An effective fluid Two-phase flow Frictional approach Rheology of dense fiber suspensions Conclusion
00000

Rheology of dense granular suspensions: from
spheres to fibers

Elisabeth Guazzelli

Aix-Marseille Univ, CNRS, IUSTI, Marseille, France
elisabeth.guazzelli@univ-amu.fr

in collaboration with J. E. Butler, O. Pouliquen, S. Shaikh, F. Tapia.

Non-linear Mechanics and Rheology of Dense Suspensions:
Nanoscale Structure to Macroscopic Behavior
Kavli Institute for Theoretical Physics 2018

Elisabeth Guazzelli Aix-Marseille Univ, CNRS

Dense suspension rheology



An effective fluid Two-phase flow Frictional approach Rheology of dense fiber suspensions Conclusion
00000

Complex mobile particulate systems

used in engineering and found in nature
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& TBrs; 9
Rock and ice debris avalanche,
Mount Adams (October 20, 1997)

Pulp at a paper mill near Pensacola,
Florida, 1947, from wikipedia

Lava fountain and flow,
Kilauea, Hawaii (June 7, 1984)

https:/ /volcanoes.usgs.gov Museum of Civilizations in Europe and the Mediterranean (MuCEM) designed by
Rudy Ricciotti: Ultra-High Performance Fiber-Reinforced concrete (UHPFRC)
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Viscosity
A sheared viscous suspension of non colloidal particles

Suspension of rigid neutrally-buoyant spheres

Buoyancy effect
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Viscosity

Suspension viscosity

Suspension of rigid, neutrally-buoyant, non-colloidal, mono-disperse, hard spheres

The scaling of the shear stress is viscous:

106

P

from A Physical Introduction to Suspension Dynamics
Guazzelli & Morris (lllustrations by Pic)
Cambridge Texts in Applied Mathematics CUP 2012
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T = ns(¢) ney with ¥ = V2E : E

Viscosity O(¢)
Einstein 1905

ns =14 5¢/2

First effects of particle interactions
Batchelor & Green 1972

ns =1+ 3¢+ 6.954
for pure straining BUT not for simple shear
because closed pair trajectories

Empirical correlation
Krieger 1972

s = (1 — @/¢pc)™ with a ~ 2

Jamming transition
Lerner et al. 2012; Andreotti et al. 2012; ...

steric/elastic interactions
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Normal stresses
Normal stresses in suspensions

Normal stress differences
o Ny =%11 — X © o
0 No =32 — 333

2 (velocity gradient)

3 (vorticity)

Normal stress differences in non-Brownian suspensions

o Ny, Ny o nf%  linearin 4 = 2E - E

o Nij/T=0(1) = aj(¢) same divergence as ¢ — ¢
o [No| > [Ny

o N, negative but sign of Ny more elusive!

Gadala-Maria 1979, Zarraga, Hill & Leighton 2000; Singh & Nott 2003; Couturier, Boyer, Pouliquen & Guazzelli
2011; Dai, Bertevas & Tanner 2013; Dbouk, Lobry & Lemaire 2013; Gamonpilas, Morris & Denn 2016
Sierou & Brady 2002; Gallier, Lemaire, Peters & Lobry 2014; Gallier, Lemaire, Lobry & Peters 2016
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First normal stress coefficient avj(¢) small but sign elusive: negative, positive, or null!
Second normal stress coefficient ap(¢) negative and magnitude increases with increasing ¢
Simulations show importance of friction and effect of confinement/walls
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Examples of two-phase suspension flows: (left) Shear-induced migration of neutrally-buoyant spheres in a
pressure-driven Poiseuille flow in a tube; (middle) Erosion of sedimented particles under the action of viscous fluid
shearing flows; (right) Submarine avalanches forced by the fluid shear stress . = . 5 . . = . =, =
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Particle pressure in sheared suspension
Suspension mixture incompressible but not particle phase!

Particle pressure PP (or more generally particle

Measurement of osmotic pressure
normal-stress o)

analogous to the osmotic pressure (or more generally
osmotic stress) exerted by both colloidal particles
and dissolved molecules

Yurkovetsky & Morris 2009

Normal viscosity

PP = nn(®) ney viscous scaling

Deboeuf, Gauthier, Martin, Yurkovetsky & Morris 2009 Morris & Boulay 1999

@ not often easily captured
Prasad and Kytomaa 1995; Boyer, Guazzelli & Pouliquen 2011; Garland, Gauthier, Martin & Morris 2013

O crucial for two-phase flow modeling (e.g. modeling shear-induced migration)
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Modeling shear-induced migration

Discrete particle simulations Suspension balance model (two-phase model)

' Particle flux related to the divergence of the
A7 Q particle-phase normal-stress:

jpxV.oP

y
T ox Nott & Brady 1994; Morris & Boulay 1999; Lhuillier 2009; Nott, Guazzelli
2 & Pouliquen 2011

Correlations for o required!
e.g. Morris & Boulay 1999; Boyer, Guazzelli & Pouliquen 2011

Simple 2D fully-developed pipe flow

@ Steady fully developed flow in the x-direction with
variation of properties in the y-direction
O Particle y-momentum balance

ope _ Olua@)i0) _ g
9y dy -

Stokesian Dynamics g g g
Nott & Brady 1094 @ Where the shear rate is low, the concentration is

high and vice versa
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Shear-induced migration in oscillatory pipe flow

Concentration profile in pipe flow and comparison with the SBM using the
rheology of Morris & Boulay 1999 and Boyer, Guazzelli & Pouliquen 2011

At smaller ¢g, SBM fails to predict that the steady concentration at the center
of the pipe falls below that of ¢ &~ 0.585

Good agreement of SBM and experiments at large ¢o

but some discrepancies at smaller ¢ and for the dynamics
Snook, Butler & Guazzelli 2016
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Two-phase flow

Frictional approach

Rheology of dense fiber suspensions Conclusion

Volume-imposed versus pressure-imposed rheometry

Volume-imposed rheometry:
PP’ T, ;77 ¢7 nf

O 7 =ns(®) nr

O PP =nn(9)ney

Viscous scaling of the stresses

Elisabeth Guazzelli
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Pressure-imposed rheometry:
¢, 7,7, PP, nf
O 7/PP = p(J)
% ¢=¢(J)
J = n¢y/ P viscous dimensionless shear rate
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Precision scale Translation Stage

—
g

X
T

Position sensor forque sensor
Solvent n@—* Spring.

==

Bottom Plate

@ Top porous plate enabling fluid to flow
through it but not particles

Q@ Simultaneous measurements of &, A, T,
PP(= —0o%, here)

@ Examination of the rheology close to the jamming transition
@ Measurements of the particle pressure PP

Boyer, Guazzelli & Pouliquen 2011
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Unifying P-imposed and ¢-imposed rheologies

Elisabeth Guazzelli

Dense suspension rheology

Classical effective viscosity
recovered from frictional view

w=T7/PP =mns/nn
J=mney/PP =1/mn
ns = p/J

In = 1/-]

at vanishing J:

e ~ 0.30 — 0.32
¢c ~ 0.58 — 0.59

ns and n, diverge as (¢c — ¢) 2
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Rheology of rigid fiber suspensions

The different regimes of fiber suspensions

The dilute (n < 1/L3), semi-dilute (1/L% < n < 1/L2d), concentrated (n > 1/L%d)
regimes and ordered nematic state (n > 1/L%d)

s LA/
| ~ 7/}?@@2’%%2

Rheology of viscous Newtonian fluids containing rigid fibers relatively unexplored

W

\

Q  Yield stresses and nonlinear scaling of 7 with % (shear-thinning)
Ganani & Powell 1985; Powel 1991

© Rheological studies at relatively small ¢ (¢ < 0.17 for A = 17 — 18; ¢ < 0.23 for A = 9)
Bibbé 1985; Bounoua, Lemaire, Férec, Ausias & Kuzhir 2016
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Conclusion

¢- and P-imposed rheometry of dense fiber suspensions
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. y i % _
Py e
z ol o ot
o oL
‘ 00 05 10 15 20 25 3.0
ln]: :I

Rigid fibers with different
aspect ratios

T0(Pa)

Fiber label Symbol

A

0) O 14.5+0.8 ¢ ¢
(I A 6.3+ 0.4

(D) O 7.2+ 0.4 Viscous scaling: 7 and P linear in
(Iv) @) 3.44+0.3

But non-zero yield-stresses, 75 and P, at ¥ =0
@ 79 and Py increase with ¢, more sharply for higher A

Q Origin of yield stresses still remains unknown

Elisabeth Guazzelli
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0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Q ns = (7 — 70)/n¢% and mp = (P — Py)/m¢7 increase with ¢ and diverge at ¢(A) with shift towards
lower values of ¢ with increasing A

@ ¢ decreasing function of J with shift towards lower values of ¢ with increasing A
@ Complete collapse of all data for u(J) .. p independent of A
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O  Experiments of Rahli, Tadrist & Blanc 1999 (M) on the dry packing of rigid fibers

O Simulations of Williams & Philipse 2003 () for the maximum random packing of spherocylinders
O Data (%) obtained by Boyer, Guazzelli & Pouliquen 2011 for suspensions of spheres (A = 1)

1 ()

3 05

0.4

0.3

(b)

~—

*

0.0 25 5.0 7.5A10.0 12.5 15.0 17.5

0.0 25 5.0 7.5‘410.0 12.5 15.0 17.&

@ ¢, decreases with increasing A such as for dry packing; organized structure for A = 157?

O At jamming, i ~ 0.47 (larger than value &~ 0.32 for spheres) independent of A
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Tapia, Shaikh, Butler, Pouliquen & Guazzelli 2017

Good collapse of all the data by rescaling
by ¢c(A)

ns and 7, diverge as & (¢ — 4))_1

w(g) = peta (252) +5 (272)?
with e = 0.47, o = 2.44, and
B =10.20

ns(¢) = 1451 (2572 ) 7"

1n (@) = ns(6)/ 1(¢)
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Conclusions

Rheology of dense granular suspensions

Mainly controlled by the contact interactions between particles

Pressure-imposed rheology of suspensions of non-colloidal hard spheres

O Rheology close to the jamming transition: 7s and 7, diverge as ~ (¢c — ¢) 2

@ Measurements of particle pressure

Pressure-imposed rheology of dense suspensions of non-colloidal hard fibers

O Subtracting apparent yield-stresses (adhesive forces? transient jamming?)
reveals a viscous scaling for both the shear and normal stresses.

O 75 and 7, diverge as ~ (¢c — ¢)~! with ¢c(A) and u independent of A

O Organized microstructure? Link between rheology and microstructure?

And also normal stress differences and migration in fiber suspensions

Snook, Davidson, Butler, Pouliquen, Guazzelli 2014; Strednak, Shaikh, Butler, Guazzelli 2018 in preparation
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