Contact forces and particle interactions in shear thickening suspensions

John R. Royer

Joseph French Julien Sindt Jin Sun Wilson Poon

Shear thickening

Video from ETH Zurich Soft Materials youtube channel

Shear thickening

Video from ETH Zurich Soft Materials youtube channel

Continuous Shear Thickening

Guy, Hermes, Poon, PRL 2015 Royer, Blair, Hudson PRL 2016

Continuous Shear Thickening

or

charge stabilised particles

Characteristic stress σ^* independent of solids concentration.

$$\phi = \frac{V_{part}}{V_{total}}$$

Guy, Hermes, Poon, PRL 2015 Royer, Blair, Hudson PRL 2016

"Random close packing" for frictionless spheres

Guy, Hermes & Poon, PRL 2015 Wyart and Cates, PRL 2014

"Random close packing" for frictionless spheres

Shear thickened viscosity diverges earlier

Guy, Hermes & Poon, PRL 2015 Wyart and Cates, PRL 2014

Silbert, Soft Matter 2010

Guy, Hermes & Poon, PRL 2015 Wyart and Cates, PRL 2014

Shear Thickening and Friction

F_T≤μ|F_N|
increasing stress

Simulations with stress activated frictional contacts

Mari, Seto, Morris, JoR 2014

Ness and Sun, Soft Matter 2016

Stress activated friction

Guy, Hermes & Poon, PRL 2015

Analytic model for shear thickening rheology

Analytic model for shear thickening rheology

What sets the onset stress?

d=1.5 µm Silica spheres in 85% w/w glycerol/water

d=1.5 µm Silica spheres in 85% w/w glycerol/water

Shear thickening charge stabilised suspensions

d=1.5 µm Silica spheres in 85% w/w glycerol/water

Shear thickening charge stabilised suspensions

d=1.5 µm Silica spheres in 85% w/w glycerol/water

Shear thickening charge stabilised suspensions

d=1.5 µm Silica spheres in 85% w/w glycerol/water

Shift in thickening onset, $\phi_{\rm m}$ unchanged

Further increasing salt concentration: thickening to yielding

 $\phi = 0.53$

also see: Brown et al, Nature Mat. 2009, Clavaud et al, PNAS 2017

Simple picture of particle interactions

$$F_{DLVO} = \pi \epsilon \epsilon_0 \psi^2 (d/\lambda_D) e^{-h/\lambda_D} - \frac{A_H d}{6h^2}$$

measure zeta potential

calculate A_H from Lifshitz theory

$$A_H \simeq 0.6 k_B T$$

calculate screening length λ_D

Simple picture of particle interactions

$$F_{DLVO} = \pi \epsilon \epsilon_0 \psi^2 (d/\lambda_D) e^{-h/\lambda_D} - \frac{A_H d}{6h^2}$$

Connect rheology to interactions?

Connect rheology to interactions?

Connect rheology to interactions?

Ok agreement ... what about VdW minimum?

DLVO: interactions for smooth spheres

Our particles aren't smooth

http://tribo.iam-cms.kit.edu/contactapp/

Our particles aren't smooth

(if you look close enough)

http://tribo.iam-cms.kit.edu/contactapp/

Our particles aren't smooth

(if you look close enough)

http://tribo.iam-cms.kit.edu/contactapp/

Interaction model with roughness?

Parsons, Walsh, Craig, J. Chem. Phys. 2014

Interaction model with roughness?

Parsons, Walsh, Craig, J. Chem. Phys. 2014

Direct Force Measurements

Conclusions

- Shear thickening onset controlled by repulsive particle interactions
- smooth particle interactions capture trend

- Shear thickening persists even as repulsive length scales approach surface roughness
- $\phi_{\rm m}$, and hence μ , unchanged by interaction details

- Need for particle contact model incorporating roughness

