distribution \rightarrow only keep track of one representative length L (not necessarily a good assumption)

Evolution equation for L:
$$\frac{dL^*}{dt^*} = R_a + R_s$$

Alignment-induced growth:
$$R_a = k\hat{S}$$

Spontaneous growth and breakage
$$R_s = rac{\lambda}{1-\left(rac{L^*}{L_{\max}^*}
ight)^2}\left(1-L^*
ight)$$

Hydrodynamic tension limits
$$R_s$$
: $L_{\text{max}}^* = \alpha + \frac{\beta}{Pe}$

Surfactant conservation $\rightarrow nL = n_0L_0$

Reactive rod model: orientation & stress

Time evolution of the orientation tensor $\mathbf{S} = \langle \mathbf{u}\mathbf{u} \rangle$

$$\frac{d\mathbf{S}}{dt} = -6 \frac{\mathbf{D_r}}{\mathbf{O}} \left(\mathbf{S} - \frac{1}{3} \mathbf{I} \right) + \mathbf{K} \cdot \mathbf{S} + \mathbf{S} \cdot \mathbf{K}^{\mathsf{T}} - 2 \mathbf{K} : \langle \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \rangle$$

$$\mathbf{K} = \nabla \mathbf{v}^{\mathsf{T}}, \mathbf{D} = \frac{1}{2} \left(\mathbf{K} + \mathbf{K}^{\mathsf{T}} \right)$$

Dhont-Briels closure:

$$\mathsf{K}:\langle\mathsf{uuuu}
anglepproxrac{1}{5}\left(\mathsf{D}\cdot\mathsf{S}+\mathsf{S}\cdot\mathsf{D}-\mathsf{S}\cdot\mathsf{S}\cdot\mathsf{D}-\mathsf{D}\cdot\mathsf{S}\cdot\mathsf{S}+2\mathsf{S}\cdot\mathsf{D}\cdot\mathsf{S}+3\mathsf{SS}:\mathsf{D}
ight)$$

Exact at equilibrium and perfect alignment, satisfies all necessary invariances and symmetries

Stress tensor:

$$au = 2\eta_s \mathbf{D} + 3\mathbf{n}k_B T \left(\mathbf{S} - \frac{1}{3}\mathbf{I}\right) + \frac{\mathbf{n}k_B T}{2D_r} \mathbf{K} : \langle \mathbf{u}\mathbf{u}\mathbf{u}\mathbf{u} \rangle$$

- Coupling to L evolution is through D_r
- Linear viscoelastic behavior is same as simple rigid rods coupling of L to S arises only at O(Pe²)

Shear rheology

Stress and length are multivalued in a range of Pe for large enough growth rate constant k

Extensional rheology

Stress and length are multivalued in a range of *Pe* for large enough growth rate constant

Multiplicity regimes in shear and uniaxial

Multiplicity regimes

- Larger in extension than shear
- Starts at lower Pe in extension

Comparison with experiments

shear flow

extensional flow

Model predictions (lines) show reasonable agreement with experiments

Liu & Pine, Phys. Rev. Lett. 77 (1996) 2121

Dehmoune et al, Rheol. Acta 46 (2007) 1121

Prudhomme & Warr, Langmiur 10 (1994) 3419

Conclusions

- RRM predicts shear (extension)-thickening in WMS with subsequent shear (extension)-thinning
- Predicts a multivalued stress at a given strain rate over a wide parameter ranges — associated with discontinuous shear thickening & FIS formation
- Model predictions are in reasonable agreement with experiments
- Computationally tractable: comparable to FENE-P

Future work/Open issues

- Model refinements
 - Better physical models for micelle growth/breakage
 - **E.g.** make breakage rate scale as chain tension $(nL)^{-1}\langle uu \rangle : \boldsymbol{\tau}^p$
 - Incorporate branching to better model gel-like behavior
 - More comparisons with expt. (e.g. transients)
 - Is there a first-principles theory that can be reduced systematically to something like this?
- Fluid dynamics! Spatiotemporal evolution of FIS
 - Circular Couette: "interfacial instability" (Pine observations)
 - How does vorticity banding arise? (Is it related to previous point?)
 - Turbulence in surfactant solutions
 - Potentially interesting computational issues: intricate nonequilibrium "phase"

Thank you

