Suspension rheoSANS

RheoSANS @ NIST

Hudson, Weigandt, Weston, Salipante, Seeman, Blair

Georgetown U., Physics

NIST Polymers and Complex Fluids Group

NIST Center for Neutron Research (NCNR)

Outline

rheoSANS

- Dense vesicular emulsions
- High shear rate
- Rheologica Acta, in press, "Simultaneous slit rheometry and in situ neutron scattering"

Rheology

• Structure property relationships of fluids and viscoelastic solids.

RheoSANS Capabilities

Temperature	-50°C to 200°C
Pressure	Atmospheric
High Shear Rate + Low Shear Stress	
Shear Rate	12,000 s ⁻¹
Shear Stress	900 Pa
Low Shear Rate + High Shear Stress	
Shear Rate	3,500 s⁻¹
Shear Stress	4,500 Pa

Shear thickening emulsions

Shearing makes vesicles

Fit using a vesicle form factor model with a hard sphere structure factor

Shear thickening emulsions

• Vesicle size reduces with shear rate. 2D Detector Solvent Trap w non-volatile o Size in thickened state is set by amount of surfactant, Concentric Cylinde Rheology Tool not amount or type of oil. Quartz Outer Wal Neutror 10000 No Relaxation • Relaxed for 5 hours . . 1000 ¹⁰00000, △ Relaxed for 15 hours Relaxed for 40 hours Viscosity (Pa·s) 100 Mixed Phase String of 10 ^{'oo}ooooo Coexistence Pearls ^{°°}° [₽]□□□□<mark>₽</mark>□₽

â_{&@@@}&&

Shear Rate (s-1)

10

100

1000

0.1

0.01

0.001

0.01

0.1

Bicontinuous Phase

Flow

µRheoSANS

• Higher shear rate

µRheoSANS, high pressure upgrade

Quartz cell

fittings

Not yet tested. Up to 350 bar, suited for dense suspensions.

How do wormlike micelles respond to shear?

decrease at high shear rate?

Alignment, P2

Steady shear rheology of anionic wormlike micelles

Poiseuille flow: How to section?

Depth sectioning method

- How to isolate a certain stress, when a whole spectrum is present?
 - demonstrated by Fernandez-Ballester et al., JoR '09 (WAXS).
 - Linear stress profile from channel wall to center (continuum)
 - Scattering produced from a superposition of these stress states.
 - When the pressure is increased from one state to another, the difference comes only from the highest stress near the channel walls.

The fluid may be shear thickening or thinning.

High shear SANS in rectangular channels

- Depth sectioning method demonstrated by Fernandez-Ballester et al., JoR '09 (WAXS).
 - Isolate high stress region

When will this analysis fail?

- Whenever the scattering depends on position, independent of stress.
 - E.g., concentration gradients. Subtraction is then **NOT** depth sectioning

High shear SANS in rectangular channels

Quantitative comparison in graphical form

Alignment behavior of various micelles

- The effects of T, salt, conc. and solvent viscosity.
 - Equilibrium properties (by DWS and simulation).
 - Alignment in flow.

1,2 scattering: section with narrow aperture

• Alignment tracks local shear rate

1,2 scattering

• Slight inclination of worms towards velocity gradient.

Summary

- RheoSANS of shear thickening emulsions.
- New µRheoSANS for very high shear rate.
- Results from SLES wormlike micelles match well with measurements with traditional RheoSANS.
 - What is the rheology at highest shear rates?
 - Test other fluids, i.e. suspensions.
- Please contact steven.hudson@nist.gov, kathleen.weigandt@nist.gov

Frustrated with LabVIEW?

- Need a framework for large applications.
- Try a python framework developed by Brian D'Urso (Montana St)
 - 3 files to write:
 - xml: defines GUI
 - txt: default GUI values
 - py: code

Solution: Pythics Overview

- Pure Python implementation.
- Organized as a program that manages 'documents' – virtual instruments or VI's.
 - Single GUI process and thread (mandated by GUI toolkits).
 - Each VI gets its own process for executing actions.
- GUI is web browser style:
 - Tabbed interface, one tab per VI.
 - Layout within each tab is html-like.
- User-programmer writes two files:
 - GUI specification: html/xml.
 - Callback functions: pure Python.

Rheology of insulin assemblies

- Grethe Jensen
- Shear thickening

Micro-capillary rheometer

Why a new approach for viscosity of protein drugs?

- Convenience & cost. 100's of conditions (various excipients, buffers, and pH) are screened for properties including viscosity. Target: < 100 μL.
- Accuracy & breadth. Target: interface free and wide range of rate.

High shear rates

flow meter

pressure controller

MedImmune

Hudson et al., J Pharm Sci, 2015

b)

Biomanufacturing

