Quantifying the role of population subdivision in evolution on rugged fitness landscapes

Anne-Florence Bitbol

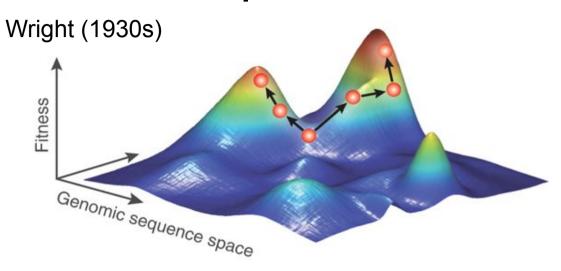
Collaborator: David J. Schwab

Biophysics Theory Group

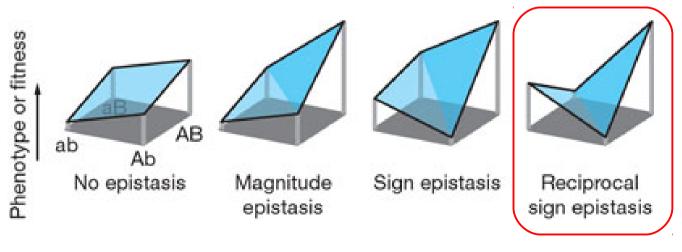
Lewis-Sigler Institute for Integrative Genomics & Departments of Physics and Molecular Biology

Introduction

Fitness landscape



Origin of fitness valleys: epistasis



Can give rise to multiple peaks

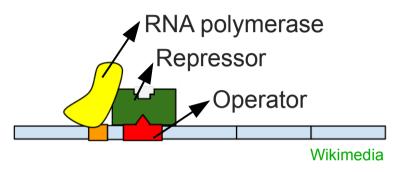
Poelwijk, Kiviet, Weinreich and Tans (2007)

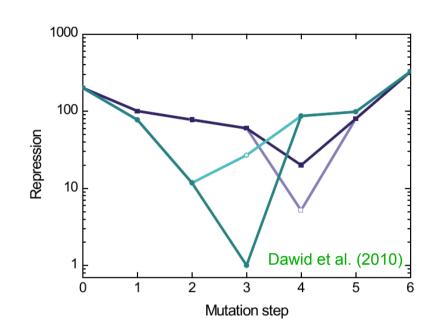
Introduction

Molecular example

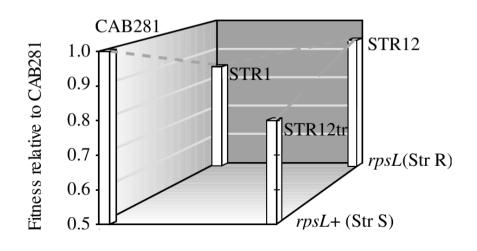
Co-evolving systems → fitness valleys

The *lac* operon:





Fitness costs in the evolution of antibiotic resistance



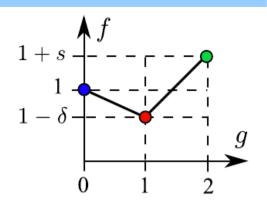
Evolution of streptomycin resistance in *E. coli*

Schrag, Perrot and Levin (1997)

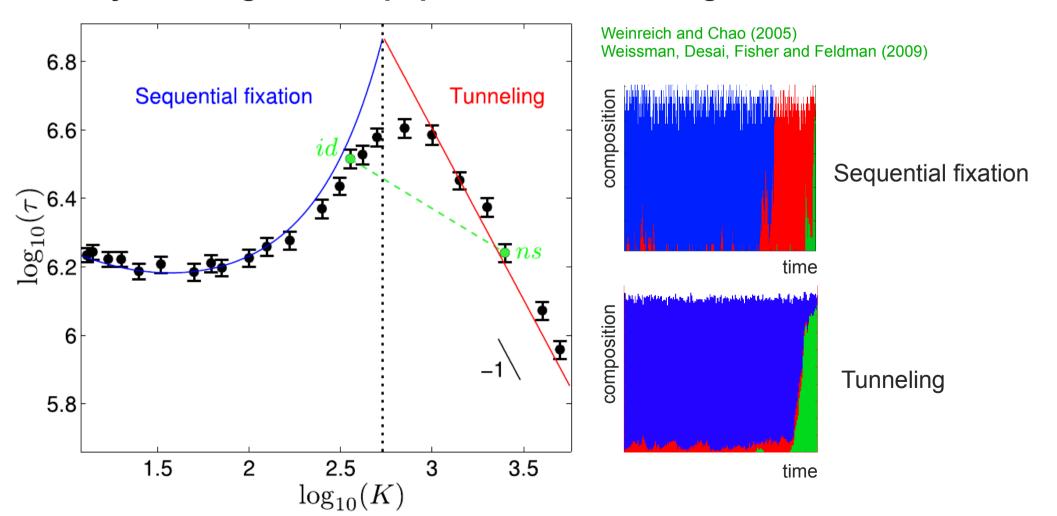
Introduction

Effect of population size on fitness valley crossing

Smaller population → stochasticity is more important Deleterious / neutral mutations can drift to fixation

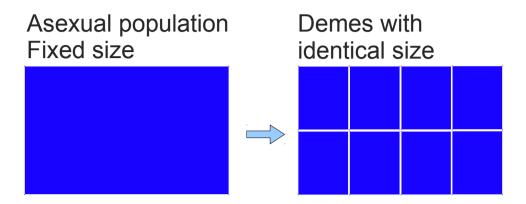


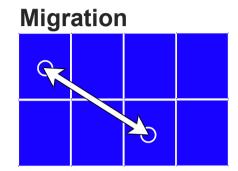
Valley crossing time vs. population size: two regimes



Question & Model

Population subdivision: a minimal model



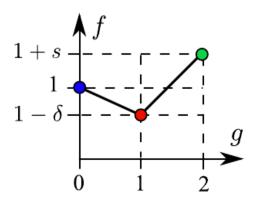


→ Can subdivision with migration (alone) accelerate fitness valley crossing? If yes, under what conditions, and how much?

N.B.: Wright's shifting balance theory (1930s)

Here: No geographic structure
No extinction / founding
No environment heterogeneity
Constant migration rate

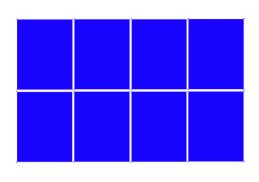
Fitness landscape

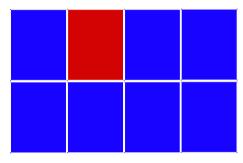


- A single valley
- No backward mutations
- A single mutation rate μ + assume $N\mu < 1$

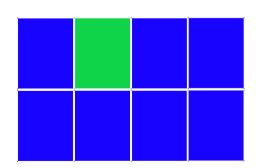
Best scenario

1. Valley crossing by the champion deme

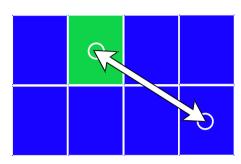


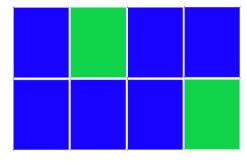


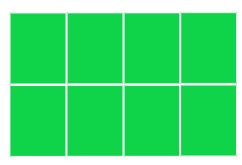
← if demes are in the sequential fixation regime

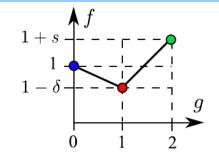


2. Spreading by migration







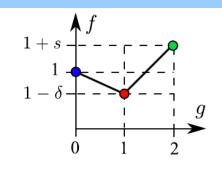


At best: valley crossing time dominated by that of the champion (fastest) deme

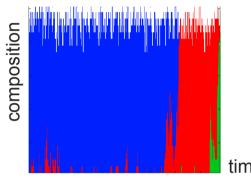
- → Speedup in this best scenario?
- → Conditions?

Best scenario

• Crossing by the champion among D independent demes



1. Demes in the sequential fixation regime



Average crossing time for one deme:

$$au = au_{01} + au_{12} = rac{1}{N\mu d\, p_{01}} + rac{1}{N\mu d\, p_{12}}$$
 Weissman et al. (2009)

Fixation probability of one "j" individual: $p_{ij} = \frac{1 - e^{f_i - f_j}}{1 - e^{N(f_i - f_j)}}$

$$\delta \ll 1, \ s \ll 1, \ N\delta \gg 1, \ Ns \gg 1 \to p_{01} = \frac{e^{\delta} - 1}{e^{N\delta} - 1} \approx \delta e^{-N\delta} \text{ and } p_{12} = \frac{e^{-(\delta + s)} - 1}{e^{-N(\delta + s)} - 1} \approx \delta + s$$

$$\tau_{01} \gg \tau_{12} \ \to \ \tau \approx \tau_{01} = \frac{1}{N\mu d\, p_{01}} \approx \frac{e^{N\delta}}{N\mu d\, \delta}$$

Crossing time ~ exponentially distributed

$$ightarrow$$
 Average for the champion among D demes: $\dfrac{ au_c}{ au_{id}} pprox \dfrac{1}{D}$ (c: champion; id : isolated deme) $Dp_{01} \ll p_{12}$ (can be generalized)

2. Demes in the tunneling regime

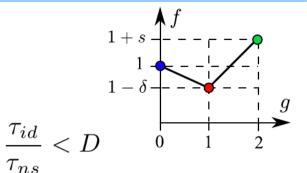
In this case too,
$$\frac{\tau_c}{\tau_{id}} pprox \frac{1}{D}$$

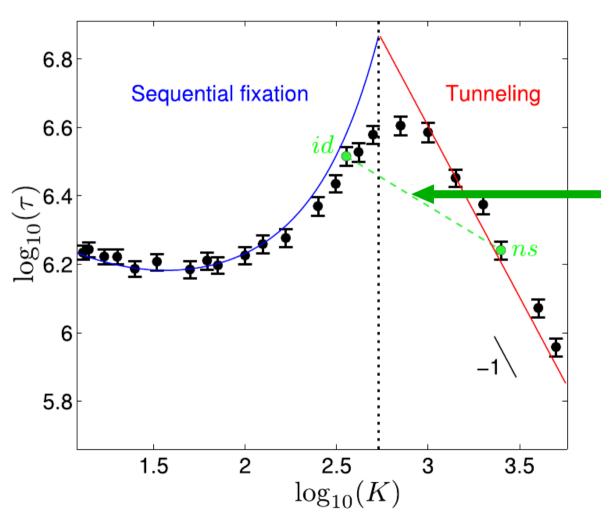
Best scenario

Necessary conditions to obtain speedups

Best scenario
$$\rightarrow \tau_m \approx \tau_c \quad \text{with} \quad \frac{\tau_c}{\tau_{id}} \approx \frac{1}{D}$$

Hence, to have a speedup by subdivision ($au_m < au_{ns}$), we need





Slope needs to be larger (less negative) than -1

Consequence: Sequential fixation in individual demes is necessary in order to get speedups

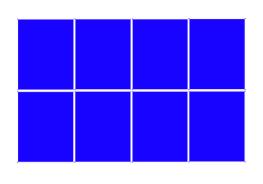
Reciprocally: Demes in the sequential fixation regime

→ speedups in the best scenario

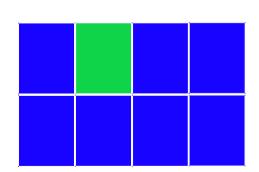
→ Conditions under which the best scenario is attained?

Best scenario (reminder)

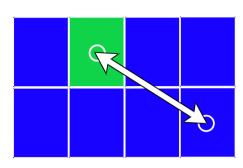
1. Valley crossing by the champion deme

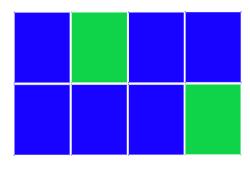


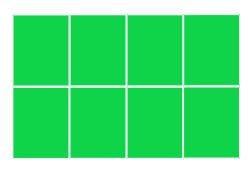
← if demes are in the sequential fixation regime

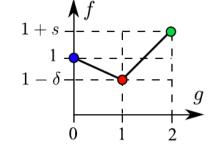


2. Spreading by migration





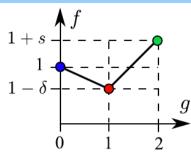


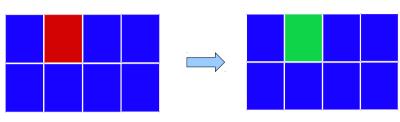


At best: valley crossing time dominated by that of the *champion* (fastest) deme → Conditions?

Condition 1: quasi-independence

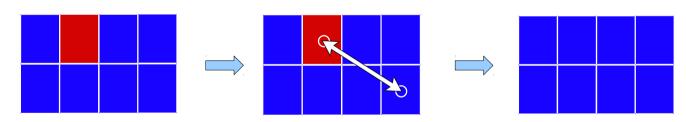
 The champion deme must be shielded from migration while in the deleterious state





Timescale:
$$\tau_{12} = \frac{1}{N\mu d\, p_{12}} \quad \text{with} \quad p_{12} = \frac{e^{-(\delta+s)}-1}{e^{-N(\delta+s)}-1} \approx \delta + s$$
 $\delta \ll 1, \ s \ll 1, \ N\delta \gg 1, \ Ns \gg 1$

must occur faster than



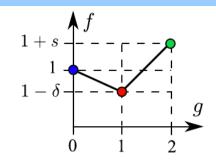
Timescale: $t_e=\frac{n_e}{DNm}$ where n_e = average number of migrations for "1" to get extinct Probability that a migration is relevant: $p_r=\frac{2}{D}$ Migrant fixation: $p_{01}=\frac{e^{\delta}-1}{e^{N\delta}-1}\approx \delta e^{-N\delta}$ and $p_{10}=\frac{e^{-\delta}-1}{e^{-N\delta}-1}\approx \delta$

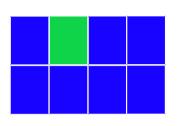
$$p_{10} = \frac{e^{-\delta} - 1}{e^{-N\delta} - 1} \approx \delta$$

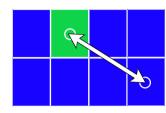
$$\rightarrow$$
 First condition: $\tau_{12} < t_e \rightarrow \left(\frac{m}{\mu d} < \frac{1}{2}\left(1 + \frac{s}{\delta}\right)\right)$: upper bound on the migration rate

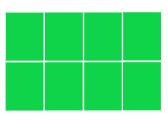
Condition 2: fast spreading

 Spreading of the beneficial mutation must be faster than valley crossing by the champion deme









Timescale: $t_s = \frac{n_s}{DNm}$ where n_s = average number of migrations for "2" to spread

$$n_s = \sum_{i=1}^{D-1} n_{i \to i+1} = \sum_{i=1}^{D-1} \frac{1}{p_{i \to i+1}}$$

$$p_{i \to i+1} = r_i p_{02} (1 - p_{20}) \approx r_i s$$

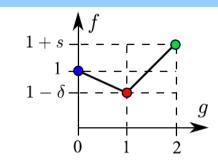
Hence,
$$t_s \approx \frac{\log D}{Nsm}$$

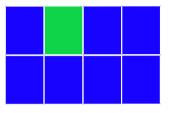
$$n_s = \sum_{i=1}^{D-1} n_{i \to i+1} = \sum_{i=1}^{D-1} \frac{1}{p_{i \to i+1}} \qquad i \text{: number of "2" populations}$$

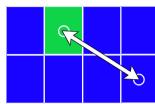
$$p_{i \to i+1} = r_i p_{02} (1 - p_{20}) \approx r_i s$$
 Probability that a migration is relevant:
$$r_i = \frac{2i(D-i)}{D(D-1)}$$

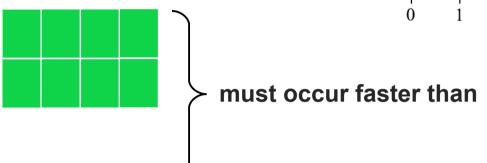
Condition 2: fast spreading

 Spreading of the beneficial mutation must be faster than valley crossing by the champion deme

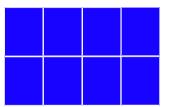


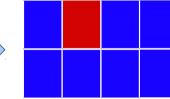


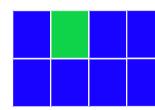




Timescale: $t_s \approx \frac{\log D}{N_{em}}$







Valley crossing by the champion deme

$$au_c pprox rac{ au_{id}}{D} pprox rac{e^{N\,\delta}}{DN\mu d\,\delta}$$

Second condition:
$$t_s < au_c$$

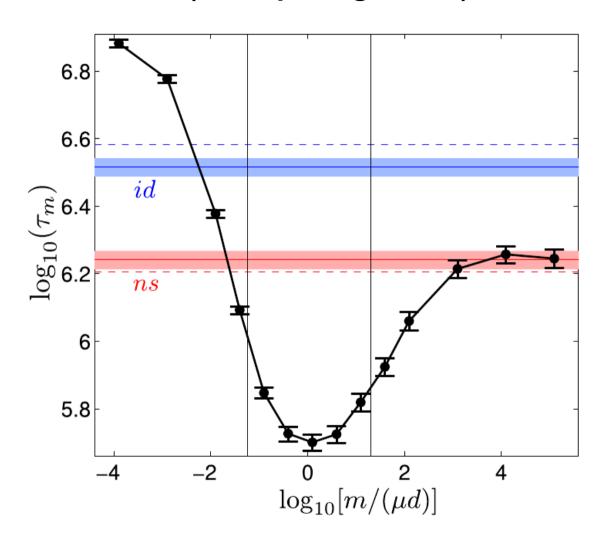
Timescale:
$$\tau_c \approx \frac{\tau_{id}}{D} \approx \frac{e^{N\delta}}{DN\mu d\delta}$$
 \rightarrow Second condition: $t_s < \tau_c \rightarrow \left[\frac{\delta e^{-N\delta}}{s}D\log D < \frac{m}{\mu d}\right]$: lower bound on the migration rate

• Prediction:

$$\frac{\delta e^{-N\delta}}{s} D \log D \ll \frac{m}{\mu d} \ll \frac{1}{2} \left(1 + \frac{s}{\delta} \right) \ \, \rightarrow \text{optimal scenario, and} \ \, \frac{\tau_m}{\tau_{id}} \approx \frac{1}{D}$$

Test: stochastic simulation

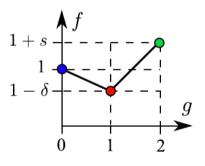
Simulation (Gillespie algorithm) → crossing time vs. migration rate



Parameter values:

$$s = 0.3$$

 $\delta = 0.006$
 $K = 357$
 $D = 7$
 $\mu = 8 \times 10^{-6}$
 $d = 0.1$

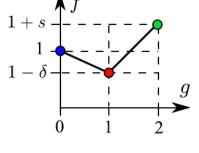


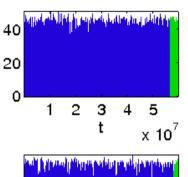
Minimum
$$\rightarrow \tau_m = (5.02 \pm 0.14) \times 10^5$$
 $\tau_{id} = (3.28 \pm 0.10) \times 10^6$ \rightarrow factor of 6.54, close to D = 7

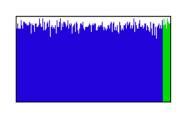
Test: stochastic simulation

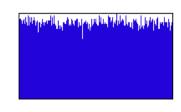
Valley crossing at the optimum

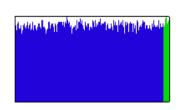
One realization:

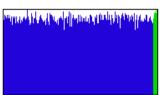




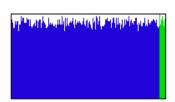


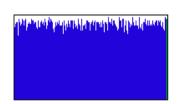


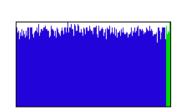


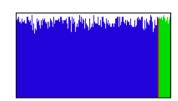




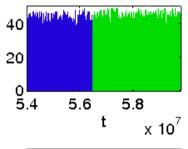


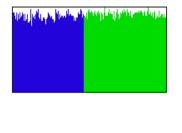


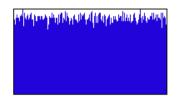


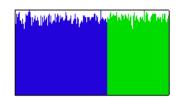


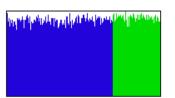
End of the process:

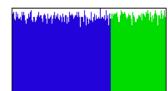


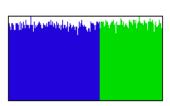


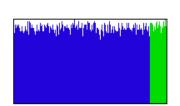


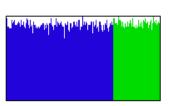


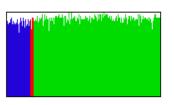








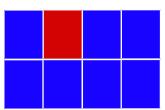


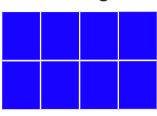


Generalizing

• Beyond $N\delta >> 1$: shallow valleys, plateaus, etc.

 $N\delta \gg 1, Ns \gg 1 \rightarrow$ simple derivation of numbers of migrations until extinction or fixation





$$p_{01} = \frac{e^{\delta} - 1}{e^{N\delta} - 1} \approx \delta e^{-N\delta}$$

$$p_{10} = \frac{e^{-\delta} - 1}{e^{-\delta} - 1} \approx \delta$$

$$p_{10} = \frac{e^{-\delta} - 1}{e^{-N\delta} - 1} \approx \delta$$

A finite Markov chain

 $i \in [0,D]$: number of demes that have fixed the mutation (e.g., "1")

At each migration step, i can change Outcome of the next migration only depends on current value of i finite Markov chain Two absorbing states: i = 0 and i = D

Transition probabilities

$$P_{i \to i+1} = r_i p_{01} (1 - p_{10})$$

$$P_{i \to i-1} = r_i p_{10} (1 - p_{01})$$

$$P_{i \to i} = 1 - (P_{i \to i+1} + P_{i \to i-1})$$

Probability that a migration is relevant:

$$r_i = \frac{2i(D-i)}{D(D-1)}$$

The matrix of transition probabilities is tri-diagonal \rightarrow simple case!

The number of migration steps before absorption can be expressed analytically Ewens (1979)

Generalizing

Optimal parameter range

$$n_s p_{01} \ll \frac{m}{\mu d} \ll \frac{n_e p_{12}}{D}$$

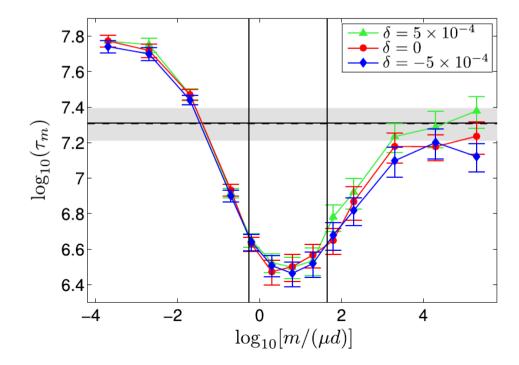
Exact expressions for n_{g} and n_{g} (number of migration steps before absorption)

Case of the plateau (δ = 0): optimal speedup is obtained for $\frac{1}{Ns}D\log D\ll \frac{m}{\mu d}\ll \frac{Ns}{2}\log D$

Effectively neutral intermediates

Effectively neutral intermediate: $|\delta|<\max(\sqrt{\mu s},1/N)$: includes weakly beneficial ones \to plateau results hold

Example:

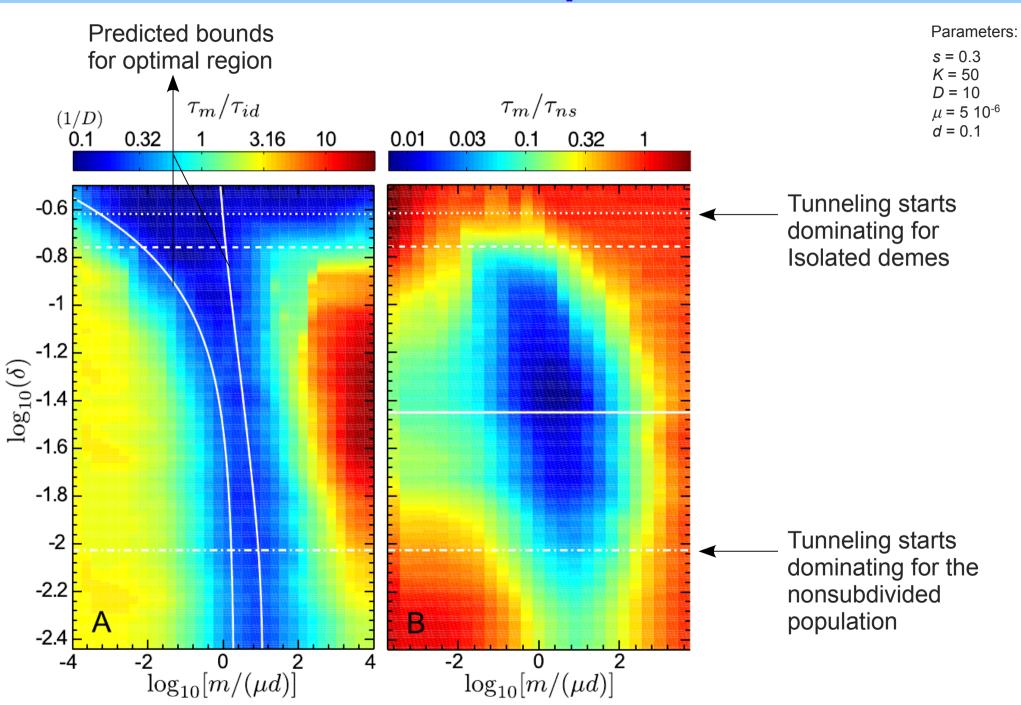


Parameter values:

$$s = 0.5$$

 $N = 130$
 $D = 10$
 $\mu = 5 \times 10^{-7}$
 $d = 0.1$

Heatmaps



Highest speedup & trade-off

Highest possible speedup by subdivision

Optimal case \rightarrow speedup gained by subdividing a population: $\frac{\tau_m}{\tau_{ns}} = \frac{\tau_c}{\tau_{ns}}$

Assume:

- isolated deme in the sequential fixation regime
- nonsubdivided population in the tunneling regime

$$2\sqrt{\mu s} \ll \delta \ll 1 \rightarrow \frac{\tau_m}{\tau_{ns}} = \mu s \frac{e^{N\delta} - 1}{\delta^2}$$

At fixed N, this ratio is minimal for $\delta \approx \frac{1.594}{N}$ (\rightarrow importance of general calculations)

Its minimal value is $\ \frac{\tau_m}{\tau_{ns}} \approx 1.544 \, N^2 \mu s$

Heatmaps \rightarrow optimal valley depth: $\delta \approx 0.035 \approx 10^{-1.45}$

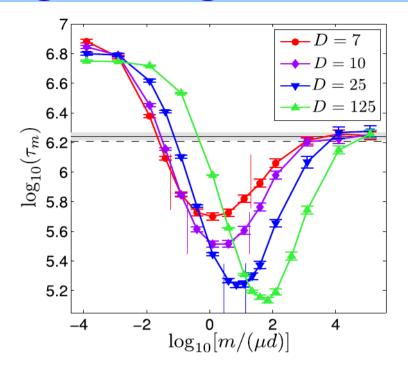
A trade-off in the choice of D

Fixed $\mathcal{N}=ND$ \rightarrow highest speedup: $\frac{\tau_m}{\tau_{ns}}\approx 1.544\frac{\mathcal{N}^2\mu s}{D^2}$ Increase D \rightarrow gain more speedup

But
$$\frac{\delta e^{-N\delta}}{s} D \log D \ll \frac{m}{\mu d} \ll \frac{1}{2} \left(1 + \frac{s}{\delta} \right)$$

Increase $D \rightarrow$ narrower optimal parameter range

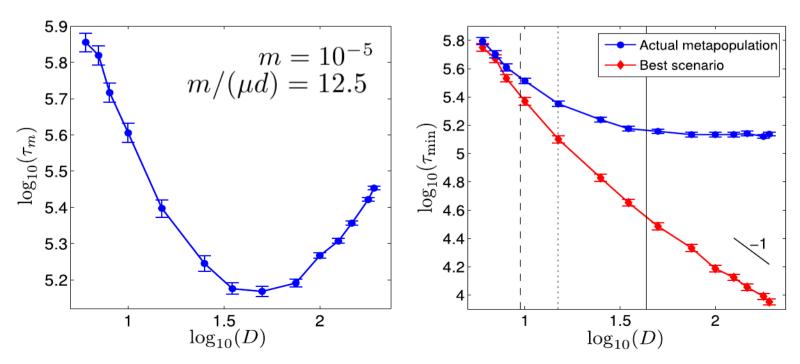
Varying the degree of subdivision



Parameter values:

$$s = 0.3$$

 $\delta = 0.006$
 $D K = 2500$
 $\mu = 8 \times 10^{-6}$
 $d = 0.1$



Application

An example

E.
$${\it coli}
ightarrow \mu pprox 8.9 imes 10^{-11}$$
 Wielgoss et al. (2011)

Take $N=5 imes 10^4$ (small but realistic) Rozen et al. (2008)

 $D=100$ (96-well plates)

Plateau $ightarrow$ sequential fixation below $N_{ imes}=1/\sqrt{\mu s}$ $s=10^{-2}$ $ightarrow$ isolated demes in the sequential fixation regime for $0<\delta \lesssim 2.2 imes 10^{-4}$

The optimal range of migration rates spans 2 to 4 orders of magnitude depending on δ

Speedup factor from 18 to 2.7×10^2

More generally

For given *N* and *D*, we can predict:

- for which valleys subdivision speeds up crossing
- the highest speedups obtained
- the range of migration rates for which they are reached

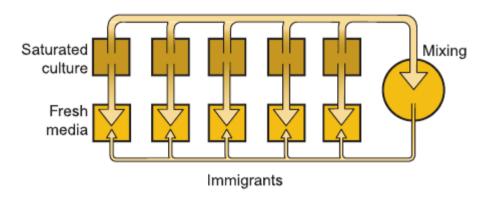
Conclusion

Summary

- Subdivision with migration (alone) can significantly accelerate fitness valley & plateau crossing
- Sufficiently small demes (performing sequential fixation) are necessary
- Effect of varying the degree of subdivision

Some related experimental studies

- Kryazhimskiy, Rice and Desai (2012) → evolution of subdivided populations of yeast



 → no evidence of any advantage of subdivided populations

- Nahum, Godfrey-Smith, Harding, Marcus, Carlson-Stevermer and Kerr (BioRXiv 2014)
 - → evolution of subdivided populations of bacteria
 - → some advantage of subdivision
- → Importance of understanding quantitatively the conditions under which subdivision is beneficial

Conclusion

Perspectives

- More complex population structure (different sizes)
 - → already treated: large population + islands
- Case of sexual populations (recombination)
- Spatial structure (expanding front)
- Effect of population subdivision on the evolution of antibiotic resistance

Acknowledgements

David J. Schwab

Ned S. Wingreen

The Princeton Biophysics Journal Club

For more information

A.-F. Bitbol and D.J. Schwab, *Quantifying the role of population subdivision in evolution on rugged fitness landscapes*, PLoS Computational Biology, 10(8): e1003778 (2014) DOI: 10.1371/journal.pcbi.1003778

Preprint: ArXiv 1308.0278

Thanks!