

Contact-Dependent Growth Inhibition (CDI) in bacteria

Sanna Koskiniemi

Bacteria are typically regarded as isolated unicellular entities

But wild bacteria often live in communities

E. coli isolate EC93 and discovery of contactdependent growth inhibition (CDI)

Isolate EC93 inhibits the growth of E. coli K-12 strains

Contact-dependent growth inhibition (CDI)

Aoki et al. (2005) Science 309:1245-8

Contact-dependent Growth Inhibition

• The observed growth inhibition of lab strains of *E.coli* required cell-to-cell contact

Aoki et al. 2005, Science

CdiB and CdiA are members of the two-partner secretion protein family

Clantin et al. (2007) Science 317:957-61

Contact-dependent growth inhibition (CDI) EC93 CDI+ inhibitor SecYEG CdiB CdiB CdiB BamA AcrB

Aoki et al. (2008) Mol. Microbiol. 70:323-40

Target

cell

The CdiI immunity protein prevents autoinhibition

The CdiI immunity protein prevents autoinhibition

The CdiI immunity protein prevents autoinhibition

Visualization of CdiA toxin delivery into target cells - epitope tagging of CdiA^{UPEC536}

Julia Webb

CdiA-CT delivery to target cells

Julia Webb

CdiA-CT is delivered to the surface is proteinase K sensitive

CdiA-NT is also delivered to the surface of CDI⁻ target cells

Self/Non-Self Discrimination in CDI systems

Following CdiA transfer to the target cell surface:

- •The CdiA-CT enters target cells.
- The CdiA N-terminus remains protease-sensitive

E. coli EC93 versus related γ-proteobacteria

BamA is the receptor for CdiA^{EC93}

overview

Contact-dependent growth inhibition (CDI)

E. coli BamA sensitizes E. aerogenes to CDI

Zach Ruhe

Heterologous BamA provides resistance to CDI

Heterologous BamA provides resistance to CDI

Kiel Nikolakakis

Heterologous BamA confers CDI-resistance to E.coli

BamA conservation between γ-proteobacteria

The extracellular loops of BamA are variable

Evidence for role of BamA loops 6/7 in binding: Deletion Analysis

Evidence for role of BamA loops 6/7 in binding: Chimera Analysis

Key role for BamA loops 6/7 in species specificity

Some CDI toxins require activation by a host-cell factor

- Some CDI toxins are not active on their own
- Require a host-cell factor for activation – a permissive factor

CysK is required for growth inhibition during CDI mediated by CdiA^{UPEC536}

Copyright © 2012 by Cold Spring Harbor Laboratory Press

Diner E J et al. Genes Dev. 2012;26:515-525

CysK is necessary and sufficient for tRNase activity in vitro

The discovery of another CDI system

- RHS-proteins are used for CDI
 - Recombination Hot-Spots
 - Discovered for 40 years ago in *E.coli* K12
 - Found in the majority of all Gram-negative bacteria
 - Homologes found also in Gram-positive bacteria and in eukaryotes in the form of teneurins
 - Are used for CDI in:
 - Salmonella typhimurium LT2
 - Pseudomonas aeruginosa
 - Dickeva dadantii
 - Enterobacter cloacae
 - · Bacillus subtilis

Copyright © 2012 by Cold Spring Harbor Laboratory Press

Diner E J et al. Genes Dev. 2012:26:515-525

The discovery of another CDI system

- Rhs-proteins are modular with a highly diverse C-terminal domain and a conserved N-terminal "core" domain
- C-terminal domain contain the toxic activity and is delivered to target cells

Rhs-mediated CDI in Dickeya dadantii

- 3 Rhs-loci
 - − 2 are active in laboratory media (pH~7.3, 2% glucose)
 - Immunities are specific and protect against their cognate toxin

Koskiniemi et al. PNAS, 2013

Rhs-mediated CDI in Dickeya dadantii

- Plant pathogen
 - Infects potatoes, chicory, viola
 - Causes potato rot
- 3 Rhs-loci

Competitive index = Ratio of targets / inhibitors at time 24h

Ratio of targets / inhibitors at time 0h

Koskiniemi et al. PNAS, 2013

Rhs-mediated CDI in Dickeya dadantii

- 3 Rhs-loci
 - Inhibition is contact-dependent
 - Inhibition also in natural environment potato

Koskiniemi et al. PNAS, 2013

Rhs-mediated CDI in Dickeya dadantii

• RhsA and RhsB CT's encode DNAses that are delivered to target cells

Rhs-mediated CDI in Dickeya dadantii

• Rhs-mediated inhibition requires components of the typeVI secretion system

Rhs-mediated CDI in Dickeya dadantii

• Rhs-mediated inhibition requires components of the typeVI secretion system

Rhs-mediated CDI in Bacillus subtilis

- Rhs homologue WapA mediates CDI
- Protected by cognate immunity
- No typeVI secretion system
 - WapA secreted by the general secretory pathway

Koskiniemi et al. PNAS, 2013

Rhs-mediated CDI in Bacillus subtilis

- WapA-CT from *B. subtilis* 168 has tRNAse activity
- Protected by cognate immunity

Koskiniemi et al. PNAS, 2013

Orphan Toxins – an arsenal of weapons?

- *cdi* and *rhs* loci often contain additional toxinimmunity pairs that are not associated with a "stick" so called orphan toxins
- These orphan toxins often lack translation initiation signals and it is unknown if they are expressed
- Orphan toxins from one strain can be found on full-length CdiA /Rhs sticks in other strains

CDI systems are everywhere Tenericutes Chloriflexi Cyanobacteria Actinobacteria Actinobacteria Actinobacteria Actinobacteria Actinobacteria Actinobacteria d proteobacteria e proteobacteria Bacteroldetes Spirochetes Planctomyces Delerinosceries Chlamidiae Verrucomicrobia Rhs

Orphan Toxins – an arsenal of weapons?

Rhs-mediated CDI in Salmonella typhimurium LT2

- Our model organism: *Salmonella enterica* serovar Typhimurium LT2 (*S.typhimurium LT2*)
- Serial passage for faster growth in laboratory media (LB-broth)
 - 1000 generations
- Serial passage for increased virulence in mice (i.p.)
 - 150 generations

Koskiniemi et al. PLOS genetics, 2014

Evolved lineages grow slower than the parental wild type strain

Koskiniemi et al. PLOS genetics, 2014

Evolved lineages outcompete parental wild type strain

Koskiniemi et al. PLOS genetics, 2014

Inhibition requires direct cell-to-cell contact

Koskiniemi et al. PLOS genetics, 2014

Rhs-mediated CDI in Salmonella typhimurium LT2

- 1 rhs-loci
- 1 orphan toxin

Rhs-orphan immunity protects parental strain from inhibition from the evolved populations

Koskiniemi et al. PLOS genetics, 2014

Rhs-toxins in S.typhimurium

Koskiniemi et al. PLOS genetics, 2014

Model

Koskiniemi et al. PLOS genetics, 2014

Duplication and a subsequent deletion results in expression of a new orphan-toxin on the main Rhs-stick

Koskiniemi et al. PLOS genetics, 2014

Single colonies from evolved cultures inhibit parental strain

Expression of Rhs orphan-CT on cell surface

Koskiniemi et al. PLOS genetics, 2014

Conclusions / things for discussion

- Systems for contact-dependent growth inhibition can be found throughout the bacterial kingdom
- Rhs proteins are some of the most highly positively selected genes known
- Bacteria with these systems are able to stop the growth of other bacteria of the same species but not bacteria from other species
- Orphan toxins represent a silent arsenal of weapons that can be mobilized for clonal selection

Acknowledgements

David Low Christopher Hayes

Dan Andersson Stephen Poole Linus Sandegren

Low Lab

Zachary Ruhe Julia Shimitzu-Webb Bruce Braaten Travis Smith

Hayes Lab

James Lamoureux Fernando Garza Christina Beck

Wenner-Gren Stiftelserna Wenner-Gren Foundations

Carl Tryggers Stiftelse för Vetenskaplig Forskning

STIFTELSEN för STRATEGISK FORSKNING

