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QS network has many 

internal feedbacks
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Rutherford et al., Genes & Dev (2011)

Shao & Bassler, Mol Micro (2012)
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Single-cell measurements

Teng et al. Mol Sys Biol (2011)



Each feedback does something…
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Core feedbacks have little 

effect on noise



Feedback by LuxR controls input-

output relation

LuxR feedback increases AI input dynamic range 

and decreases LuxR output dynamic range.



Quorum-sensing feedbacks and mutual 

information
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Feedbacks can optimize available 

information about cell density

b = protein “burst size”

g+ = feedback inhibition

Mutual 

information

MI increase 

due to 

feedbacks



Feedback from LuxR speeds Qrr 

production at HCD LCD transition

Tu et al., Mol Micro (2008)



Simple model for network dynamics 

E.g. equations for Qrrs and luxR / LuxR:

Simulate transitions:

LCD HCD and HCD LCD. 



Model results for HCDLCD transition

Qrrs AphA luxR / LuxR

Network design accelerates HCDLCD response: 

• Multiple Qrrs

• LuxR co-activation of Qrrs

• Qrr repression of LuxO

• Cap on total LuxR

• Negative feedback via AphA limits Qrr accumulation 

timetimetime



• Multiple autoinducers and feedbacks may allow multi-

stage developmental program. 

• Feedbacks can help cells focus on most relevant 

signal and respond quickly to HCD LCD transitions.
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Lifecycle of bacteria in a biofilm

So why is the QS network so complex? 



Summary

• AphA/LuxR are the LCD/HCD master 

regulators in the Vibrio quorum-sensing 

network.

• Complex network architecture allows:
• Increased information on cell density

• “Attention” to specific signals

• Fast response to HCD LCD transition
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Outline

• The Microbiome 

• 16S RNA metagenomics

• Clustering-free analysis of 16S data

• Sequence similarity vs. dynamical similarity

• Conclusions



The Human Microbiome

http://www.scientificamerican.com/article/microbiome-graphic-explore-human-microbiome/ 



Impact of the Microbiome

Ridaura et al…Jeffrey Gordon, Science 2013 

Walker & Parkhill, Science 2013



Problem: most bacterial species can’t be cultured

Solution: 16S ribosomal RNA

16S metagenomics

Woese & Fox, PNAS 1977



Big questions

• Origin, maintenance, and significance of diversity?

Role of “rare” species

• Factors shaping community?

Environment, interactions, host immunity, chance 

• Relation to health and disease?



16S RNA gene

Tung et al., Nat Struct Biol 2002



Usual 16S work flow
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Operational Taxonomic Units (OTUs)

OTU 3

OTU 1

OTU 2

Justification?

1. Noise

2. Ecological similarity of close 16S

97%

However, OTUs are ill-defined. 

Do we need OTUs?

Applications?

1. Mapping to known species

2. Co-occurrence patterns



16S analysis without OTUs

Data: daily sampling of the tongue community of two cohabiting 

individuals for > 1 year   (Caporaso et al., Genome Biol (2011))

Log10 abundance 

of 360 neighbors 

of Seq. #1

(most abundant 

130 nt sequence)



Error rates are low and 

reproducible
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Inferred error rates can be used 

to identify real sequences



Real sequences differing by only 

1 nt have different dynamics 

Typically resolve > 20 distinct real 

sequences per OTU



Dynamical similarity vs. sequence 

similarity: examples 

A 

B

C



Dynamical similarity vs. 

sequence similarity

“Dynamical similarity” = Pearson correlation between time traces 

(normalized by maximum possible given Poisson noise)



Same bacterium or a 

dynamically similar strain?

All difference due to 

measurement noise

Abundance difference 

may persist

Relative abundance fluctuation  Δ(t) = (n2 – n1) / [(n1 + n2)/2] 

“Persistence of difference” PD = <Δ(t) Δ(t +1)> / <Δ2(t)>  

nn

t t

Δ(t): Zero 1-day autocorrelation Δ(t): Nonzero 1-day autocorrelation



Can identify 16S paralogs

(REPLACE FIGURE!)



Slow dynamics of sequences 

1 nt from abundant sequence



Is 130 nt enough? 

In principle, distinct subpopulations could share the same 

130 nt sequence.   

Then exact sequence identity might be no more 

informative than 1 nt difference, which we know allows for 

dynamical differences.

What can we do? 



Exploit shared strains between 

two human subjects

Significant strain exchange

Subject 1 Subject 2 



Shared strains 

share dynamical similarity

Subject 1 Subject 2 
Dynamical similarity in Subject 2
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1 nt mismatch enough to degrade 

correlation of dynamical similarity

Dynamical similarity in Subject 2 Dynamical similarity in Subject 2
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16S tag identity and near-identity

are fundamentally different

16S tag   genome

*

~106 generations

Near-identity:

Identity:

*       *   

or, more likely,

16S tags differ by 1 nt

16S tags identical



Summary and conclusions

• Microbiomes are ubiquitous – bacteria live in communities

• Metagenomics: rich source of data (16S and “shotgun”)

• Cluster-free filtering for time-series & multi-sample 16S data

• Applied to tongue microbiome data (Caporaso et al. (2011)):

• 20+ real sequences per OTU

• 16S paralogs vs. dynamically similar strains 

• Slow dynamics of subpopulations

• Many big questions to address…
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