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« Polymer brushes and friction

» Polymer brushes and granular flow
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Lubrication

Types of
lubrication

Lubricants are normally employed to reduce frictional forces. Lubricants form
a layer of lower shear strength than the sliding surfaces

Hydrodynamic lubrication: the sliding surfaces are 3 Ty R
separated by a thick lubricant film (thickness > height M \1 &

of the asperities)
[ el e 5]

Hydrostatic lubrication: oil is pumped under pressure
between the sliding surfaces

Elastohydrodynamic lubrication (EHL): the local |
pressures are so high that significant elastic —_— 0

deformation of the sliding surfaces occurs M Y ...
Boundary lubrication: the surfaces are separated by ‘—‘

monomolecular (or nearly monomolecular) films \
Solid lubrication: based on a solid interfacial layer of

low shear strength -
http://images.google.ch =



Lubrication

Types of
lubrication

Lubricants are normally employed to reduce frictional forces. Lubricants form
a layer of lower shear strength than the sliding surfaces

Hydrodynamic lubrication: the sliding surfaces are 3 Ty R
separated by a thick lubricant film (thickness > height M \1 &

of the asperities)
[ el e 5]

Boundary lubrication: the surfaces are separated by

monomolecular (or nearly monomolecular) films \

http://images.google.ch =



Lubrication

Hydrodynamic lubrication (full fluid film)

—""_. U
oy e . g .
e The asperities on the sliding partners never come [o—mn & WCu
into contact with each other F.iv Zb
gk sl . he -
eSurfaces are kept apart by hydrodynamic r—— o
forces
o~
- b 4 77N |
e Sliding surfaces have to be i . ( Py http://images.google.ch
conformal < | \\\\\ Af

due to lubricant
hitting the surface

e But not parallel, so upwards momentum I\_L_——::——’—‘\

supports the load

The pressure that counteracts the normal load orlglnates from the viscous forces in the
liquid

The gap between the surfaces becomes narrower in the direction of motion



Lubrication

Hydrodynamic lubrication (full fluid film)

e The asperities on the sliding partners never come
into contact with each other

eSurfaces are kept apart by hydrodynamic
forces

*Sliding surfaces have to be i http:/ /images.google..ch
conformal h -
w \ due to lubricant
1 hitting the surface
* But not parallel, so upwards momentum 1L ~
supports the load | ta !

X

L by
The pressure that counteracts the normal load originates from the viscous forces in the
liquid
The gap between the surfaces becomes narrower in the direction of motion



Lubrication

The Stribeck curve

Friction coefficient is displayed as a function of the viscosity multiplied by
the tangential velocity, and divided by the normal load (n-U/W)

Boundary In lubricated systems, the friction

lubrication coefficient changes as a function of
I speed
I
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lubrication ifull film)
lubrication
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Coefficient of friction, p ——=

A bearing wants to be operated
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Close to the minimum but on the
right side, so that with slight
changes of the parameters, the
system is drawn towards the
minimum

nU/W =t
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Lubrication

The Stribeck curve

Friction coefficient is displayed as a function of the viscosity multiplied by
the tangential velocity, and divided by the normal load (n-U/W)

In lubricated systems, the friction
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Lubrication

Boundary lubrication

Occurs at high loads or low speeds

Hydrodynamic forces can no longer maintain a lubricant film between the
sliding surfacesl

Direct contact between the asperities starts to become

dominant
Boundary lubricant is essential under these conditions, in order to avoid

excessive friction and wear

Boundary lubricants form adsorbed molecular films on the surfaces
(oversimplification)

Y Y544 Y  Repulsive forces between

< the films carry a
significant part of the
load

-
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Polymer brushes

Pancake -\Ton-i?lerac[ ing —_
(poor solvent or dry) mushrooms
good
—~ox 2% % solvent
| | [
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The Brushettes:
World Premiere, Cargese, 2010

Cna-grarted polymers form
brushes In q Qood solvent
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The Brushettes:
Faraday Meeting on Tribology, 2012




Polymer Brush Demo
Madrid, 2012
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Polymer Brush Demo
Tokyo, 2013




Polymer brushes

IV N

zoooapogo@f@ofoo@

grafting to grafting from

oxides, polymers almost anything...
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Outline

« Polymer brushes and friction
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Friction Measurements with Beam Deflection AFM

- —» Applied Load

Normal bending
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A four-quadrant photodetector o:v\‘}
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Laser light

c
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enables the measurementof @ :.,;:’“
normal and lateral deflections of L | &&¢
the tip/cantilever independently. ©°

A Load
Lateral twisting
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Sodium Borosilicate Microsphere

Cantilever: SizN,
Sphere radius: 2.5 um
Image: SEM
Beam energy: 1 kV
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Poly-I-lysine (PLL)-g-polyethylene glycol (PEG)

PLL backbone NH, e
CH, CH,
MW: 20,000 to 350,000 I
CH2 CH2
« Positively charged at pH<10 éHz PLL backbone (le2
(R=—NH,*) 0 om, 0 C,
- Approximate length of backbone: 90 to H2N_$H_C{NH_CH_E P S/
1000 nm $H2 o] $H2
$H2 ?Hz
(|IH2 c|:H2
?Hz ?Hz
PEG side chain NH, 1\|IH
+  MW: 2000 to 5000 O=|
+ Adsorbs water and has properties CH,
similar to water éH
2
+ Protein resistant (|)
+  Approximate length of side chain:20 nm éH
PEG side chain | ?
CH,
| m=100
T
CH,
. J. Hubbell, D. Elbert, Chem Biol 5: (3) 177-183 (1998

ETH T T &
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Poly-I-lysine (PLL)-g-polyethylene glycol (PEG)

PLL backbone
MW: 20,000 to 350,000

Positively charged at pH<10
(R=-NH,*)

Approximate length of backbone: 90 to
1000 nm

PEG side chain

MW: 2000 to 5000

Adsorbs water and has properties
similar to water

Protein resistant
Approximate length of side chain:20 nm

1}1H2 Il‘THz
CH, CH,
¢, ¢,
#Hz PLL backbone (:3H2
CH, CH,
H2N—CH—C~<NH—éH—C : NH—CH—C NH—éH—C—OH
éHZ y) ] CH, e
¢, ¢H,
?Hz ?Hz
NH, NH
ot
¢H,
L,
%
PEG side chain TH2
CH,
| m=100
(0]
H,

J. Hubbell, D. Elbert, Chem Biol 5: (3) 177-183 (1998
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"Grafting to" of PEG, using a backbone

Oc?{cPOioo" cQO{Oc?

PEG
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surface
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Hydrophilic
Uncharged
Flexible chains
High water content

Protein resistant
Biocompatible

Positive charge
High coverage
Kinetic inertness
pH dependence



Polymer adsorption dramatically reduces nanofriction

0.3 =
';:‘ Hz20
© [m] ure
S 0.2 :
g OHEPES (ph=7.4)
[T
€ * bare tip/PLL{20)-g[6.5]-PEG(2)
g o ¢ both side PLL(20)-g[6.5]-PEG(2)
w YT
0.0 =

-20 30 80 130 180
Normal Load [nN]

X. Yan, S.S. Perry, N.D. Spencer, S. Pasche, S.M. De Paul, M. Textor, M.S. Lim, Langmuir
ETH 2004, 20, 423-428
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“Enforced” Fluid-Film Lubrication by Polymer Brushes

ROAE by e
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“Enforced” Fluid-Film Lubrication by Polymer Brushes
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“Enforced” Fluid-Film Lubrication by Polymer Brushes
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Density Distribution of Polymer and
Solvent

p(z)
N

Dissipative particle dynamics simulation of grafted polymer brushes
under shear
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Tailoring PLL-g-PEG Architecture
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Effect of Chain Spacing on
Protein Adsorption

«E 2R, < dZR, = 1 A2, > 1
, TN N NAITN
ER G0 H OO0 Heo40)
E —
g 300 —4— PLI20%2-FIG( D .
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Effect of Chain Spacing on
Protein Adsorption

cg d "2R < 1 d,--":}Rg = | d«-"2R8 > 1
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Changing the approach:
"grafting from" vs. "grafting to"

"grafting to" "grafting from"
easy, but relatively low density more effort, but high density
e.g. PLL-g-PEG, PLL-g-dex



Hydrocarbon-rich brushes by ATRP

Polymer dry thickness up to above 250 nm (8 MDa) in 3 hours

dodecyl/lauryl

2 "
C12 2 e TN TN T TN T

Initiator methacrylate monomer polymers



Coefficient of Friction

Stribeck Curve in Microtribometer:

7 QOils, Bare Borosilicate Against Brush or Si Wafer
250nm (dry) Poly(dodecyl methacrylate), 20 mN, rotating, reciprocating, 20 cycles

61 per point

7" No Brushes ™ r

21 = gv %ESV ? o}
Q
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0.1 1 10 100 1000 10000

Kinematic Viscosity x Sliding Speed [¢St x cm/s]

Hexadecane Bare

EO 500 cSt Bare

EO 1300 cSt Bare

PF 36 cSt Bare

PF 350 cSt Bare

PF 950 cSt Bare

PF 2200 cSt Bare

Robert M. Bielecki, Maura Crobu, and Nicholas D. Spencer Tribol Lett (2013) 49:263—-272
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Stribeck Curve in Microtribometer:
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Stribeck Curve in Microtribometer:
7 QOils, Bare Borosilicate Against Brush or Si Wafer
250nm (dry) Poly(dodecyl methacrylate), 20 mN, rotating, reciprocating, 20 cycles
61 per point

‘7 No Brushes ™ o
a X X . ﬁ ® Hexadecane P12MA
av %Eﬂv Hexadecane Bare

© 44
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PF 350 cSt Bare
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PF 2200 cSt P12MA
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O

Coefficient of Friction
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Robert M. Bielecki, Maura Crobu, and Nicholas D. Spencer Tribol Lett (2013) 49:263—-272



Outline

Polymer brushes and granular flow
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Burj al Khalifa
Pumping cement slurries
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Environmental issues around concrete

sources: US EPA and Columbia U
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« Concrete is the second most consumed substance on
Earth after water
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 Concrete is the second most consumed substance on
Earth after water
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- Cement production is growing by 2.5% annually, and is
expected to rise from 2.55 billion tons in 2006 to 3.7-4.4
billion tons by 2050.
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Environmental issues around concrete

 Concrete is the second most consumed substance on
Earth after water

- Each year, three tons of concrete are consumed by
every person on the planet

- Cement production is growing by 2.5% annually, and is
expected to rise from 2.55 billion tons in 2006 to 3.7-4.4
billion tons by 2050.

. Producing a ton of cement generates a ton of CO»

(reaction product, heat and electricity required)
- 5% of world CO» emissions are due to cement

production

sources: US EPA and Columbia U



Cement and Concrete Production

Cement Production

Rolaling
heater

Cemenl

Concrete Production

i (10%)

Concrete
mixer

*Gravel = small stones

ielts-mentor.com



One Approach to Improving the C-footprint of Cement
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slurry of cement alone



One Approach to Improving the C-footprint of Cement

- Making concrete with fillers (e.g. ash) mixed in with
cement improves C-footprint of system

 but...reaction of water with cement is stoichiometric,
and excess water lowers concrete performance.

« So slurry of cement + filler is more viscous than
slurry of cement alone

* New rheological situation brings challenges...



Dense Flows (“slurries’):

Shear Thickening of non-Brownian suspensions

Newtonian Fluid |i ‘ -I

Non-Brownian, Rigid, Hard Spheres
High Volume Fraction (>50%)
High Shear

-l —

ETHziirich LSST#



Shear Thickening of non-Brownian
suspensions

Newtonian Fluid Ii ‘ -I

Non-Brownian, Rigid, Hard Spheres

. , - s
" H!gh Volume Fraction (>50%) g DST:}. o
= High Shear s, :.‘"
5 --l’
S.1bllll|\-l\7vnnl CST
1""1116 lllllll :1" 2
~ll———— 10Go(¥) [57]

= 3 Flow Regimes:
= Newtonian Plateau
= Continuous Shear Thickening
= Discontinuous Shear Thickening

Barnes, J. Rheol, 1989

ETH:iirich LSST®




Theoretical Framework

Particle-contact model

= Lubrication regimes: ‘i % -‘

= Sommerfeld number: s =

Nt RyVsiiding
FN
log (1) A
Boundary
. A Asperity is load bearing
Mo Mixed

YL pin %
e <— Fluid is load bearing

Hydrodynamic

| o

¢ log (s)

Stachowiak & Batchelor, Engineering Tribology, 2005
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Theoretical Framework

Particle-contact model

= Lubrication regimes: Ii % -I

= Sommerfeld number: s =

n f R p Vsliding

Corresponding Flow Regimes

log (u) &
Boundary

Mo | Mixed

Kz

W i »  Viscous flow
Hydrodynamic (Newtonian Plateau)
| -
S log (s)

ETHziirich | LSST#



Theoretical Framework

Particle-contact model

= Lubrication regimes: Ii % -I

= Sommerfeld number: s =

N¢ RyVsiiging
Fy : Corresponding Flow Regimes
o9 () ABoundary é ol
7777777 3 SR ....... Granular Flow
o Mixed (Shear-Thickening)

K227z

SN -i-----)»  Viscous flow
227, 2 1 .
Hydrodynamic (Newtonian Plateau)
| =
% log (s) |

ETH:iirich ' LSST®



Measuring Friction Between Spheres

Nicolas Fernandez, Juliette Cayer-Barrioz, Lucio Isa, and Nicholas D. Spencer Langmuir (2015) 31:8809-8817



Measuring Friction Between Spheres

For Centering For Normal Force For Friction Force
Topography Normal Defl. trace Latera Defl. trace Lateral Defl. -etrace

500 nm 3.6 44V 1.3 2.8 -1.0 04V

b. ' B

P ey |
1

3

3 3 6 um

<
u, F CEq 78>

Nicolas Fernandez, Juliette Cayer-Barrioz, Lucio Isa, and Nicholas D. Spencer Langmuir (2015) 31:8809-8817



Measuring Friction Between Spheres
Bare-Bare
High Friction

Brush-Brush
Low Friction

Nicolas Fernandez, Juliette Cayer-Barrioz, Lucio Isa, and Nicholas D. Spencer Langmuir (2015) 31:8809-8817



Measuring Friction Between
Silica Spheres

- /._//::Z'v’.Zl
=250 F 2
£, | &
o Bare & Clean !, 7
8 200 :- | ,'Hi
LCL) Z / -
5 f
c [/ Bare & Contaminated
$100 L E
= , i .
|E | ‘LN /'.’J:l—‘ —
50.' @‘ @,_,-/ Polymer -Brush Coated
== I——
5
O,z’. —ﬁ—m e | .—...“%i — |
0 100 200 300 400

Normal Force [nN]

Nicolas Fernandez, Juliette Cayer-Barrioz, Lucio Isa, and Nicholas D. Spencer Langmuir (2015) 31:8809-8817



Experimental Validation
Tribology - Rheology comparison |i ‘ -‘

= [,—tunable system:

= Quartz Powder (12um) + PMAA-g-PEG (+ Ca(OH), )
= Tunable BL friction coefficient (n,=0.6 = 1.1) r\$2nm

Lee & Spencer, Science, 2008
N Fernandez et al., Physical Review Letters, 111, 108301, 2013
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Experimental Validation
Tribology - Rheology comparison Ii ‘ -l

= Hy— tunable system:

= Quartz Powder (12um) + PMAA-g-PEG (+ Ca(OH), )
= Tunable BL friction coefficient (n,=0.6 = 1.1) T_\II:an

= O __BL measurement:

= Compressive rheology
(Centrifugation up to 20009)

N Fernandez et al., Physical Review Letters, 111, 108301, 2013
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Experimental Validation
Tribology - Rheology comparison |i ‘ -l

= Hy— tunable system:

= Quartz Powder (12um) + PMAA-g-PEG (+ Ca(OH), )
= Tunable BL friction coefficient (n,=0.6 = 1.1) h\:I:an
57

= O __BL measurement:

= Compressive rheology
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= [,—tunable system:
= Quartz Powder (12um) + PMAA-g-PEG (+ Ca(OH), ) T
= Tunable BL friction coefficient (n,=0.6 = 1.1)

= O BL measurement:
= Compressive rheology
(Centrifugation up to 2000g) aad | % ~
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Conclusions: Dense flows—Friction and
Shear Thickening

= Direct connection between the transitions in flow regimes and
those in lubrication regimes

= Friction determines the maximum volume fraction in boundary-
lubricated flows

= Onset and nature of the shear-thickening transition can be
controlled by controlling the lubrication between particles

= can optimised polymer-brush lubricant additive to achieve
better flow properties!
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