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Shear banding in time-dependent flow protocols 

                        shear startup 

                        step stress (creep)  

           step strain  

                        large amplitude oscillatory shear 

 

Aim:  to provide fluid-universal criteria for onset of banding, covering 

                       polymeric fluids (polymer solutions/melts, wormy micelles) 

                       soft glassy materials (foams, emulsions, colloids, microgels) 

                       and everything else too…? 
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shear banded 

Warmup: criterion for formation of steady state shear bands  

What is the criterion for this to happen? 

Initial state:  

homogeneous shear flow 
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dS / dg < 0Criterion                     is independent of fluid and model in question 

Steady state:  

shear banded 

Warmup: criterion for formation of steady state shear bands  
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Time-dependent flow protocols…  
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Time-dependent flow protocols…  
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At what stage of progression to steady state do bands form? 
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Time-dependent flow protocols…  
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Can bands form transiently in shear startup,  

even if steady state unbanded? 
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constitutive curve startup transient 

Time-dependent flow protocols…  

and in a step-stress (creep) experiment? 
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Step strain stress transient 
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and in a step-strain experiment? 
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Time-dependent flow protocols…  
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Aim here: derive general criteria for banding in time-dependent flows  

shear startup 

step strain 

step stress 
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that depend only on the shape of these rheological response functions  
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Shear banding in time-dependent flow protocols 

              shear startup protocol: 

 

 

              step stress  

              step strain  

              large amplitude oscillatory shear  
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Shear startup in complex fluids: the basic idea 
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steady state constitutive curve startup transient 
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stress overshoot commonly seen 

Shear startup in complex fluids: the basic idea 
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steady state constitutive curve startup transient 
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stress overshoot commonly seen 

associated with transient banding 

Shear startup in complex fluids: the basic idea 

[Marrucci + Grizzuti J. Rheol 1983] 
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steady state constitutive curve startup transient 

 

 

 

 

g =gt

stress overshoot commonly seen 

associated with transient banding 

even if steady state cc monotonic 

Shear startup in complex fluids: the basic idea 

[Marrucci + Grizzuti J. Rheol 1983] 
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steady state constitutive curve startup transient 
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Shear startup in complex fluids: the basic idea 

[Marrucci + Grizzuti J. Rheol 1983] 

 

 

 

Indeed:   for rest of talk, constitutive curve will be monotonic 
 

                unless otherwise stated – no steady state banding ! 
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Shear startup in polymeric fluids: experiments 
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position across gap  position across gap  

[Hu et al. J. Rheol 2008. See also S Q Wang et al. J. Rheol 2008,09; PRL 06; Macromol  08, 09]  



Shear startup in polymeric fluids: experiments 

[S Q Wang et al. Macromol 08; see also J. Rheol 2008,09; PRL 06; Macromol  09]  

position across gap  



Shear startup in polymeric fluids: simulation 

Polymeric stress  
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“Rolie-Poly” model for dynamics of polymer conformation tensor 

Use units in which G = 1, t = 1 [Likhtman + Graham JNNFM 2003]  

[See also Zhou at al. J Rheol 08;  and MD simulations of  Cao and Likhtman PRL 2012]  



[Adams, FIelding, Olmsted J Rheol 2011]  
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log(strain rate)  

monotonic or not according to model parameters 

Results on next slide for startup at shear rate    on monotonic one 

Shear startup in polymeric fluids: simulation 



[Adams, FIelding, Olmsted J Rheol 2011]  
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position across gap  

Shear startup in polymeric fluids: simulation 
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Soft “glassy” materials  

•  Foams 

•  Dense emulsions 

•  Surfactant onion phases 

•  Gel bead suspensions 

•  Dense colloids (?) 

•  Gels (?) 

Shared features: 

disorder 

metastability 

broken ergodicity 

yield stress 

ageing 



Shear startup in a soft glassy material: experiment 

[Carbopol gel - Divoux et al. PRL 2010] 

flow curve: yield stress 
stress overshoot + transient bands 
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•   Particles jump independently among traps at noise temperature x 

 

•  l = local strain  

 

•  dl/dt = g˙(t) between hops 

 

•  Jump rate G0 exp[-(E-k l2/2)/x]  

 

•  Trap depth distribution exp[-E]  

    glass transition at x=1 

 

• Stress s = k<l>. Yield stress rises smoothly for x < 1 

 

• Extended to account for spatial heterogeneity  [Fielding et al. Soft Matter  2009] 

 

Soft glassy rheology (SGR) model 

[Sollich et al PRL 97]  

See also:  STZ (Langer, Falk et al) , MCT (Fuchs, Cates et al), fluidity (Coussot, Ajdari)                                   



SGR model predictions 

strain rate 

Flow curve: yield stress for x < 1 

g

Monotonic - no steady state bands 
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strain rate 

SGR model predictions 

Flow curve: yield stress for x < 1 

g

Overshoot in shear startup 

increasing tw  

strain g =g t - t
w( )

Prepare sample at time t = 0 

 and wait a time tw  before shearing 

x = 0.3

g = 0.1

Monotonic - no steady state bands 
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transient banding, 

with strong age dependence? 

Overshoot in shear startup 

g =g t - t
w( )strain 

SGR model predictions 

x = 0.3

g = 0.1

strain rate 

Flow curve: yield stress for x < 1 

g

Monotonic - no steady state bands 

S S



Overshoot in shear startup 

SGR model predictions 

g =g t - t
w( )strain 

t
w

=100,102 ,104,106
t
w

=106

g = 38, 75,125,175, 225, 275

persist longer than duration 

of realistic experiment….? 

[Moorcroft Cates Fielding PRL 11]  

“transient” bands  
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See also – binary Lennard Jones: Shi et al. PRL 2007; STZ Manning et al PRE 2007. 09 
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General criterion 

Criterion for banding in steady state known 

[Moorcroft + Fielding, PRL 2013]  

Criterion for transient banding in startup associated with 

Consider series of startup runs at different     each run to steady state 

Can we arrive at a general condition on derivatives of                ?  
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series of shear startup  

     experiments at 

different strain rates 

dS dg < 0

dS dg < 0
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Highly generalised theoretical framework of shear rheology 

S t( ) =s y,t( )+hg y,t( )

¶
t
s = f s ,n,g( ), ¶

t
n = g s ,n,g( )

force balance in 1D 

viscoelastic dynamics 
 

(rolie-poly, fluidity…) 
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series of shear startup  

     experiments at 

different strain rates 

Linear instability criterion for onset of shear banding 
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[Moorcroft + Fielding, PRL 2013]  



Highly generalised theoretical framework of shear rheology 

force balance in 1D 

viscoelastic dynamics 
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non-monotonic  
constitutive curve 

[Moorcroft + Fielding, PRL 2013]  



Highly generalised theoretical framework of shear rheology 

force balance in 1D 

viscoelastic dynamics 
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[Moorcroft + Fielding, PRL 2013]  
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Shear banding in step stress protocol: general criterion  

s

g

 

 

g

t

 

 

S t( ) =s y,t( )+hg y,t( )
¶
t
s = f s ,n,m,…,g( ),

force balance in 1D 

viscoelastic dynamics 

highly general 

(Rolie Poly, SGR) 

Linear instability criterion  
 
for onset of shear banding 
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[Moorcroft + Fielding, PRL 2013]  
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Shear banding in step stress protocol: polymer experiments  

[Boukany and Wang J Rheol 2008 ]  

Consistent with prediction  ¶
t

2g / ¶
t
g > 0



Shear banding in step stress protocol: Rolie Poly model  

[Moorcroft + Fielding JoR 2014 ]  

Consistent with prediction  ¶
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2g / ¶
t
g > 0
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Shear banding in step stress (creep) protocol: soft glassy material  

[Divoux, Barentin, Manneville, Soft Matter, 2011 ]  



Shear banding in step stress (creep) protocol: SGR model  

[Moorcroft + Fielding PRL 2013 ]  

Consistent with prediction  ¶
t

2g / ¶
t
g > 0
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Shear banding in time-dependent flow protocols 

              shear startup  

 step stress  

 step strain protocol:  Moorcroft + SMF   JoR 2014   

             large amplitude oscillatory shear (LAOS) 

Summary and outlook 
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LAOS: protocol with a sustained time dependence 

• Consider now flows with a sustained time-dependence, 

     (of which LAOS is a simple - and much-studied- example)… 

     Question - Do we see sustained shear banding here,  

          arising simply due to the time-dependence of the flow, 

           even in fluids that don’t support bands in steady state?  

• Shear startup and step stress are only transiently time-dependent, 

     so any associated shear banding is also only transient 



LAOS: defining the protocol  

Prepare sample at time t=0, then age it for waiting time  

Execute many cycles of either LAOStrain or LAOStress 

tw

After many cycles, response independent of cycle number and initial  tw

Prepare sample 

0 t 
wait 

2π/ω g 0 s 0

tw

or 

Any run prescribed fully by                or                or    

. 



LAOS: the basic intuition  

• LAOStrain: 

     a bit like a repeating series of forward and reverse startup runs 

     expect banding associated with stress overshoot in each half cycle? 

• LAOStress: 

     a bit like a repeating series of positive and negative stress steps 

     expect banding associated with yielding in each half cycle? 



Shear banding in time-dependent flow protocols 

              shear startup  

 step stress   

 step strain:  Moorcroft + SMF   JoR 2014   

             large amplitude oscillatory shear  
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Large amplitude oscillatory shear strain (LAOStrain)  
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banding over cycle 

inverse `age’ over cycle 

snapshot banded profiles 



Large amplitude oscillatory shear strain (LAOStrain)  
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stress over cycle 

snapshot banded profiles 

Confirms basic intuition: 

•   see banding in LAOStrain 

•   associated with stress overshoot 

•   repeated competation over cycle 

    between aging and `rejuvenation’  



LAOStrain: dynamic phase diagram  

g 0

w

Cycle averaged degree of banding as a function of 

      amplitude and frequency of imposed strain oscillation     

[Radhakrishnan + Fielding PRL 2017, J. Rheol 2018]  



LAOStrain: dynamic phase diagram  

g 0

w

Cycle averaged degree of banding as a function of 

      amplitude and frequency of imposed strain oscillation     

x     x     x     
x     x     

x     
x     

x     x     

[Radhakrishnan + Fielding PRL 2017, J. Rheol 2018]  



Pipkin diagrams: grid of Lissajous-Bowditch curves  

Colourscale: degree of banding round cycle 

s s

g g

Viscous: stress vs strain rate     Elastic: stress vs strain round cycle     

[Radhakrishnan + Fielding PRL 2017, J. Rheol 2018]  

Important: shape of curve strongly changed by banding 
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 Puzzle:          In zero frequency limit might a priori expect  

          quasistatic sweeps up and down steady state flow curve 

   with no banding (because flow curve is monotonic) 

Still see banding even in zero-frequency limit  

[Radhakrishnan + Fielding PRL 2017, J. Rheol 2018]  
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 Puzzle:          In zero frequency limit might a priori expect  

          quasistatic sweeps up and down steady state flow curve 

   with no banding (because flow curve is monotonic) 

Still see banding even in zero-frequency limit  

 Resolution:    ageing glassy material has no fixed inverse relaxation time  

  against which can set frequency to be small 

                     Instead: repeating ageing and rejuvenation in each cycle 

wt ®0

 Same in:        square/triangular/sawtooth strain and LAOStress 

[Radhakrishnan + Fielding PRL 2017, J. Rheol 2018]  



Shear banding in time-dependent flow protocols 
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 step stress  

 step strain:  Moorcroft + SMF   JoR 2014   

             large amplitude oscillatory shear (LAOS) 
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Large amplitude oscillatory shear strain: Rolie-poly model 

Non-monotonic 
underlying 
constitutive curve                              

Monotonic 
underlying 
constitutive curve                              

Low frequency  
shear banding                               

high frequency  
‘elastic’ banding                               

high frequency  
‘elastic’ banding 
only                               

[Carter, Girkin, Fielding, JoR 2016; see also Adams + Olmsted PRL 2009]  



Large amplitude oscillatory shear strain: Rolie-poly model 

Monotonic underlying constitutive curve                               high frequency ‘elastic’ banding               

[Carter, Girkin, Fielding, JoR 2016; see also Adams + Olmsted PRL 2009]  



Summary - polymeric fluids, soft glasses (and all else?) predicted to band: 

•Transiently in shear startup, associated with stress overshoot 

•    Transiently following imposition of step stress, as sample yields 

 

 

•In a sustained way in time-periodic flow protocols 

•Do complex fluids have a generic predisposition to form shear bands   

 
 

•   Do glasses have a generic predisposition to form shear bands 

       note: in (soft) glasses this ‘transience’ likely appears permanent and/or 

in (hard) glasses might ‘break’ the sample – game over anyway  

in flows with a strong enough time dependence ?     
 

in flows of even arbitrarily slow time dependence ? 
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A couple of review articles (SMF):   

    Summarising results in soft glasses:           

            Report on Progress in Physics, 2014           

     

    Summarising criteria in general: 

             Journal of Rheololgy, 2016            


