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QS network has many 

internal feedbacks
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Rutherford et al., Genes & Dev (2011)

Shao & Bassler, Mol Micro (2012)
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Single-cell measurements

Teng et al. Mol Sys Biol (2011)



Each feedback does something…
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Core feedbacks have little 

effect on noise



Feedback by LuxR controls input-

output relation

LuxR feedback increases AI input dynamic range 

and decreases LuxR output dynamic range.



Quorum-sensing feedbacks and mutual 

information
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Feedbacks can optimize available 

information about cell density

b = protein “burst size”

g+ = feedback inhibition

Mutual 

information

MI increase 

due to 

feedbacks



Feedback from LuxR speeds Qrr 

production at HCD LCD transition

Tu et al., Mol Micro (2008)



Simple model for network dynamics 

E.g. equations for Qrrs and luxR / LuxR:

Simulate transitions:

LCD HCD and HCD LCD. 



Model results for HCDLCD transition

Qrrs AphA luxR / LuxR

Network design accelerates HCDLCD response: 

• Multiple Qrrs

• LuxR co-activation of Qrrs

• Qrr repression of LuxO

• Cap on total LuxR

• Negative feedback via AphA limits Qrr accumulation 

timetimetime



• Multiple autoinducers and feedbacks may allow multi-

stage developmental program. 

• Feedbacks can help cells focus on most relevant 

signal and respond quickly to HCD LCD transitions.
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Lifecycle of bacteria in a biofilm

So why is the QS network so complex? 



Summary

• AphA/LuxR are the LCD/HCD master 

regulators in the Vibrio quorum-sensing 

network.

• Complex network architecture allows:
• Increased information on cell density

• “Attention” to specific signals

• Fast response to HCD LCD transition
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The Microbiome, metagenomics, 

and clustering-free 16S RNA 
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Outline

• The Microbiome 

• 16S RNA metagenomics

• Clustering-free analysis of 16S data

• Sequence similarity vs. dynamical similarity

• Conclusions



The Human Microbiome

http://www.scientificamerican.com/article/microbiome-graphic-explore-human-microbiome/ 



Impact of the Microbiome

Ridaura et al…Jeffrey Gordon, Science 2013 

Walker & Parkhill, Science 2013



Problem: most bacterial species can’t be cultured

Solution: 16S ribosomal RNA

16S metagenomics

Woese & Fox, PNAS 1977



Big questions

• Origin, maintenance, and significance of diversity?

Role of “rare” species

• Factors shaping community?

Environment, interactions, host immunity, chance 

• Relation to health and disease?



16S RNA gene

Tung et al., Nat Struct Biol 2002



Usual 16S work flow
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Raw sequence 
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Operational Taxonomic Units (OTUs)

OTU 3

OTU 1

OTU 2

Justification?

1. Noise

2. Ecological similarity of close 16S

97%

However, OTUs are ill-defined. 

Do we need OTUs?

Applications?

1. Mapping to known species

2. Co-occurrence patterns



16S analysis without OTUs

Data: daily sampling of the tongue community of two cohabiting 

individuals for > 1 year   (Caporaso et al., Genome Biol (2011))

Log10 abundance 

of 360 neighbors 

of Seq. #1

(most abundant 

130 nt sequence)



Error rates are low and 

reproducible
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Inferred error rates can be used 

to identify real sequences



Real sequences differing by only 

1 nt have different dynamics 

Typically resolve > 20 distinct real 

sequences per OTU



Dynamical similarity vs. sequence 

similarity: examples 

A 

B

C



Dynamical similarity vs. 

sequence similarity

“Dynamical similarity” = Pearson correlation between time traces 

(normalized by maximum possible given Poisson noise)



Same bacterium or a 

dynamically similar strain?

All difference due to 

measurement noise

Abundance difference 

may persist

Relative abundance fluctuation  Δ(t) = (n2 – n1) / [(n1 + n2)/2] 

“Persistence of difference” PD = <Δ(t) Δ(t +1)> / <Δ2(t)>  

nn

t t

Δ(t): Zero 1-day autocorrelation Δ(t): Nonzero 1-day autocorrelation



Can identify 16S paralogs

(REPLACE FIGURE!)



Slow dynamics of sequences 

1 nt from abundant sequence



Is 130 nt enough? 

In principle, distinct subpopulations could share the same 

130 nt sequence.   

Then exact sequence identity might be no more 

informative than 1 nt difference, which we know allows for 

dynamical differences.

What can we do? 



Exploit shared strains between 

two human subjects

Significant strain exchange

Subject 1 Subject 2 



Shared strains 

share dynamical similarity

Subject 1 Subject 2 
Dynamical similarity in Subject 2
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1 nt mismatch enough to degrade 

correlation of dynamical similarity

Dynamical similarity in Subject 2 Dynamical similarity in Subject 2
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16S tag identity and near-identity

are fundamentally different

16S tag   genome

*

~106 generations

Near-identity:

Identity:

*       *   

or, more likely,

16S tags differ by 1 nt

16S tags identical



Summary and conclusions

• Microbiomes are ubiquitous – bacteria live in communities

• Metagenomics: rich source of data (16S and “shotgun”)

• Cluster-free filtering for time-series & multi-sample 16S data

• Applied to tongue microbiome data (Caporaso et al. (2011)):

• 20+ real sequences per OTU

• 16S paralogs vs. dynamically similar strains 

• Slow dynamics of subpopulations

• Many big questions to address…
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