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Granular	materials	(T=0,	hard)

• Solid and Liquid phases separated by a jamming transition

• Mesoscopic scale: collective effects important

• Local scale: interaction law between grains complicated

• Rich interplay between these two scales (e.g. shear thickening)

Andreotti,	Forterre,	Pouliquen Poppy	seeds,	Chicago	group



Hysteresis		at	the	jamming	transition
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Figure 4
Different flow configurations: (a) plane shear, (b) Couette cell, (c) silo, (d ) flows down an
inclined plane, (e) flows on a pile, and ( f ) flows in a rotating drum.

important to notice that there are two ways of shearing the material. The first is to
impose the pressure P on the top plate. In this case the upper plate is free to move
vertically, and the volume fraction ! typically decreases with increasing shear rate.
The second is to impose the volume fraction by fixing the distance between the plates.
In this case, the pressure on the top plate typically increases with shear rate. These
configurations give different results for the shear stress as a function of shear rate, but
both are fully equivalent, as shown by da Cruz et al. (2005). We begin our discussion
by considering the constant pressure case.

Friction and dilatancy laws. A crucial observation raised by da Cruz et al. (2005)
and Lois et al. (2005) is that, in the simple sheared configuration for infinitely rigid
particles, dimensional analysis strongly constrains the stress/shear rate relations. For
large systems (i.e., when the distance between the plates plays no role), the system is
controlled by a single dimensionless parameter called the inertial number:

I = γ̇ d
√

P/ρp
. (1)
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minimal	stress	𝜎c needed	for	steady	flow

with	𝜎c =	𝜇c p	
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Figure 2
Hysteresis and flow threshold in different systems. (a) Cylindrical Couette cell, with the
friction coefficient at the inner wall plotted as a function of the dimensionless mean shear rate.
Open circles represent increasing shear stress, and filled circles represent decreasing shear
stress (da Cruz et al. 2002). (b) Rotating drum with θstart (open circles) and θstop ( filled circles)
plotted as functions of the width of the drum (Courrech du Pont et al. 2003). (c) Inclined plane
with θstart (open circles) and θstop ( filled circles) plotted as functions of the layer thickness h
(Pouliquen & Forterre 2002).

the macroscopic behavior motivate many studies (Roux & Combes 2002). However,
such approaches focus on the initiation of the deformation and do not predict what
happens when continuous quasi-static flow is imposed on the material (Fenistein et al.
2004, Losert et al. 2000, Mueth et al. 2000, Veje et al. 1999).

A second shortcoming of the ideal friction criterion is that it cannot describe the
hysteresis observed in a stress-driven system. In a Couette cell, for example, one has
to increase the applied shear stress up to a critical value to induce flow, but once it
flows, the material stops only if the shear stress is decreased below a value less than
the starting value (Figure 2a). For free surface flows, as in a partially filled drum or
on a pile, one has to incline the free surface above a critical angle θstart to trigger an
avalanche, but the flow will stop only below a lower critical angle θstop. The origin of
hysteresis in granular media is well illustrated by the toy model of a single bead flowing
down a rough inclined substrate (Quartier et al. 2000). This analysis clearly shows
how hysteresis comes from the balance between kinetic energy, energy dissipation
due to collision, and the potential trap made by the roughness of the substrate.

The last weakness of the simple friction criterion is that the flow threshold depends
on the system size. In a rotating drum or on a pile, the width of the device plays an

4 Forterre · Pouliquen
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θc

θstart

𝜇c = tan(θc)
Glass	beads,	sand:



log	𝜇

log	ἑ

Hysteresis	and	Velocity	weakening

Couette experiment

Van	Hecke,	Dauchot 2010,	2016
Kuwano,	Hatano 2013,

weakening

strengthening

• Sudden	starts

• Tricks	needed	to	stabilize	
against	shear	band

• Microscopic	theory?



Importance	of	hysteresis	in	particulate	materials

• Hysteresis:	once	it	
starts,	flow	is	fast

• Landslides

• Earthquakes

Zooming	in	a	fault

rock

Granular
matter

Fault	that	velocity	weaken	
prone	to	earthquake	



Observations	to	explain	in	granular	matter

• Inertia	favors	hysteresis

• Friction	appears	necessary
Peyneau roux	08

• Acoustic	vibrations	can	
eliminate	hysteresis
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FIG. 4: Time duration T of macroscopic avalanches normal-
ized either by (a) the viscous timescale Tv (b) the inertial
timescale Ti or (c) the free-fall timescale Tff as a function
of the Stokes number St for different grains in different fluids
and rotating cylinders of different diameter D. Same symbols
as in Fig. 3.

the density ratio r [10]. Considering again the immersed
granular avalanches in fluids, the grain kinetic energy will
be totally dissipated by the fluid in the collision process
at low St, with an all the more smooth collision when
St evolves towards zero. The obtained packing is thus
certainly all the more loose, i.e. with a lower packing
fraction [11]. As the maximum angle of stability of a
granular pile depends largely on the arrangement of the
packing, decreasing with the packing fraction [12], this
explains the decrease of ∆θ with St at low St.

In addition, if one consider the critical Stokes value
Stc ≃ 10 independent of r as the boundary line between
the accelerated regime and viscous limit regime in the
(St, r) plane of Fig. 3, this leads to the critical density
ratio rc ≃ 4 separating the free-fall regime and the in-
ertial limit regime. As r values larger than 4(ρs/ρf >
16) can hardly be reached experimentally for solid/liquid
system, the free-fall regime corresponds only to solid/gas
systems like, e.g., the dry granular avalanches.

Finally, for large St (St ! 20), all the events corre-
spond to macroscopic avalanches that affect the entire
slope and no small event are observed between two suc-
cessive macroscopic avalanches: The size distribution is
a gaussian curve centered on the value ∆θ ≃ 3o. This
kind of distribution, classically found for dry granular
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FIG. 5: Amplitude ∆θ of macroscopic avalanches of glass
beads in different fluids as a function of the Stokes number
St. Same symbols as in Fig 3.

avalanches [2, 3, 4, 5, 6], is incommensurate with the
ideas of Self Organized Criticality (SOC) developed by
Bak et al. [13] which would predict a power law distri-
bution without any typical scale. The reason may be
the dissipation rate of the system [16]: In the cellular
automata models, which illustrate nicely the SOC, au-
tomata are strongly overdamped whereas dry granular
experiments are weakly dissipative. When introducing
inertia in cellular automata models, a complex distribu-
tion, mixing power law distribution for the small events
and gaussian distribution for the large events, is obtained
[15]. For decreasing St (St " 20), we observe experi-
mentally together with the gaussian distribution of large
events the appearance of numerous small events (affect-
ing not all the slope). We expect such a behavior in the
viscous regime of low St as the hysteresis ∆θ of the sys-
tem goes to zero with St, which is a condition for the
system to evolve towards criticality. But up to now, we
have not enough resolution to characterize the size distri-
bution of these small events, and to conclude if it obeys
or not the power law related to SOC. In addition, the
regime of intermittent avalanches is hard to obtain when
the regime is more and more viscous as the time duration
of avalanches diverges.

By conclusion, we have shown the existence of three
regimes (free-fall, inertial limit, and viscous limit) for
granular avalanches in fluids, controlled by the Stokes
number which measures the ratio of particle inertia to
viscous fluid effects, and the density ratio. The time du-
ration of the macroscopic avalanches that affect the en-
tire slope have been predicted in all these three regimes.
The amplitude of these macroscopic avalanches has been
shown to be constant at high St while decreasing with St
at low St. Finally, more refined experiments remain to be
done to see if the system evolves towards criticality when
St tends towards 0, i.e. for highly dissipative systems.

We acknowledge B. Andreotti, S. Douady, D. Lhuillier,
O. Pouliquen, E.J. Hinch, and G.M. Homsy for fruitful
discussions.

Dupont et	al,	2003www.nature.com/scientificreports/
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Experimental setup
To study the granular friction under vibration at the laboratory scale (Fig. 1), a slider is laid over a layer 
of spherical beads [sodosilicate glass, Wheelabrator, diameter d =  (250 ±   23) µm and density 
ρ =  2.31 ×  103 kg m−3, except when specified]. To ensure a good frictional contact between the slider and 
the material, one monolayer of grains, identical to those in the tank, is glued on the bottom surface. The 
slider mass is m =  30.7 g, and the area of the contact with the grains is 9 ×  6 cm2. The slider is put in 
motion by means of a cantilever-spring, an aluminium blade (5 ×  1 cm2) whose stiffness k can be varied 
by changing its thickness (from 0.25 to 0.4 mm). Almost vertical, its lower end is in ponctual contact 
with the slider whereas its upper end is embedded in a holding frame displaced horizontally at constant 
velocity V. A DC motor coupled with a reduction gear (5 N.m, 17 W, Crouzet) drives the linear-translation 
stage (Schnaefler Technologies Sechnr). A bellows seal transmits the torque from the motor to the stage, 
while avoiding mechanical vibrations. The velocity V ranges from 15 to 75 µm s−1. An inductive sensor 
(IPRM 12I9505/S14, Baumer) measures the deflection of the blade and, thus, assesses the instantaneous 
force F applied to the slider. In the following, we denote ≡ /⁎F F mg  the dimensionless driving force, 
with g the gravitational acceleration.

Reproducible experiments are ensured with the following protocol. We work at constant air humidity, 
RH ≃  (37 ±   2)% and temperature, T ≃  21.5 °C. The granular layer (50 ×  15 cm2) is stirred with a brush, 
then levelled (thickness h ≃  1 cm) with a squeegee which is moved at constant height along the sliding 
direction. We then impose a translation velocity V to the holding frame. In absence of external vibra-
tions, in the range of pulling velocity V used in our experiments, the slider experiences a classical 
stick-slip motion characterized by a sawtooth variation of the force F* in the stationary regime (Fig. 2a)10: 
In the stick phase, the slider does not move and the force F* increases until µ= =⁎ ⁎F Fmax s, the static 
friction coefficient; Then, the slider starts moving forwards and F* suddenly decreases. In average over 
this slip phase, µ=⁎F d, the dynamic friction coefficient.

Once the stick-slip regime is well-established, a mini-shaker (Brüel & Kjær, Type 4810 +   amplifier 
2706) clamped on the experimental tank imposes sinusoidal vibrations to the whole granular layer, in 
the horizontal plane, along a direction transverse to the slider motion. Three accelerometers (Dytran 
Instruments, Model #3035BG) embedded in the granular layer measure the three components of the 
local acceleration. We checked that the acceleration is sinusoidal, spatially homogeneous and anisotropic. 
Its main component is oriented in the transversal direction, as imposed by the shaker. We denote by ω 
the angular frequency and by A the amplitude of vibration in the transverse direction. In accordance, we 
define the acceleration ωΓ ≡ A 2, which remains smaller than g in our experimental conditions. Note 
that, in our experimental conditions, we do not observe any significant motion of the grains at the free 
surface.

Transition to continuous sliding
Increasing the amplitude of the vibrations, we observe an almost instantaneous decrease of both the 
amplitude of the stick-slip and the average friction force (Fig.  2). In other words, both ⁎Fmax  and ⁎F  
decrease when the intensity of vibration is increased (Fig.  3). Moreover, at a given ω, there exists a 
threshold in the vibration amplitude above which the stick-slip disappears, and the motion is continuous 
(Fig. 2d). Interestingly, all data gather on the same curve when displayed as a function of the velocity, 
Aω (Fig. 3, inset). This striking observation is the main result of our study.

The stick-slip amplitude, ( − )⁎ ⁎F F2 max , vanishes for the critical velocity vc =  (Aω)c ≃  (100 ±   20) µm 
s−1 for all ω. We first checked that the result does not depend on the depth of the granular bed (from 
2 mm to 2 cm), in agreement with the experimental fact that the shear is localized in a thin region, a few 
particle diameters in thickness, below the slider22,23. Note also that, in our experimental conditions, the 
velocity of the slider is always much smaller than the critical velocity V* associated with the transition to 
continuous sliding in absence of vibration10. The threshold vibration velocity, vc, does not significantly 
depend neither on the cantilever stiffness (k between 210 and 870 N m−1), vibration frequency, f, nor 
pulling velocity V, in the experimental range (Fig. 3). More surprisingly, it does not significantly depend 

Figure 1. Sketch of the experimental setup. The slider is pulled at constant velocity, via a flexible blade, 
accross the upper surface of a granular layer. A shaker (not represented here) imposes horizontal vibrations 
of the whole in the transverse direction (along the y–axis).

Lastakowski et	al	2015,	Johnson	and	Jia 05	



Dimensional	analysis	and	constitutive	relations
GDR	Midi,	Roux,	Radjai,	Lemaitre,	Pouliquen,	Forterre,…

• ∆	=	deformation	at	contacts	/	diameter			~	10-5

• Rigid	limit:	if	limit	∆	->	0	not	singular,	dimensional	analysis	implies
one	dimensionless	number	controls	flow

• dense	flows.		Most	numerical	studies	report	

(show	data) Velocity	strengthening:



Simulations
• Static	and	dynamic	friction	coefficient	identical

• Restitution	coefficient		

• Small	N	to	avoid	shear	bands

• Effects	disappear	as	∆	increases	(or	friction	removed)



Two	ideas

• Near	jamming,	dense
Network	of	contacts

1/	Collisions	induce	elastic	vibration	of	the	network.
These	vibrations	make	some	contacts	slide.		Melosh 80’s

Ft <	µf FN

2/	soft	spots	in	granular	flows	(~	dislocation	in	metals)?
Contact	near	the	coulomb	cone.	



Macroscopic	friction	and	fraction	of	sliding	contacts	

• Gedanken experiment:
Add	vibrations	to	sample.

• Fraction	c of	contacts	near	Coulomb
Cone	will	slide	in	average

• Flow	threshold	will	decrease	
With	

• Same	if	noise	is	endogenous,	leading	to:

• Below:	use	and	test	model	with		
(b	interaction	dependent)



Macroscopic	friction	and	fraction	of	sliding	contacts	

• Phenomenological	Model	agrees	well	with	data
• Limit	∆	->	0	 singular	for	c!  ??



• Velocity fluctuations
• Strain  scale

Microscopic observables in granular flows
Simple model of frictionless suspensions

Lerner et al, PNAS 2012

L =
Vr

✏̇D✏v



Extracting Key microscopic properties
DeGiuli et al, PRE 2015

C(✏) = h~Vr(0) · ~Vr(✏)i

C(0) = h~V 2
r (0)i ⇠ L2

• Captures	velocity	fluctuations:

appears	to	diverge	near	jamming

• Captures							(where	memory	is	lost,	function	drops	off)	✏v

Menon	Durian	97
DeGiuli et	al,	PRE	
2016



• Network	almost	force	balance

• Newton	equation:	velocity	increases	exponentially.	
Characteristic	strain			

Collision	must	occur	on	that	strain	scale	in	a	stationary	state.

Idea	behind

Net	force	F	<<	contact	forces

F	grows	in	between	collisions

DeGiuli et	al,	PRE	 2016



DeGiuli et al, PRE 2016
Energy	balance

:			power	injected	=	power	dissipated				

=		N	*	(collisional	rate)	*	(kinetic	energy	of	particles)

=	(number	of	sliding	particles)*	(transverse	force)	*(velocity)

: Fraction	of	sliding	contact :		friction	coefficient



Sliding dissipation dominates in dense flows

DeGiuli, McElwaine, Wyart PRE 2016

All	quantities																																	can	be	expressed	in	terms	of		



Estimating		the	mechanical	noise	df

• vibrational		energy

• As	to	be	compared	to	potential	energy

->		explains	why	rigid	limit	is	singular	

• Finally	one	finds	



Estimating		c from	the	mechanical	noise

x

x

Close	the	problem	



Further	tests



Conclusion

• Hysteresis	emerges	as	collective	effect,	even	if	not	present	at	contact	level

• Mechanical	noise	that	lubricate	contacts,	explains	main	observations

• Role	of		Delta	testable

• Key	role	of	contacts

• close	to	the	coulomb	cone

• Suspensions?

• Earthquakes?


