Determining the drivers of antibiotic resistance epidemiology

Gwen Knight

What drives antibiotic resistance changes in hospital-associated MRSA?

MRSA overview

- S. aureus is a commensal
($\sim 25 \%$ population ${ }^{1,2}$)
- UK: MRSA causes 16% of all hospitalacquired infections ${ }^{3}$
- Many "lineages", but small number dominate in each country
e.g. UK MRSA: CC22 and CC30

Core

Core variable
Mobile Genetic Elements (MGEs) ${ }^{4}$

University of London

1. van Belkum (2009)
2. Klutymans (1997)
3. Smyth (2008)
4. Lindsay (2006)

Aims

- Quantify naturally occurring fitness differences between clinical MRSA isolates associated with

1. Antibiotic resistance
2. Lineage background

- Use these to parameterise models of antibiotic resistance evolution in MRSA

Isolates

Antibiotic	202	215	201	211	228	221	226	205	224	206
Ampicillin										
Penicillin										
Oxacillin										
Teicoplanin										
Vancomycin										
Ciprofloxacin										
Rifampicin										
Chloramphenicol										
Clindamycin										
Erythromycin										
Gentamicin										
Kanamycin										
Tobramycin										
Tetracycline										
Fusidic Acid										
Trimethoprim										
Mupirocin										
\# of isolates	1	2	1	1	1	2	1	1	1	1
Plasmid presence	\times				\times	\times	\times			

1. Effect of antibiotic resistance on fitness

> Pairwise comparison: With plasmid (202) vs Without plasmid (215)

$>$ Under a range of mathematical measures: no significant difference ($\alpha=0.05$)

1. Effect of antibiotic resistance on fitness

> Across antibiogram comparison
With plasmid vs Without plasmid
Independent growth

Hour from inoculum
(Knight, 2013)
$>$ Under a range of mathematical measures: no significant difference ($\alpha=0.05$)

2. Effect of lineage background on fitness

> Across lineage comparison
CC22 CC30 CC239

(Knight, 2013)
> Under a range of mathematical measures: there was significant difference ($\alpha=0.05$)

Fitness differences within MRSA populations

1. Antibiotic resistance had little effect on fitness

- even when due to large plasmid carriage
- across a range of different resistances

2. Lineage background had a large impact

- due to SCCmec size differences

What implications does this have for the clinical MRSA population?

Lineage changes in UK

- UK hospital clones: CC22 SCCmecIV and CC30 SCCmecll ${ }^{1}$

1. Ellington (2010)
2. Knight (2012)

Antibiotic usage roughly constant

$$
\begin{aligned}
& \text { [}
\end{aligned}
$$

Resistance changes

- Phenotypic resistances ($\mathrm{n}=18$)

CC22

1. Shuffling coincides with success

2. > 99\% MRSA resistant to fluoroquinolones

Does hospital wide prescribing of ciprofloxacin (a fluoroquinolone) contribute to the selection of colonizing MRSA?

Controlling MRSA infection rates

"New antibiotic guidelines for the whole Trust with restriction of cephalosporins and quinolones" (Spring 2007)

- Beta-lactamase resistant beta-lactams
- Ciprofloxacin

Modelling

- Test above hypothesis
- Stochastic differential equation model

$$
\begin{aligned}
& \frac{d F}{d t}=\lambda_{F}-\beta F S-(1+\bar{c}) \beta F R+v R-\mu F+(a-\bar{c} \beta R) S \\
& \frac{d S}{d t}=\lambda_{S}+\beta F S-a S-\mu S-b \beta S R \\
& \frac{d R}{d t}=\lambda_{R}+(1+\bar{c}) \beta F R-v R-\mu R+(b+\bar{c}) \beta S R
\end{aligned}
$$

- Parameters from St George's

For, MRSA (UK), the key drivers are fitness / shuffling / ciprofloxacin resistance

What drives antibiotic resistance changes in TB?

Tuberculosis

EVERY YEAR 9 MILLION PEOPLE GET SICK WITH TB.

3 MILLION DON'T GET THE CARE THEY NEED.

HELP US REACH THEM.

REACH THE 3 MILLION.

FIND. TREAT. CURE TB.

Natural history of TB

Typical TB model structure

What are the key drivers of TB resistance evolution?

The key drivers from modelling

The key drivers

What do we know about resistance in TB?

Fitness experiments

Fig. 1. Relative competitive fitness of laboratory-derived rifampin-resistant mutants of M. tuberculosis. All mutants had a statistically significant fitness cost (error bars indicate 95% confidence intervals). This cost was less in $r p o B S 531 \mathrm{~L}$ mutants than in other $r p o B$ mutants, irrespective of the strain background. Light gray bars, CDC1551 mutants; dark gray bars, T85 mutants. Y, Tyr; W, Trp; P, Pro.
(Gagneux, 2006)

Figure 3 | Relationship between antibiotic resistance and bacterial fitness.
Numbers shown on the y axes are from empirical data $a^{20,61,38} \cdot a \mid$ High-level resistance to

Modelling heterogeneous fitness

Drug resistant-TB

(Cohen \& Murray, 2004)

How does mean relative fitness change over time?

Are "generalized" functions of fitness over time achievable?

Heterogeneous fitness

Number of individuals with active TB due to resistant strain

Mean relative fitness

$$
\begin{aligned}
& =12 / 16 \times 0.6+4 / 16 \times 1 \\
& =0.7
\end{aligned}
$$

Heterogeneous fitness

Number of individuals with active TB dunta macictant ctroin

Challenges

- Long term dynamics of TB
- Time step approximation

Mean relative fitness $=0.6$

Unfit ($f=0.6$)
Fit $(f=1)$
Select acquisitions from different distributions

Multiple fitness levels
hean relative fitness
$=12 / 16 \times 0.6+4 / 16 \times 1$
$=0.7$

Generalised fitness function

- Proportion at fitness level " x " (just transmission)

$$
\begin{aligned}
x(t+1) & =\frac{Z(t) x(t) r_{x}}{Z(t)\left(x(t) r_{x}+y(t) r_{y}\right)} \\
& =\frac{x(t) r_{x}}{x(t) r_{x}+y(t) r_{y}} \\
& =\frac{x(t) r_{x}}{f(t)}
\end{aligned}
$$

$$
\begin{gathered}
\lambda_{S}=\beta A_{S} \\
\lambda_{R}=f \beta A_{R}
\end{gathered}
$$

Generalised fitness function

- $\mathrm{M}(\mathrm{n}, \mathrm{t})$ = matrix of distribution over n fitness levels over time for ACTIVE cases
- $\mathrm{v}=$ vector of n relative fitness levels
- Mean relative fitness:
$f(t+1)=M(n, t+1) v$
$=$ (Active remain) ${ }^{*} M(t)+$ (Active Dependent on the relative fitness in the last time step

new rel. fit $=$ transmissions \times rel. fit + acquisitions \times rel. fit
+ reactivations x rel. fit
Requires keeping track of latent population distribution of fitness

Model fit

Proportion of acquisitions

lel fit

Conclusions

- MRSA
- Resistance levels give information on the selective pressures seen in the environment e.g. on commensals
- Three key drives to being a successful resistant MRSA isolate in a UK hospital:
- Fitness / Shuffle / ciprofloxacin resistance
- The most successful were not the most resistant
- TB
- Levels of resistance to new regimens will be governed by
- Fitness costs to resistance / treatment success / acquisition rates
- To be continued...
- Fitness is a dynamic process
- More data is needed on how this changes in populations over time

Acknowledgements

EPSRC

Engineering and Physical Sciences Research Council

- Tuberculosis
- Ted Cohen
- Richard White
- David Dowdy
- Sourya Srestha
- Mariam Fofana
- Frank Cobelens
gwen.knight@lshtm.ac.uk (Room 2117)

BILL MELINDA GATES foundation

Heterogeneous fitness

Number of individuals with active TB due to resistant strain

Mean relative fitness

$$
\begin{aligned}
& =0.9 \times 0.6+0.1 \times 1 \\
& =0.64 \\
\lambda_{S} & =\beta A_{S} \\
\lambda_{R} & =f \beta A_{R}
\end{aligned}
$$

Mean relative fitness

$$
\begin{aligned}
& =12 / 14 \times 0.6+2 / 14 \times 1 \\
& =0.66
\end{aligned}
$$Unfit ($f=0.6$)

Fit $(f=1)$

Treatment and antimicrobial resistance in TB

- First line: 6 months combination therapy
- Resistance:
- MDR-TB = resistance to two of first line drugs
- XDR-TB = MDR + resistance to any of second line
- 4% of new and 20% of previously treated MDR-TB ${ }^{1}$
- >70\% undetected ${ }^{1}$
- MDR-TB treatment 24months...
- New regimens under investigation
- Shorter
- New drugs

Modelling explanation

Modelling explanation

- Using hospital parameters the effect of the decline in fluoroquinolones can be captured
- Using to make predictions about other control mechanisms

Dependence on relative fitness

$$
\begin{gathered}
\lambda_{S}=\beta\left(A_{S}+g A_{S R}\right) \\
\lambda_{R}=f \beta\left(A_{R}+(1-g) A_{S R}\right)
\end{gathered}
$$

fitness for the levels of $\left(r_{x}, r_{y}\right)$. If $Z(t)$ is the pool of individuals that can be infected via transmission of resistant strains multiplied by the per capita transmission rate (β) and proportion that progress to active TB p, then the number of transmissions T at time $t+1$ is:

$$
\begin{equation*}
T(t+1)=Z(t)\left(x(t) r_{x}+y(t) r_{y}\right) \tag{3}
\end{equation*}
$$

and, as a reworking of (2), the mean relative fitness of the resistant strain population at time t is

$$
\begin{equation*}
f(t)=\left(x(t) r_{x}+y(t) r_{y}\right) \tag{4}
\end{equation*}
$$

This is the fitness value used to determine the number of transmissions of the resistant strains in time step $t+1$.

$$
\begin{aligned}
x(t+1) & =\frac{Z(t) x(t) r_{x}}{Z(t)\left(x(t) r_{x}+y(t) r_{y}\right)} \\
& =\frac{x(t) r_{x}}{x(t) r_{x}+y(t) r_{y}} \\
& =\frac{x(t) r_{x}}{f(t)}
\end{aligned}
$$

