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Shear Thickening - Jamming below RCP

Guy, Hermes & Poon, PRL 2015

and 4500 nm (in cycloheptylbromide and decalin) give the
same picture. Samples were prepared by diluting a close
packed sediment, using simulations [26] to estimate ϕRCP
of polydisperse HS. The solvent viscosities were ηf ¼
2.83 mPa s for the large and 2.4 mPa s for the small particles
at 19 °C. We also present data for 45 μm particles, prepared
by mixing dry powder and solvent (ηf ¼ 2.4 mPa s, see
SupplementalMaterial [20]). Adding an excess of screening
salt tetrabutylammonium chloride did not change the rheol-
ogy; we present salt-free data.
Rheology was performed in an Anton Paar 301 rheom-

eter in truncated cone and plate geometry (cone angle 1°,

radius 25 mm, truncation gap 100 μm ) in stress-controlled
mode unless otherwise stated. A sandblasted cone (surface
roughness ∼10 μm) and a base plate roughened with
silicon carbide powder (surface roughness ∼5 μm) were
used. Rheology of the 45 μm particles was performed in a
parallel plate geometry (see Supplemental Material [20]).
Even with a solvent trap, artifacts due to drying were
evident if samples were left to equilibrate at shear rates
_γ ≲ 10−2 s−1. Thus, we worked at _γ > 0.01 s−1.
To establish a baseline, we first explore d ¼ 404 nm

colloids. Figure 1(a) shows the relative viscosity η ¼
ðσ=_γÞ=ηf (solvent viscosity ηf ¼ 2.4 mPa s) as a function

FIG. 1 (color online). Rheology in the colloidal, intermediate, and granular size regimes. (a) Relative viscosity η versus shear stress σ
in units of Pa and kBT=d3 for d ¼ 404 nm spheres at different volume fractions (%), as labeled. Solid lines, fits based on [12]; finely
dotted lines, schematics based on literature data (with sparsely dotted ¼ unstable states). Samples shear thicken above a ϕ-independent
onset stress σ$ (vertical dashed line). Color scheme: blue, frictionless interactions (σ < σ$); black, shear thickening; red, frictional
interactions (σ ≫ σ$). The unshaded region is accessible using our rheometer, which reaches maximum and minimum shear rates of
8000 and 10−3 s−1, respectively, and a minimum stress of 10−2 Pa; the maximum accessible stress is set by a d-dependent fracture stress
σ†. (b) Main: ηðϕÞ for the limiting high-shear viscosity, η1, in (a) [blue (dark gray) filled square]; the lower, η1ðϕÞ [red (light gray) filled
square], and upper, η2ðϕÞ (red square), branches in (c); the upper branch (red triangle) in (d). Solid red line, least squares fit to
η2ðϕÞ ¼ Að1 − ϕ=ϕmÞ−n with A ¼ 0.20ð9Þ, ϕm ¼ 0.558ð5Þ and n ¼ 2.2ð2Þ. η1ðϕÞ data for other sizes of PMMA spheres in this work,
d ¼ 912 nm (triangle down) and 1800 nm (filled triangle down). Other symbols, literature high shear viscosities (with ϕ shifted by up to
5%) for sterically stabilized PMMA [5,6,14,15], sterically stabilized silica [3], and glass beads [11]. (filled circle) and (circle), lower and
upper branches from [15]. Inset, η2ðϕÞ versus (ϕm − ϕ) including the upper branch from [15]. (c) ηðσÞ for d ¼ 3770 nm spheres. The
flow in both (a) and (c) was unsteady for ϕ ≥ 0.56, and points represent temporal averages. (d) ηðσÞ for d ¼ 45 μm spheres, with ϕ
shifted up so that the data agree with η2ðϕÞ in (b).
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packed sediment, using simulations [26] to estimate ϕRCP
of polydisperse HS. The solvent viscosities were ηf ¼
2.83 mPa s for the large and 2.4 mPa s for the small particles
at 19 °C. We also present data for 45 μm particles, prepared
by mixing dry powder and solvent (ηf ¼ 2.4 mPa s, see
SupplementalMaterial [20]). Adding an excess of screening
salt tetrabutylammonium chloride did not change the rheol-
ogy; we present salt-free data.
Rheology was performed in an Anton Paar 301 rheom-

eter in truncated cone and plate geometry (cone angle 1°,

radius 25 mm, truncation gap 100 μm ) in stress-controlled
mode unless otherwise stated. A sandblasted cone (surface
roughness ∼10 μm) and a base plate roughened with
silicon carbide powder (surface roughness ∼5 μm) were
used. Rheology of the 45 μm particles was performed in a
parallel plate geometry (see Supplemental Material [20]).
Even with a solvent trap, artifacts due to drying were
evident if samples were left to equilibrate at shear rates
_γ ≲ 10−2 s−1. Thus, we worked at _γ > 0.01 s−1.
To establish a baseline, we first explore d ¼ 404 nm

colloids. Figure 1(a) shows the relative viscosity η ¼
ðσ=_γÞ=ηf (solvent viscosity ηf ¼ 2.4 mPa s) as a function

FIG. 1 (color online). Rheology in the colloidal, intermediate, and granular size regimes. (a) Relative viscosity η versus shear stress σ
in units of Pa and kBT=d3 for d ¼ 404 nm spheres at different volume fractions (%), as labeled. Solid lines, fits based on [12]; finely
dotted lines, schematics based on literature data (with sparsely dotted ¼ unstable states). Samples shear thicken above a ϕ-independent
onset stress σ$ (vertical dashed line). Color scheme: blue, frictionless interactions (σ < σ$); black, shear thickening; red, frictional
interactions (σ ≫ σ$). The unshaded region is accessible using our rheometer, which reaches maximum and minimum shear rates of
8000 and 10−3 s−1, respectively, and a minimum stress of 10−2 Pa; the maximum accessible stress is set by a d-dependent fracture stress
σ†. (b) Main: ηðϕÞ for the limiting high-shear viscosity, η1, in (a) [blue (dark gray) filled square]; the lower, η1ðϕÞ [red (light gray) filled
square], and upper, η2ðϕÞ (red square), branches in (c); the upper branch (red triangle) in (d). Solid red line, least squares fit to
η2ðϕÞ ¼ Að1 − ϕ=ϕmÞ−n with A ¼ 0.20ð9Þ, ϕm ¼ 0.558ð5Þ and n ¼ 2.2ð2Þ. η1ðϕÞ data for other sizes of PMMA spheres in this work,
d ¼ 912 nm (triangle down) and 1800 nm (filled triangle down). Other symbols, literature high shear viscosities (with ϕ shifted by up to
5%) for sterically stabilized PMMA [5,6,14,15], sterically stabilized silica [3], and glass beads [11]. (filled circle) and (circle), lower and
upper branches from [15]. Inset, η2ðϕÞ versus (ϕm − ϕ) including the upper branch from [15]. (c) ηðσÞ for d ¼ 3770 nm spheres. The
flow in both (a) and (c) was unsteady for ϕ ≥ 0.56, and points represent temporal averages. (d) ηðσÞ for d ¼ 45 μm spheres, with ϕ
shifted up so that the data agree with η2ðϕÞ in (b).
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and 4500 nm (in cycloheptylbromide and decalin) give the
same picture. Samples were prepared by diluting a close
packed sediment, using simulations [26] to estimate ϕRCP
of polydisperse HS. The solvent viscosities were ηf ¼
2.83 mPa s for the large and 2.4 mPa s for the small particles
at 19 °C. We also present data for 45 μm particles, prepared
by mixing dry powder and solvent (ηf ¼ 2.4 mPa s, see
SupplementalMaterial [20]). Adding an excess of screening
salt tetrabutylammonium chloride did not change the rheol-
ogy; we present salt-free data.
Rheology was performed in an Anton Paar 301 rheom-

eter in truncated cone and plate geometry (cone angle 1°,

radius 25 mm, truncation gap 100 μm ) in stress-controlled
mode unless otherwise stated. A sandblasted cone (surface
roughness ∼10 μm) and a base plate roughened with
silicon carbide powder (surface roughness ∼5 μm) were
used. Rheology of the 45 μm particles was performed in a
parallel plate geometry (see Supplemental Material [20]).
Even with a solvent trap, artifacts due to drying were
evident if samples were left to equilibrate at shear rates
_γ ≲ 10−2 s−1. Thus, we worked at _γ > 0.01 s−1.
To establish a baseline, we first explore d ¼ 404 nm

colloids. Figure 1(a) shows the relative viscosity η ¼
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FIG. 1 (color online). Rheology in the colloidal, intermediate, and granular size regimes. (a) Relative viscosity η versus shear stress σ
in units of Pa and kBT=d3 for d ¼ 404 nm spheres at different volume fractions (%), as labeled. Solid lines, fits based on [12]; finely
dotted lines, schematics based on literature data (with sparsely dotted ¼ unstable states). Samples shear thicken above a ϕ-independent
onset stress σ$ (vertical dashed line). Color scheme: blue, frictionless interactions (σ < σ$); black, shear thickening; red, frictional
interactions (σ ≫ σ$). The unshaded region is accessible using our rheometer, which reaches maximum and minimum shear rates of
8000 and 10−3 s−1, respectively, and a minimum stress of 10−2 Pa; the maximum accessible stress is set by a d-dependent fracture stress
σ†. (b) Main: ηðϕÞ for the limiting high-shear viscosity, η1, in (a) [blue (dark gray) filled square]; the lower, η1ðϕÞ [red (light gray) filled
square], and upper, η2ðϕÞ (red square), branches in (c); the upper branch (red triangle) in (d). Solid red line, least squares fit to
η2ðϕÞ ¼ Að1 − ϕ=ϕmÞ−n with A ¼ 0.20ð9Þ, ϕm ¼ 0.558ð5Þ and n ¼ 2.2ð2Þ. η1ðϕÞ data for other sizes of PMMA spheres in this work,
d ¼ 912 nm (triangle down) and 1800 nm (filled triangle down). Other symbols, literature high shear viscosities (with ϕ shifted by up to
5%) for sterically stabilized PMMA [5,6,14,15], sterically stabilized silica [3], and glass beads [11]. (filled circle) and (circle), lower and
upper branches from [15]. Inset, η2ðϕÞ versus (ϕm − ϕ) including the upper branch from [15]. (c) ηðσÞ for d ¼ 3770 nm spheres. The
flow in both (a) and (c) was unsteady for ϕ ≥ 0.56, and points represent temporal averages. (d) ηðσÞ for d ¼ 45 μm spheres, with ϕ
shifted up so that the data agree with η2ðϕÞ in (b).
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dotted lines, schematics based on literature data (with sparsely dotted ¼ unstable states). Samples shear thicken above a ϕ-independent
onset stress σ$ (vertical dashed line). Color scheme: blue, frictionless interactions (σ < σ$); black, shear thickening; red, frictional
interactions (σ ≫ σ$). The unshaded region is accessible using our rheometer, which reaches maximum and minimum shear rates of
8000 and 10−3 s−1, respectively, and a minimum stress of 10−2 Pa; the maximum accessible stress is set by a d-dependent fracture stress
σ†. (b) Main: ηðϕÞ for the limiting high-shear viscosity, η1, in (a) [blue (dark gray) filled square]; the lower, η1ðϕÞ [red (light gray) filled
square], and upper, η2ðϕÞ (red square), branches in (c); the upper branch (red triangle) in (d). Solid red line, least squares fit to
η2ðϕÞ ¼ Að1 − ϕ=ϕmÞ−n with A ¼ 0.20ð9Þ, ϕm ¼ 0.558ð5Þ and n ¼ 2.2ð2Þ. η1ðϕÞ data for other sizes of PMMA spheres in this work,
d ¼ 912 nm (triangle down) and 1800 nm (filled triangle down). Other symbols, literature high shear viscosities (with ϕ shifted by up to
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Shear Thickening and Friction

comparable to the measurements of Fernandez et al. (2013) for !10 lm quartz particles
coated by polymer brushes] for most of the simulations, except when the dependence on
l is specifically investigated.

In the data plots shown in this section, the error bars represent the standard deviation,

which we define for an observable A(t) as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hA2i" hAi2

q
, where h#i is the time (strain)

average T"1
Ð T

0 # dt over the simulated units of strain. (We perform simulations over 50

strain units, hence T¼ 50 except when the time averages are performed over subsets of
the whole simulation in the case of intermittent data around DST.)

Rheological data are plotted versus shear rates and shear stresses nondimensionalized
by the characteristic shear rate _c0 ¼ F%=6pg0a2 and stress g0 _c0, respectively, where g0 is
the viscosity of the suspending fluid.

A. Frictionless and frictional rheologies

In the CLM, due to the threshold force, the friction between grains is absent at low
shear rates and activated at high shear rates. Because of this, we expect that the low
shear-rate limit for concentrated suspensions will have a rheology gð/; _c ! 0Þ typical of
a system close to the jamming transition for frictionless particles, while the high shear-
rate limit shows a rheology gð/; _c !1Þ typical of a system close to the jamming transi-
tion for particles with a friction coefficient l¼ 1.

These two limiting viscosities are shown in Fig. 1, where we also show the high shear-
rate behavior for the infinite friction case (l¼1) for reference. Each diverges at a differ-
ent volume fraction, thus friction shifts the jamming point [Otsuki and Hayakawa
(2011)]. We fit our data with power-law divergences g / Cð1" /=/JÞ

"k, with parame-
ters ð/J; k;CÞ as detailed in the caption of Fig. 1.

For the ERM, the situation is the same at high shear rates but differs at low shear rates.
While friction is not felt for _c ! 0, as particles do not contact, the finite range of the

FIG. 1. Relative viscosity gr as a function of the volume fraction / in the two limits _c ! 0 and _c !1 (left).
The _c ! 0 viscosity (circles) is independent of the friction coefficient l as the friction is not activated at low
stresses, which leads to a relatively lower viscosity diverging at a higher volume fraction /0

J (which is the jam-
ming point for frictionless systems). The _c !1 viscosity however directly depends on l, as is seen from the
difference between l¼ 1 (squares) and l¼1 (diamonds) plots. In particular, the jamming volume fraction
decreases with increasing l. We fit our data with power laws gr ¼ Cð1" /=/JÞ

"k (right). The
best fitting parameters are ð/0

J ; k
0;C0Þ ( ð0:66; 1:6; 1:40Þ; ð/l¼1

J ; kl¼1;Cl¼1Þ ( ð0:58; 2:3; 0:71Þ, and
ð/l¼1

J ; kl¼1;Cl¼1Þ ( ð0:56; 2:4; 0:63Þ.
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FIG. 10. Simple shear rheology predicted by the simulation model used in this work. The suspen-
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f
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in x, gradient in y and vorticity in z), with the dimensionless rate �̇/�̇⇤ varied across orders

of magnitude. The rheological flow map is presented in Fig 10, where �

xy

is the relevant

component of � (Equation 9) to represent the shear stress. Shear thickening is observed

above a critical stress �
xy

/(⌘
f

�̇

⇤) ⇡ 1. The results in the main part of the present paper are

all obtained in the limit of large �̇/�̇

⇤, where �̇ is analogous to the primary shearing flow,

and where the suspension would be expected to flow well within the shear thickened regime.
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Analytic model for shear thickening rheology
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Analytic model for shear thickening rheology
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Shift in thickening onset, 𝜙m unchanged
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Further increasing salt concentration: 
thickening to yielding

� = 0.53

also see: Brown et al, Nature Mat. 2009, Clavaud et al, PNAS 2017 
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Simple picture of particle interactions

measure zeta potential

FDLV O = ⇡✏✏0 
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Simple picture of particle interactions

Ionic strength

FDLV O = ⇡✏✏0 
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Connect rheology to interactions?
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Connect rheology to interactions?
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Connect rheology to interactions?

Ok agreement … what about VdW minimum?
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DLVO: interactions for smooth spheres

200 nm

1940 nm

1790

1820

1840

1860

1880

1900

1920

0

150 nm
0 5 10

–1

0

1

2

Fo
rc

e 
(n

N
)

0.6 mM

1.6 mM

6.2 mM

11 mM

54 mM

100 mM

150 mM

230 mM

330 mM

430 mM

500 mM

550 mM

600 mM

700 mM

Separation (nm)

screening length 𝛌D, peak 
location: ~nm or below 



Our particles aren’t smooth
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Expect DLVO to breakdown close to contact

(if you look close enough)



Interaction model with roughness?

Parsons, Walsh, Craig, J. Chem. Phys. 2014

164701-6 Parsons, Walsh, and Craig J. Chem. Phys. 140, 164701 (2014)

FIG. 6. Conventional experimental AFM force curve for a rough titania sur-
face (rms ≈ 9.67 nm), with the best conventional DLVO fit (surface charge
−0.0007 C m−2, surface potential −35 mV, NaCl concentration 0.18 mM)
“conventional” here means that roughness is not accounted for, and the re-
pulsive contact wall is placed at L = 0.

The conventional experimental force measurement and
DLVO fit,5 without consideration of roughness (such that the
contact wall is placed at L = 0) are shown in Fig. 6. The
probe was a borosilicate sphere coated with an 82 nm layer
of titania, total sphere radius 10.6 µm. The flat substrate was
a boron-doped silicon wafer with a native oxide layer, also
coated with an 82 nm layer of titania.5 The best conventional
DLVO fit corresponded to surface charge −0.0007 C m−2

with a decay length corresponding to an ionic strength of
0.18 mM. The corresponding surface potential is −35 mV,
somewhat lower in magnitude than the −50 or −60 mV one
would expect from zeta potential measurements5). The prob-
lem of roughness is apparent in this figure. The experimental
data are characterised by a force peak of about 0.085 mN/m
located 10 nm out from the contact wall, together with a con-
tact force of 0.068 mM/N. No set of DLVO parameters (sur-
face charge and concentration) is able to capture this contact
force simultaneously with the short range peak while at the
same time fitting the long range decay curve. The best DLVO
fit predicts a higher peak of 0.1 mN/m and predicts that the
force becomes adhesive at surface separations less than 6 nm
(due to the van der Waals interaction), whereas the measured
force remains repulsive at contact.

In Fig. 7 we compare the experimental force curve
present against theoretical roughened force curve, applying
Eq. (7) (using the AFM histogram of surface heights) to
both the DLVO noncontact interaction and the contact inter-
action of Hertzian sphere compression Eq. (14). Very good
agreement is found, obtained by fitting both the DLVO sur-
face charge to −0.0025 C m−2 (potential −64 mV, consistent
with zeta potential measurements5) with NaCl concentration
0.18 mM together with asperity tip radius R = 3400 µm. This
very large radius indicates that the tips of asperities are nearly
flat. The long range decay rate of the force remains constant,
as anticipated by Eq. (18). The fitting procedure involves re-
alignment of the raw experimental data to adjust compliance
against the elastic contact force. That is both theory and ex-
periment depend on one another and the fitted parameters are
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FIG. 7. Roughened theoretical force curve (including elastic contact) fitted
against experimental AFM measurement of the force between two rough ti-
tania surfaces in 0.18 mM NaCl at pH 9. DLVO calculations are taken with
constant surface charge. Hertzian radius of asperity tips is R = 3400 µm. Sur-
face charge −0.0025 C m−2 (surface potential −64 mV on isolated surfaces).

adjusted iteratively until a sufficiently self-consistent match is
obtained.

In the supplementary material66 we present an alternative
model of elastic contact invoking elastic bending of asperities,
controlled by the average cross-sectional area of asperities.
This model can provide a fit equivalent to the one we obtained
with Hertzian contact if the cross-sectional area is taken to be
44 Å2. This implies asperities of very high aspect ratio (tall
height relative to a small diameter). But the AFM image in
Fig. 5 suggests that asperities on this surface do not have such
high aspect ratio. It is more reasonable to adopt our Hertzian
model of asperities with relatively flat tips.

B. General effects of roughness

We use the final DLVO parameters established for the
rough titania surface above to explore the general effect that
roughness exerts, compared to the conventional DLVO force.
The salt solution is 0.18 mM NaCl (Debye length 22.6 nm),
titania surface charge is −0.0025 C m−2 (yielding a surface
potential of −64 mV on isolated surfaces).

We first consider the effect of varying the RMS rough-
ness on the noncontact forces (without elastic contact) which
comprise DLVO forces, that is the attractive Hamaker-van der
Waals force and the repulsive force due to formation of the
electrolytic diffuse layer. The effect of roughness on these
two DLVO components is shown in Fig. 8. Since a Debye
length of 22.6 nm is quite large, amplification of electrolytic
repulsion, Fig. 8(a) is relatively mild until roughness becomes
greater than 10 nm (cf. Fig. 4). The amplification by rough-
ness of the shorter range attractive Hamaker force, Fig. 8(b),
is however large and significant even with roughness as low
as 1.5 nm. This observation is consistent with the effect of
roughness on the Casimir force calculated using the proxim-
ity force approximation.59

The total DLVO force is shown in Fig. 9(a). The effect
of roughness becomes apparent once the rms roughness ex-
ceeds 1 nm. The long range behaviour appears unperturbed
by roughness. But amplification of the short range attractive
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FIG. 7. Roughened theoretical force curve (including elastic contact) fitted
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tania surfaces in 0.18 mM NaCl at pH 9. DLVO calculations are taken with
constant surface charge. Hertzian radius of asperity tips is R = 3400 µm. Sur-
face charge −0.0025 C m−2 (surface potential −64 mV on isolated surfaces).

adjusted iteratively until a sufficiently self-consistent match is
obtained.

In the supplementary material66 we present an alternative
model of elastic contact invoking elastic bending of asperities,
controlled by the average cross-sectional area of asperities.
This model can provide a fit equivalent to the one we obtained
with Hertzian contact if the cross-sectional area is taken to be
44 Å2. This implies asperities of very high aspect ratio (tall
height relative to a small diameter). But the AFM image in
Fig. 5 suggests that asperities on this surface do not have such
high aspect ratio. It is more reasonable to adopt our Hertzian
model of asperities with relatively flat tips.
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roughness exerts, compared to the conventional DLVO force.
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two DLVO components is shown in Fig. 8. Since a Debye
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repulsion, Fig. 8(a) is relatively mild until roughness becomes
greater than 10 nm (cf. Fig. 4). The amplification by rough-
ness of the shorter range attractive Hamaker force, Fig. 8(b),
is however large and significant even with roughness as low
as 1.5 nm. This observation is consistent with the effect of
roughness on the Casimir force calculated using the proxim-
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of roughness becomes apparent once the rms roughness ex-
ceeds 1 nm. The long range behaviour appears unperturbed
by roughness. But amplification of the short range attractive

164701-6 Parsons, Walsh, and Craig J. Chem. Phys. 140, 164701 (2014)

FIG. 6. Conventional experimental AFM force curve for a rough titania sur-
face (rms ≈ 9.67 nm), with the best conventional DLVO fit (surface charge
−0.0007 C m−2, surface potential −35 mV, NaCl concentration 0.18 mM)
“conventional” here means that roughness is not accounted for, and the re-
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with a decay length corresponding to an ionic strength of
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somewhat lower in magnitude than the −50 or −60 mV one
would expect from zeta potential measurements5). The prob-
lem of roughness is apparent in this figure. The experimental
data are characterised by a force peak of about 0.085 mN/m
located 10 nm out from the contact wall, together with a con-
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fit predicts a higher peak of 0.1 mN/m and predicts that the
force becomes adhesive at surface separations less than 6 nm
(due to the van der Waals interaction), whereas the measured
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present against theoretical roughened force curve, applying
Eq. (7) (using the AFM histogram of surface heights) to
both the DLVO noncontact interaction and the contact inter-
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with zeta potential measurements5) with NaCl concentration
0.18 mM together with asperity tip radius R = 3400 µm. This
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FIG. 7. Roughened theoretical force curve (including elastic contact) fitted
against experimental AFM measurement of the force between two rough ti-
tania surfaces in 0.18 mM NaCl at pH 9. DLVO calculations are taken with
constant surface charge. Hertzian radius of asperity tips is R = 3400 µm. Sur-
face charge −0.0025 C m−2 (surface potential −64 mV on isolated surfaces).

adjusted iteratively until a sufficiently self-consistent match is
obtained.

In the supplementary material66 we present an alternative
model of elastic contact invoking elastic bending of asperities,
controlled by the average cross-sectional area of asperities.
This model can provide a fit equivalent to the one we obtained
with Hertzian contact if the cross-sectional area is taken to be
44 Å2. This implies asperities of very high aspect ratio (tall
height relative to a small diameter). But the AFM image in
Fig. 5 suggests that asperities on this surface do not have such
high aspect ratio. It is more reasonable to adopt our Hertzian
model of asperities with relatively flat tips.

B. General effects of roughness

We use the final DLVO parameters established for the
rough titania surface above to explore the general effect that
roughness exerts, compared to the conventional DLVO force.
The salt solution is 0.18 mM NaCl (Debye length 22.6 nm),
titania surface charge is −0.0025 C m−2 (yielding a surface
potential of −64 mV on isolated surfaces).

We first consider the effect of varying the RMS rough-
ness on the noncontact forces (without elastic contact) which
comprise DLVO forces, that is the attractive Hamaker-van der
Waals force and the repulsive force due to formation of the
electrolytic diffuse layer. The effect of roughness on these
two DLVO components is shown in Fig. 8. Since a Debye
length of 22.6 nm is quite large, amplification of electrolytic
repulsion, Fig. 8(a) is relatively mild until roughness becomes
greater than 10 nm (cf. Fig. 4). The amplification by rough-
ness of the shorter range attractive Hamaker force, Fig. 8(b),
is however large and significant even with roughness as low
as 1.5 nm. This observation is consistent with the effect of
roughness on the Casimir force calculated using the proxim-
ity force approximation.59

The total DLVO force is shown in Fig. 9(a). The effect
of roughness becomes apparent once the rms roughness ex-
ceeds 1 nm. The long range behaviour appears unperturbed
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Conclusions
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- Shear thickening onset controlled by repulsive 
particle interactions  

- smooth particle interactions capture trend 

- Shear thickening persists even as repulsive 
length scales approach surface roughness 

- 𝜙m , and hence µ, unchanged by interaction 
details 

- Need for particle contact model 
incorporating roughness 


