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• What are consequences of friction-like stress scaling (τ=μτN) for 
constitutive relations, dilation, and the role of boundary conditions?

• What determines the strength of shear thickening (i.e. maximum 
stress scale)?
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Steady-state rheology:   
viscosity is a measure of spatially averaged energy dissipation rate

2R = 25-50 mm

suspension gap d ~ 1 mm

normal force FN

torque T
rotation rate �

fluid

moving plate

stationary plate

shear rate �̇ = !R/d (average velocity gradient)

shear stress ⌧ = 2T/⇡R3
(average shear force/area)

normal stress ⌧N = FN/⇡R2
(average normal force/area)

viscosity ⌘ = ⌧/�̇



Discontinuous Shear Thickening viscosity curves
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• “discontinuous” stress increase for 0.92φc < φ < φc in rate-controlled 
measurements (φc has the same value as RLP, Brown & Jaeger PRL 
2009)

• stress scales τmax and τmin bound the shear thickening regime -- what 
determines their scales?
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Local constitutive relation can be obtained from shear 
profile of non-density matched suspensions

150 µm ZrO2 in mineral oil (settling)
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Shear thickening not dependent on local shear rate 

➡ majority of shear stress does is not dependent on local shear rate in 
shear thickening range and higher stress (Fall et al. PRL 2008, Brown & 
Jaeger J. Rheology 2012, Xu et al. EPL 2014, Overlez, Manneville, Colin)

(viscous) (gravitational)

150 µm ZrO2 in mineral oil (settling)
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Brown & Jaeger J. Rheology 2012
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Shear stress comes from normal stress

constant gap
constant normal force
boundary conditions:
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• existence of DST depends on boundary conditions
• τconst = μeffτN with μeff ~1 -> effective friction (Lootens et al. PRL 2003, 
2005, Heussinger PRE 2013, Seto et al. PRL 2013, & many others...)

100 µm glass spheres in water

Brown & Jaeger J. Rheology 2012



Normal stress comes from force networks
force networks appear in DST 
regime (Seto et al. 2013, Brady, 
Cohen)

➡ load-bearing force networks 
➡ positive normal stress  
➡ tendency to expand (i.e. dilation) 
➡ positive normal stress can remain in steady 
state only if dilation is frustrated by boundaries
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  Dilation against liquid-air interface  
leads to confining stress from surface tension
150 µm ZrO2 in mineral oil

side view (tangent to surface) 
shear rate = 3 s-1, playback at 0.33x
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Cates et al. J. Phys. Cond. Matt. 2005

Brown & Jaeger J. Rheol. 2012
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• events spatially localized and fluctuate in time (Blair)

d= 0.6 mm
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Dilation against liquid-air interface can be observed as a 
change in surface reflectivity

cornstarch in water, 200 Pa, real time
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Dilation coincides with DST

• dilation observed above τmin (onset of shear thickening) (Metzner 
& Whitlock 1958, Blair)
• dilation observed for φ > 0.92φc (same φ-range as DST) 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Maximum stress (τmax) in DST regime limited by boundary stiffness

Brown & Jaeger, Reports on Progress in Physics, 2014

other cases:
•hard walls: wall stiffness k/a
•simulations with periodic BCs: particle stiffness k/a  
(Otsuki & Hayakawa PRE 2011
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onset stress scale τmin
various regimes depending on 
dominant force:
• electrostatic repulsion (Hoffman 

1982, Maranzano & Wagner J. 
Rheol. 2001, Royer, ...)

• osmotic pressure in Brownian 
suspensions (Bergenholtz et al. 
2002, Maranzano & Wagner J. 
Chem. Phys. 2002, Brady)

• gravity for settling particles 
(Brown & Jaeger J. Rheol. 2012)

• induced dipole-dipole attractions 
from applied fields (Brown et al. 
Nature: Materials 2010)
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➡ generally: shear stress must exceed interparticle stresses that prevent 
pushing grains together and around each other to generate positive 
normal stress and dilation



• shear stress depends mostly on normal stress rather 
than local shear rate

• system-spanning force networks lead to positive normal 
stress and dilation

• dilation against a boundary leads to confining stress k/a 
from boundary stiffness (usually from surface tension) 
that limits the strength of shear thickening (τmax)

Summary
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particle interactions that 
resist shear

frictional: 
depends on boundary stiffness 
k in response to dilation

⌧N ⇠ k
a

⌧(�̇l, h) ⇡ ⌘visc�̇l + ⌧i + µg�⇢gh+ µeff⌧N



Transient impact experiments

 

•stress more than enough to support a person’s weight (~ 4x104 Pa) 
and much more than steady state shear (~103 Pa) 

•Open question: what sets the scale of the stress (~106 Pa) here?

cornstarch in water, impact velocity = 200 mm/s
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