Friction, dilatancy, boundary conditions, and constitutive relations in shear thickening suspensions

Eric Brown, Rijan Maharjan
Yale University
Department of Mechanical Engineering and Materials Science
and Department of Physics

work supported by: NSF DMR-1410157

Discontinuous Shear Thickening (DST) fluids

suspension of cornstarch in water

Ben Allen

- What are *consequences* of friction-like stress scaling $(\tau = \mu \tau_N)$ for constitutive relations, dilation, and the role of boundary conditions?
- What determines the strength of shear thickening (i.e. maximum stress scale)?

Discontinuous Shear Thickening (DST) fluids

suspension of cornstarch in water

Ben Allen

- What are *consequences* of friction-like stress scaling $(\tau = \mu \tau_N)$ for constitutive relations, dilation, and the role of boundary conditions?
- What determines the strength of shear thickening (i.e. maximum stress scale)?

Steady-state rheology: viscosity is a measure of spatially averaged energy dissipation rate

shear rate $\dot{\gamma} = \omega R/d$ (average velocity gradient) shear stress $\tau = 2T/\pi R^3$ (average shear force/area) normal stress $\tau_N = F_N/\pi R^2$ (average normal force/area) viscosity $\eta = \tau/\dot{\gamma}$

Discontinuous Shear Thickening viscosity curves

- "discontinuous" stress increase for $0.92\varphi_c < \varphi < \varphi_c$ in rate-controlled measurements (φ_c has the same value as RLP, Brown & Jaeger PRL 2009)
- stress scales τ_{max} and τ_{min} bound the shear thickening regime -- what determines their scales?

Local constitutive relation can be obtained from shear profile of non-density matched suspensions

Local constitutive relation can be obtained from shear profile of non-density matched suspensions

Shear thickening not dependent on local shear rate

150 μm ZrO₂ in mineral oil (settling) $\tau(\dot{\gamma}_l, h) \approx \eta_{visc}\dot{\gamma}_l + \mu_q \Delta \rho g h + \tau_{const}$ shear rate: • 60 (viscous) (gravitational) (i.e. friction) velocity v/v_p 9.0 9.0 $\frac{v}{v_p} = \frac{\tau_g}{2\tau_\nu} \left(\frac{h_c - h}{d}\right)^2$ viscosity η (Pa s) 0.3 0.2 0.8 0.6 depth h/d 10⁰ 10¹ 10^{2} stress τ (Pa)

→ majority of shear stress does is not dependent on local shear rate in shear thickening range and higher stress (Fall et al. PRL 2008, Brown & Jaeger J. Rheology 2012, Xu et al. EPL 2014, Overlez, Manneville, Colin)

Shear stress comes from normal stress

- existence of DST depends on boundary conditions
- $\tau_{const} = \mu_{eff} \tau_N$ with $\mu_{eff} \sim 1$ -> effective friction (Lootens et al. PRL 2003, 2005, Heussinger PRE 2013, Seto et al. PRL 2013, & many others...)

Normal stress comes from force networks

Dilation against liquid-air interface leads to confining stress from surface tension

150 μ m ZrO₂ in mineral oil side view (tangent to surface) shear rate = 3 s⁻¹, playback at 0.33x

Brown & Jaeger J. Rheol. 2012

maximum confining stress:

$$\tau_{max} \approx \frac{\gamma}{r} \sim \frac{\gamma}{a}$$
 $\gamma = \text{surface tension}$
 $a = \text{particle diameter}$

Cates et al. J. Phys. Cond. Matt. 2005

Dilation against liquid-air interface leads to confining stress from surface tension

150 μ m ZrO₂ in mineral oil side view (tangent to surface) shear rate = 3 s⁻¹, playback at 0.33x

Brown & Jaeger J. Rheol. 2012

maximum confining stress:

$$\tau_{max} \approx \frac{\gamma}{r} \sim \frac{\gamma}{a}$$
 $\gamma = \text{surface tension}$
 $a = \text{particle diameter}$

Cates et al. J. Phys. Cond. Matt. 2005

Dilation against liquid-air interface can be observed as a change in surface reflectivity

cornstarch in water, 200 Pa, real time

events spatially localized and fluctuate in time (Blair)

Dilation against liquid-air interface can be observed as a change in surface reflectivity

cornstarch in water, 200 Pa, real time

events spatially localized and fluctuate in time (Blair)

Dilation coincides with DST

- dilation observed above τ_{min} (onset of shear thickening) (Metzner & Whitlock 1958, Blair)
- dilation observed for φ > 0.92φc (same φ-range as DST)

Maximum stress (τ_{max}) in DST regime limited by boundary stiffness

other cases:

- •hard walls: wall stiffness k/a
- •simulations with periodic BCs: particle stiffness k/a

(Otsuki & Hayakawa PRE 2011

onset stress scale τ_{min}

various regimes depending on dominant force:

- electrostatic repulsion (Hoffman 1982, Maranzano & Wagner J. Rheol. 2001, Royer, ...)
- osmotic pressure in Brownian suspensions (Bergenholtz et al. 2002, Maranzano & Wagner J. Chem. Phys. 2002, Brady)
- gravity for settling particles (Brown & Jaeger J. Rheol. 2012)
- induced dipole-dipole attractions from applied fields (Brown et al. Nature: Materials 2010)

generally: shear stress must exceed interparticle stresses that prevent pushing grains together and around each other to generate positive normal stress and dilation

Brown & Jaeger, Reports on Progress in Physics (2014)

Summary

$$\tau(\dot{\gamma}_l,h) \approx \eta_{visc}\dot{\gamma}_l + \tau_i + \mu_g \Delta \rho g h + \mu_{eff} \tau_N \tag{gravitational}$$
 frictional: $\tau_N \sim \frac{k}{a}$ depends on boundary stiffness k in response to dilation

- shear stress depends mostly on normal stress rather than local shear rate
- system-spanning force networks lead to positive normal stress and dilation
- dilation against a boundary leads to confining stress k/a from boundary stiffness (usually from surface tension) that limits the strength of shear thickening (τ_{max})

Transient impact experiments

cornstarch in water, impact velocity = 200 mm/s

- •stress more than enough to support a person's weight (~ 4x10⁴ Pa) and much more than steady state shear (~10³ Pa)
- •Open question: what sets the scale of the stress (~106 Pa) here?