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Outlines

* Flow of non Brownian dispersions

* Macroscopic characterization: PVC in Pasticizer, RheologyVelocity
profiles, Liquid fraction profiles.

* How do suspensions flow in shear thickening regime?

-Velocity profiles, Liquid fraction profiles.
-Why do suspensions shearthin, shearthicken?

- A few words dealing with cornflour.
* Outlooks and perspective



Non brownian suspensions
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Non brownian suspensions: a single dimensionless

number

4 parameters, 3 fundamental units, Il theorem, dimension analysis a

single dimensionless number:
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Da Cruz (2005),
Boyer, Pouliquen,Guazelli (2011)
PRL

Consequences: in the situation where the solid fraction is imposed, the
stress is proportional to the shear rate: Newtonian behavior expected.



An vield stress?
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Figure 3: Dimensionless velocity profiles (from Huang et al. (2005)) in the steady state of a 58%
suspension, at various rotational velocities ranging from 0.07 to 100rpm; the dashed line is the
theoretical dimensionless velocity profile for a Newtonian fluid.



Variation of the concentration

0.60
oy
< 0.59 w ke
C N /e
. 0.58 vrE
'§ -581 .././ Velocity (rpm)| |
o 0.571 ,/IZ/' e 15
e A ) L5
O 0.561 o/ v—0.2
@) v 0.06
0-55 T T T T T T T T
42 44 46 48 50 52 54 56 5.8 6.0
R (cm)

Figure 6: Concentration profiles measured in the gap of the Couette geometry for a suspension
of mean volume fraction 58% sheared at various rotational velocities ranging from 0.06 to 25rpm.
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Figure 13: Local and macroscopic viscosity measurements on suspensions of various mean
concentration ranging from 55% to 60%. The line is a fit to a Krieger-Dougherty law

n(¢) = no(1l — ¢/0.605)2.



How do these suspensions flow? Our study.

e System Under scrutiny

* Rheology.

* Flow profile, solid fraction profiles

* Flow in the shearthinning regime

* Flow in the shearthickening regime

* Shear thinning after the shear thickening regime
Outlooks



PVC suspensions non Brownian suspensions




PVC suspensions in plasticizer

Polyvinyl chloride (PVC) particles in 1,2-cyclohexane
dicarboxylic acid di isononyl ester (Dinch). The
continuous phase is Newtonian and has a viscosity of 41
mPa.s at room temperature.

The density of PVCis 1.38 g/cm3 and the density of
Dinch is 0.95 g/cm3.. The mean particle radius, defined
as R32=(R3 )/(R2) is 1 um. The size distribution is
lognormal and the standard deviation estimated using the
volume distribution is 45%.
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Shear Thickening, Under applied shear rate

4
103 . 66%
10° | — 64%
3 10 T
v — 0
=) 10" =575
SETE 50%
-1 40%
102 - 30%
10" 0%

10" 10° 10" 10% 10°
oa—1
Y(s™)

Under applied shear rate
Couette Cell Imm gap



How do suspensions flow under applied shear
stress?
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How do suspensions flow? Conventional
rheometry in couette cell.
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The entire flow curve with three different
rheometers Couette cell Imm gap

Capillary rheometer
(home made)
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How do suspensions flow? Velocity profiles
measurements
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Velocities profiles
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Solid fraction profile

Guillaume Ovarlez,
Nicolas Lenoir
Placamat.
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PVC no migration in a seringe
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Shear thinning in non Brownian dispersion

lubricated contacts frictional contacts
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Shear thinning in non Brownian dispersions

* The viscosity of a suspension of hard spheres follows the rheological
law of Krieger-Dougherty.

BP/y=n (10)

c/Y
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Figure 2.16: Plasticizer absorption test: (a) initial state with dry powder (b)(c)(d) with adding more
and more plasticizer but not enough to obtain an homogeneous paste (e) with the right amount of
plasticizer to wet all the powder.
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Determination of the critical liquid fractions
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Shear thinning in the non Brownian
dispersion

* The particles are covered by a polymer brush.

* The effective solid fraction varies because the effective size of the
particle varies due to collision.

* Increasingthe applied shear rate increases the applied shear stress,
and thus the applied particular pressure.

* The mean distance between particles during the collision decreases
* The effective solid fraction decreases.




Shear thinning in non Brownian dispersions

* The viscosity of the suspension follows the rheological law of Krieger-
Dougherty.

BP/y=n (10)

c/Y

n = ns( PR ) (11)
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Shear thinning in the non Brownian
dispersion : h during collision?

o/y = BP/y=n (10)
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Shear thinning in the non Brownian
dispersion : How to check this?
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Interactions between two particles
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Figure S1: AFM image of one casted PVC particle at the surface of the substrate. RMS
roughness is ~ 2.2 nm on the upper part of the particle.

PVC and cornstarch particles are glued to the etched
tungsten tip of the tuning fork using SEMGLU

from kleindiek , and a nanomanipulation station in-situ a
SEM



How to check the presence of solid friction?
Characterization of the interaction: Tuning Fork
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Analysis of the data

2
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Monitoring the excitation voltage necessary to keep a constant oscillation amplitude a0 gives us
a direct measure of the sum of all forces acting on the tuning fork as Fext = FD = CVext to obtain an
amplitude a0 typically equal to 1-50 nm.



Tuning Fork experiments
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Comparison profile force from AFM,
profile force from rheological measurements
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Chatte et al Langmuir 2018




Shear Thickening
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Shear Thickening Consequences: running on
cornstarch




Shear Thickening Consequences : Liquid and
confrtable Armor

Kevlar soaked with STFluids
University of Delaware (Professor Wagner) in collaboration
With US Army.




Shear thickening in industrial processes.

Shear thickening leads to high cost when
pumping concrete
over long distances in large building state.

Shear thickening causes extrusion
instabilities
In the manufacture of plastic floors.




Shear thickening

* Dense suspensions of solid particles immersed in newtonian solvent
display complex flow properties.

Viscosity (Pa.s)

001 01 1 10, 100
Shear rate (s”)

Lootens (2005) Ovarlez (PRL 2016)

* Concrete, silica suspensions, cornflour mixtures, latex suspensions
clays are example of shear thickening systems



The viscosity varies as a function of the
friction coefficient
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Why does shear thickening occur?

g
Tt X

Shear Rate

u dependsupon the applied
stress

Shear thickening correspondsto
a transition between a state
with lubrified contacts between
particles forlow normalforces
to a state with solid contacts
between particles for high
normalforces.

J.Morris, R Seto, R Mari, JF Morris, MM Denn 2013 PRL Cates,

Wyart 2015 PRL, figure from Blair.



Tuning Fork experiments
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Tuning Fork experiments
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Our system: tuning repulsive forces
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(steric stabilisation)
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Bridging the gap between the micrro and the
macroscale
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No homogeneous

Jamming
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-

(I)CST d)DST (I)m d)rcp

62% 69%
plasticizer absorption value 68.5%



How to estimate ¢pm
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Shear thinning after shear thickening
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Fig. 11 Variation of the friction coefficient u as a function of the normal
load. u decreases with increasing loads.



What happensfor concentrated samples

- transition from a liquid to a solid. Migration,

Fractures
* A different picture
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A few words dealing with cornflour

Viscosity (Pa.s)
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Velocities profiles cornstarch
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Cornflour 1 mm: migration
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Why do we observe migration with cornflourand not with PvC?




Forces Profiles : huge adhesive forces for
cornstarch.
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Conclusion and Outlooks

* Shear thickening a transition between lubricated contacts and solid
friction.

* Measurement of the solid fraction

* PVC suspension behaves as the theoretical model.
e Cornstarch suspensions?

* Flow in confined geometries

* Study of flow instabilities and role of confining



