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HA amino acid sequences taken from H3N2 influenza at 2 month intervals

Approximately 1 in 20 sites change over the course of 10 years

Provides a chronological record of evolution



1998 2000 2002 2004 2006 2008 2010 2012

Phylogenetic tree of influenza H3N2



Antigenic cartography



Influenza hemagglutination inhibition (HI) assay

Hemagglutination inhibition assay:

Hemagglutination assay:

With virus, cells form diffuse lattice+ =

Without virus, red blood cell sink to bottom of well=

Without antibodies, agglutination of virus to RBC=+

Antibodies bind viruses, preventing agglutination+ + =



Influenza hemagglutination inhibition (HI) assay

Reacting virus from strain A-H vs sera from strain A

A B C D E F G H
Dilution 40

80
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320
640
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Without antibodies, agglutination of virus to RBC=+

Antibodies bind viruses, preventing agglutination+ + =



Table 7. Antigenic analyses of influenza A H3N2 viruses - Guinea pig RBCs

A) In presence of 20nM Oseltamivir

NA HA
Viruses Collection          Passage A/Wis A/Bris A/Uru A/HK A/Perth A/Wis A/HK

Date           History 67/05 10/07 716/07 1985/09 16/09 15/09 34430/09
F1/06 F29/08 F26/08 F21/09 F25/09 F24/09 F4/10

REFERENCE VIRUSES

A/Wisconsin/67/2005 2005-08-31 SpfCk3E3/E7 1280 1280 1280 40 < 160 40
A/Brisbane/10/2007 2007-02-06 E2/E3 2560 2560 2560 80 < 160 160
A/Uruguay/716/2007 2007-06-21 SpfCk1, E3/E3 640 1280 2560 < < 80 40
A/Hong Kong/1985/2009 2009-04-01 MDCK2/SIAT1 40 80 160 1280 640 2560 1280
A/Perth/16/2009 2009-07-04 E3/E2 < < 40 640 640 640 640
A/Wisconsin/15/2009 2009-07-06 E2/E3 < < 40 640 640 1280 1280
A/Hong Kong/34430/2009 2009-11-22 MDCK2/SIAT2 < 80 160 5120 640 1280 1280 D/G mix at 151, binds Ty and GP

TEST VIRUSES
A/Hong Kong/1737/2010 2010-03-24 MDCK2/SIAT1 40 80 320 5120 1280 1280 1280 D at 151, GP only Carries E280A, I230V, D53N 
A/Hong Kong/1775/2010 2010-03-28 MDCK2/SIAT1 < 80 160 5120 640 2560 1280 D at 151, binds GP and Ty Does not carry E280A, I230V, D53N
A/Hong Kong/1837/2010 2010-03-30 MDCK2/SIAT1 40 80 160 5120 640 2560 1280 D/V at 151, binds Ty and GP Does not carry E280A, I230V, D53N
A/Hong Kong/1888/2010 2010-04-19 MDCK2/SIAT1 160 320 320 5120 1280 2560 2560 D/N at 151 binds Ty and GP Same HA aa sequence as HK/1737/2010

1. < = <40 Vaccine strain

B) No Oseltamivir

NA HA

Viruses Collection          Passage A/Wis A/Bris A/Uru A/HK A/Perth A/Wis A/HK
Date           History 67/05 10/07 716/07 1985/09 16/09 15/09 34430/09

F1/06 F29/08 F26/08 F21/09 F25/09 F24/09 F4/10

REFERENCE VIRUSES

A/Wisconsin/67/2005 2005-08-31 SpfCk3E3/E7 2560 1280 2560 < < < <
A/Brisbane/10/2007 2007-02-06 E2/E3 2560 2560 5120 80 80 < 160
A/Uruguay/716/2007 2007-06-21 SpfCk1, E3/E3 640 1280 1280 < < < 40
A/Hong Kong/1985/2009 2009-04-01 MDCK2/SIAT1 < 80 80 640 640 160 640
A/Perth/16/2009 2009-07-04 E3/E2 < < 40 1280 640 160 640
A/Wisconsin/15/2009 2009-07-06 E2/E3 80 < < 1280 640 160 320
A/Hong Kong/34430/2009 2009-11-22 MDCK2/SIAT2 40 40 40 160 160 40 160 D/G mix at 151, binds Ty and GP

TEST VIRUSES

A/Ghana/FS-271/2010 2010-02-22 MDCK1/SIAT1 80 80 80 640 320 160 1280 Binds GP only, D at 151
A/Ghana/FS-376/2010 2010-03-05 MDCK1/SIAT2 < 40 40 320 160 80 640 Binds GP only, D at 151
A/Ghana/FS-464/2010 2010-03-15 MDCK1/SIAT1 80 80 160 1280 1280 320 2560 Binds GP only, D at 151
A/Ghana/FS-467/2010 2010-03-15 MDCK1/SIAT1 80 80 80 1280 640 320 2560 Binds GP only, D at 151
A/Stockholm/1/2010 2010-04-29 C1/SIAT1 < 160 160 320 320 160 640 Low binding to GP after Os Same HA aa sequence as HK/1737/2010
A/Stockholm/2/2010 2010-04-30 C1/SIAT1 40 160 80 160 160 80 320 Low binding to GP after Os Same HA aa sequence as Victoria/208/2009
A/Hong Kong/2097/2010 2010-06-25 MDCK2/SIAT1 < 160 40 160 80 80 320 GP binding sensitive to Os Same HA aa sequence as HK/1737/2010 also Y94H
A/Hong Kong/2146/2010 2010-07-06 MDCK2/SIAT1 < 160 80 160 160 80 320 GP binding sensitive to Os Same HA aa sequence as HK/1737/2010 also Y94H

1. < = <40 Vaccine strain

Comments

CommentsHaemagglutination inhibition titre1

Post infection ferret sera

Haemagglutination inhibition titre1

Post infection ferret sera
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Data in the form of table of maximum inhibitory titers



Collect data from many HI assays
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Antigenic cartography

Uses multidimensional scaling (MDS) to position viruses in 2D space such that 
the distances in this space best fit the HI assay titers.

Developed by Derek Smith and colleagues



Antigenic cartography

Uses multidimensional scaling (MDS) to position viruses in 2D space such that 
the distances in this space best fit the HI assay titers.

Developed by Derek Smith and colleagues

dated to ensure sufficient efficacy against
newly emerging variants (7, 8). The World
Health Organization coordinates a global
influenza surveillance network, currently
consisting of 112 national influenza centers
and four collaborating centers for reference
and research. This network routinely char-
acterizes the antigenic properties of influ-
enza viruses using a hemagglutination in-
hibition (HI) assay (1). The HI assay is a
binding assay based on the ability of influ-
enza viruses to agglutinate red blood cells
and the ability of animal antisera raised
against the same or related strains to block
this agglutination (9). Additional surveil-
lance information is provided by sequenc-
ing the immunogenic HA1 domain of the
HA gene for a subset of these strains. The
combined antigenic, epidemiological, and
genetic data are used to select strains for
use in the vaccine.

Retrospective quantitative analyses of the
genetic data have revealed important insights
into the evolution of influenza viruses (10–
13). However, the antigenic data are largely
unexplored quantitatively because of difficul-
ties in interpretation, even though antigenic-
ity is a primary criterion for vaccine strain
selection and is thought to be the main driv-
ing force of influenza virus evolution. When
antigenic data have been analyzed quantita-
tively, it has usually been with the methods
of, or methods equivalent to, numerical tax-
onomy (14–16). These methods have pro-
vided insights (15–19); however, they
sometimes give inconsistent results, do not
properly interpret data that are below the
sensitivity threshold of the assay, and approx-
imate antigenic distances between strains in
an indirect way [discussed by (4, 16, 18)].
Lapedes and Farber (4 ) solved these prob-
lems with a geometric interpretation of bind-
ing assay data, in which each antigen and
antiserum is assigned a point in an “antigenic
map” [based on the theoretical concept of
“shape space” (20–23)], such that the dis-
tance between an antigen and antiserum in
the map directly corresponds to the HI mea-
surement. Lapedes and Farber used ordinal
multidimensional scaling (MDS) (24 ) to po-
sition the antigens and antisera in the map.

The method used in this manuscript is
based on the fundamental ideas described
by Lapedes and Farber (4 ) and, in particu-
lar, takes advantage of their observation
that antigenic distance is linearly related to
the logarithm of the HI measurement. Ex-
ploiting this observation allowed us to cre-
ate a new method that is parametric yet still
handles HI measurements that are beyond
the sensitivity of the HI assay (9). We use
a modification of metric MDS (25 ) to po-
sition the antigens and antisera in the map
(9). This new approach offers computation-
al advantages over the ordinal approach,

including reduced running time and fewer
local minima, making it tractable to run on
datasets the size of the one used in this
manuscript, and on larger datasets.
Antigenic map of human influenza A

(H3N2) virus. We applied this method to
mapping the antigenic evolution of human
influenza A (H3N2) viruses, which became
widespread in humans during the 1968 Hong
Kong influenza pandemic and have been a
major cause of influenza epidemics ever
since. Antigenic data from 35 years of influ-
enza surveillance between 1968 and 2003
were combined into a single dataset. We se-
quenced the HA1 domain of a subset of these
virus isolates (26, 27 ) and restricted the an-
tigenic analysis to these sequenced isolates to
facilitate a direct comparison of antigenic and
genetic evolution. The resulting antigenic
dataset consisted of a table of 79 postinfec-
tion ferret antisera by 273 viral isolates, with
4215 individual HI measurements as entries
in the table. Ninety-four of the isolates were
from epidemics in the Netherlands, and 179
were from elsewhere in the world.

We constructed an antigenic map from
this dataset to determine the antigenic evolu-
tion of influenza A (H3N2) virus from 1968
to 2003 (Fig. 1). Because antigen-antiserum
distances in the map correspond to HI values,
it was possible to predict HI values that were
missing in the original dataset and subse-
quently to measure those values using the HI
assay, so as to determine the resolution of the
map. We predicted and then measured 481
such HI values with an average absolute pre-
diction error of 0.83 (SD 0.67) units (each
unit of antigenic distance corresponds to a
twofold dilution of antiserum in the HI assay)
and a correlation between predicted and mea-
sured values of 0.80 (p !! 0.01). The accu-
racy of these predictions indicates that the
map has resolution higher than that previous-
ly considered available from HI data and
higher than the resolution of the assay. The
resolution of the map can be greater than the
resolution of the assay because the location of
a point in the map is fixed by measurements
to multiple other points, thereby averaging
out errors (9).

The map reveals high-level features of the
antigenic evolution of influenza A (H3N2)
virus. The strains tend to group in clusters
rather than to form a continuous antigenic
lineage, and the order of clusters in the map is
mostly chronological; from the original Hong
Kong 1968 (HK68) cluster, to the most recent
Fujian 2002 (FU02) cluster. The antigenic
distance from the HK68 cluster, through con-
secutive cluster centers, to the FU02 cluster is
44.6 units, and the average antigenic distance
between the centers of consecutive clusters is
4.5 (SD 1.3) units. The influenza vaccine is
updated between influenza seasons when
there is an antigenic difference of at least 2

units between the vaccine strain and the
strains expected to circulate in the next sea-
son; thus, not unexpectedly, we find at least
one vaccine strain in each cluster.

The ability to define antigenic clusters
allows us to identify the amino acid substitu-
tions that characterize the difference between
clusters (Table 1, fig. S1). Some of these
“cluster-difference” substitutions (9) will
contribute to the antigenic difference between
clusters, some may be compensatory muta-

Fig. 1. Antigenic map of influenza A (H3N2)
virus from 1968 to 2003. The relative positions
of strains (colored shapes) and antisera (uncol-
ored open shapes) were adjusted such that the
distances between strains and antisera in the
map represent the corresponding HI measure-
ments with the least error (9). The periphery of
each shape denotes a 0.5-unit increase in the
total error; thus, size and shape represent a
confidence area in the placement of the strain
or antiserum. Strain color represents the anti-
genic cluster to which the strain belongs. Clus-
ters were identified by a k-means clustering
algorithm (9) and named after the first vaccine-
strain in the cluster—two letters refer to the
location of isolation (Hong Kong, England, Vic-
toria, Texas, Bangkok, Sichuan, Beijing, Wuhan,
Sydney, and Fujian) and two digits refer to year
of isolation. The vertical and horizontal axes
both represent antigenic distance, and, because
only the relative positions of antigens and an-
tisera can be determined, the orientation of the
map within these axes is free. The spacing
between grid lines is 1 unit of antigenic dis-
tance—corresponding to a twofold dilution of
antiserum in the HI assay. Two units corre-
spond to fourfold dilution, three units to eight-
fold dilution, and so on.
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Bayesian multidimensional scaling (BMDS)

Probability of observing data Hij ⇠ Normal(Sj � �ij ,�
2
)

For example, given �ij = 4

Likelihood of observing HI data L(X,Y) =
Y

(i,j)2I

f(Hij)

and Sj = 10.3

Map distance between virus i at Xi and serum j at Yj �ij = ||Xi � Yj ||2

HijTiter between virus i and serum j

SjMaximum titer for serum j, i.e. serum ‘potency’



Integration through Markov chain Monte Carlo (MCMC)

BEAST: Bayesian Evolutionary Analysis by Sampling Trees
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Bayesian MDS results



Predicting HI measurements

Dimen Serum effects Virus effects Test error

1D Fixed None 1.03

2D Fixed None 0.86

3D Fixed None 0.88

4D Fixed None 0.96

5D Fixed None 1.06

2D Estimated None 0.77

2D Estimated Estimated 0.75

Training dataset: 6545 measurements 
Test dataset: 723 measurements 
Errors are average absolute prediction errors for log2 HI titers



Antigenic map of H3N2 influenza from 1968 to 2011

1968 2011



Local HI measurements are used to construct the global map

Antigenic map of H3N2 influenza from 1968 to 2011



Antigenic drift of H3N2 influenza



Vaccine strain selection



Vaccine strain selection timeline
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Global status of national immunization programmes (2010/2012) 
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Vaccine strain selection timeline for 06-07 season
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A four-fold difference in HI (2 units on the antigenic map) is generally 
considered sufficient to warrant a vaccine strain update
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Antigenic map for viruses up to  
March 2007 

Shandongê9ê1993
Johannesburgê33ê1994
Wuhanê359ê1995
Sydneyê5ê1997
Moscowê10ê1999
Fujianê411ê2002
Californiaê7ê2004
Wisconsinê67ê2005
Brisbaneê10ê2007
Perthê16ê2009

Shandongê9ê1993
Johannesburgê33ê1994
Wuhanê359ê1995
Sydneyê5ê1997
Moscowê10ê1999
Fujianê411ê2002
Californiaê7ê2004
Wisconsinê67ê2005
Brisbaneê10ê2007
Perthê16ê2009

4 6 8 10 12 14 16 18 20 22 24
-6

-4

-2

0

2

4

6

Antigenic dimension 1

An
tig
en
ic
di
m
en
si
on

2

2006-2007 season viruses
2006-2007 season center



Ranking of virus posterior distances
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Kalman filters











Kalman filter algorithm

Predict step: Use current state of the system at time t to predict state at time t+1

Keep estimates of system state (location and velocity vectors) and associated precisions.

Correct step: Use measurement of state to correction location

Predict
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Kalman filter algorithm

Predict step: Use current state of the system at time t to predict state at time t+1

Keep estimates of system state (location and velocity vectors) and associated precisions.

Correct step: Use measurement of state to correction location

State 0

State 1

State 2



Estimated antigenic trajectory



Estimated antigenic trajectory with 1 year look ahead
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Vaccine strain prediction
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Choice of 2004 viruses for 05-06 season
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◦	 Improvement in 8/9 cases (equal in 1) and two mis-matches  
	 (2002 & 2006) avoided 

◦	 Expect 8-16% improvement in VE

◦	 Assuming an 8% H3N2 attack rate and 43% coverage, an  
	 improvement of 8% VE is expected to translate to ~850 thousand  
	 cases prevented each year in the USA

◦ 	 Roughly, 1 HI unit of mismatch is expected to translate to loss of 
	 5-10% VE

◦	 Average improvement of 1.7 HI units 
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A predictive fitness model for influenza
Marta Łuksza1,2 & Michael Lässig1

The seasonal human influenza A/H3N2 virus undergoes rapid evolution, which produces significant year-to-year
sequence turnover in the population of circulating strains. Adaptive mutations respond to human immune challenge
and occur primarily in antigenic epitopes, the antibody-binding domains of the viral surface protein haemagglutinin.
Here we develop a fitness model for haemagglutinin that predicts the evolution of the viral population from one year to
the next. Two factors are shown to determine the fitness of a strain: adaptive epitope changes and deleterious mutations
outside the epitopes. We infer both fitness components for the strains circulating in a given year, using population-genetic
data of all previous strains. From fitness and frequency of each strain, we predict the frequency of its descendent strains in
the following year. This fitness model maps the adaptive history of influenza A and suggests a principled method for
vaccine selection. Our results call for a more comprehensive epidemiology of influenza and other fast-evolving pathogens
that integrates antigenic phenotypes with other viral functions coupled by genetic linkage.

The evolution of influenza A/H3N2 is well documented by sequence
data of several thousand strains since 19681. Most of these data con-
tain the gene sequence of haemagglutinin (HA), which covers one of
eight segments of the influenza genome and is the primary locus of
interaction with the human immune system2. Consistent with this func-
tional role, antigenic changes in the HA epitopes carry the adaptive
evolution of the pathogen3–11.

Evolutionary analysis has a particular role for influenza: it serves
not only to reconstruct the dynamical process and its causes, but to
predict future changes3,4. Any prediction of evolution is essentially an
estimate of fitness differences between strains. It is these differences
that lead to deterministic changes in population frequency, which are
predictable if we know how fitness depends on genotype and host
environment. Predictability is limited by stochastic events, which range
from mutations in individual viral sequences to sampling in host-to-
host transmission. Predictions of influenza HA evolution can inform
vaccine selection if, despite this limitation, they are sufficiently accurate
from one year to the next. Currently, the selection of vaccine strains is
based primarily on haemagglutination inhibition assays, which are used
to map antigenic changes between viral strains12. But the fitness of a
strain is a complex phenotype, which integrates antigenic properties
with multiple other molecular functions, one of which is simply the
thermodynamic stability of proteins13,14. Because there is no recombina-
tion, the evolution of these functions is strongly coupled, at least within
each genomic segment9,10 (whereas genetic linkage between segments
is reduced by reassortment15). Here we show that this coupled dynamics
can be captured by a fitness model that predicts the evolution of influ-
enza from genomic data.

Clades as units of prediction
Our analysis is based on a sample of 3,944 unique HA coding sequences
obtained from influenza A/H3N2 isolates between 1968 and 2012 (ref. 1),
partitioned into half-year seasons (Methods). The HA sequences of a
given season differ from each other by several epitope and non-epitope
nonsynonymous point mutations. To quantify this diversity, we can
estimate the population frequencies of mutant alleles at individual RNA
sites, of combinations of mutant alleles at two or more sites, and of indi-
vidual strains. From an epidemiological point of view, the frequency of
a strain is simply the fraction of the infected host individuals corres-
ponding to that strain16. We infer the genealogy of these strains by an

ensemble of trees; see Methods for details of frequency estimation and
tree reconstruction. We can then trace the evolution of strain lineages
or clades, which are defined as sets of strains descending from a com-
mon ancestor (Fig. 1). Whereas strains are typically observed only in a
single season, clades have an evolutionary history that extends up to
about 5 years and ends with fixation or loss3. Clades destined for fixa-
tion originate on the so-called trunk of the tree; all other clades are destined
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Figure 1 | Evolution of influenza clades. The figure shows a partial influenza
strain tree, which is based on strains observed in years 2002 and 2003 (bullets
and circles). Each strain i has a frequency xi in its season’s strain population.
Our units of prediction are clades, which are defined as sets of strains
descending from recent last common ancestors. For one of these clades, we
mark its strain content in winter seasons t 5 2002 and t 1 1 (light-colour
bullets) and its last common ancestor (blue diamond). Each clade is linked by
a set of mutations to the last common ancestor of all strains in year t (black
diamond); codon position and target amino acid of these mutations are
indicated for the marked clade. A clade n observed in season t has a frequency
Xn(t), which is the sum of the frequencies of its strains in season t. The marked
clade grows substantially from Xn(t) 5 0.08 to Xn(tz1) 5 0.86.
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Clonal interference and prediction of clade frequencies

To test our method on a related system, we obtain clade fitness pre-
dictions for seasonal influenza A/H1N1. This lineage has re-entered
the human population in 1977 and evolved in a way broadly similar to
H3N2 until 2009, when the pandemic H1N1 lineage emerged. Compared
to the H3N2 data set, the H1N1 strain sample

1,25
has larger regional and

seasonal biases, potentially weaker antigenic selection
8
, and larger uncer-

tainty about the exact epitope positions
26

(Methods). Our predictions
for H1N1 are comparable to H3N2 but somewhat more noisy, as expected
from their less informative strain sample (Extended Data Fig. 2). This
establishes a proof of principle for the applicability of our model to
other influenza strains.

Vaccine strain selection
Our model provides a principled method to select strains for influenza
vaccines. By equation (2), vaccination based on a strain v reduces the
fitness of each circulating strain i proportionally to the cross-immunity
amplitude C ai,avð Þ. This causes a reduction in the total number of infec-
tions that is proportional to the average cross-immunity between the
vaccine strain and the circulating strains in a given season, Cv tð Þ~P

i:t xiC ai,avð Þ (Methods). The optimal vaccine maximizes this reduc-
tion, which defines the cross-immunity centre of mass of the circulating
strains. Equation (1) predicts next-year cross-immunity amplitudes
Ĉv tz1ð Þ~

P
i:t xi exp fið ÞC ai,avð Þ, which can be compared a posteriori

with the observed amplitudes Cv tz1ð Þ.
In particular, we can compare the optimal vaccine strains predicted by

our model and actual vaccine strains used in the Northern Hemisphere
27

to the posterior centre-of-mass strains observed in the following year
(the established procedure of vaccine strain selection is described in
Methods). Figure 3 shows this comparison for influenza A/H3N2 in
the winter seasons from 1994 to 2012. In all years, the model-selected
vaccine strains have a smaller amino acid distance from the cross-
immunity centre of mass of the same season than the actual vaccine
strains (insert of Fig. 3). This can be explained in part by differences
between our sequence-based cross-immunity measureC ai,aj

! "
and the

haemagglutination-inhibition-based antigenic distances currently used
for vaccine selection. The latter are known to evolve in a more punc-
tuated way

12
, but we observe distance differences even in years when

vaccine strains have been updated. These results suggest that a fitness-
model-based prediction of influenza evolution can contribute to vaccine

strain selection; however, we caution against premature conclusions
before our prediction scheme is carefully tested with haemagglutina-
tion inhibition data. Our model can also be used to estimate how vac-
cination affects the course of influenza evolution (Methods).

Mapping the adaptive process
The fitness effects underlying our predictions can be displayed in a
quantitative map of influenza’s adaptive history. As key quantity we
use the cumulative fitness flux

28,29
, which measures the total amount

of adaptation up to a given clade; this quantity is defined in Methods
and illustrated in Extended Data Fig. 3. The map of Fig. 4 shows the
fitness flux for 234 influenza A/H3N2 clades on a tree between 2003
and 2008 (see Extended Data Fig. 3 for fitness flux over a longer period).
It displays clades with multiple different values of fitness and fitness flux
in each year. The evolution of this distribution generates a travelling
fitness flux wave, which links influenza to recent theoretical models
of asexual evolution

30–34
. The advance of the wave is measured by the

population mean fitness flux, which is shown as a black dashed line in
Fig. 4. This quantity measures correlations between fitness and actual
frequency changes of clades. It can be used to compare the predictive
power of different fitness models. The best epitope-only fitness model
captures about 63%, and the best model with uniform selective effects
about 57% of the cumulative fitness flux given by the full model (Extended
Data Table 1). An information-theoretic comparison of fitness models
shows the same ranking (Methods, Extended Data Table 1). These results
indicate that non-epitope changes and nonlinear selective effects have
an important role in the adaptive process of influenza and its successful
prediction.

The underlying mode of evolution is revealed by individual flux
genealogies shown in Fig. 4. We observe that high-fitness clades seed
future high-fitness clades by beneficial mutations. In particular, the
clades on the trunk of the tree have consistently high predicted fitness
values and are driven to fixation by multiple beneficial mutations during
their expansion. At the same time, many high-fitness clades are eventually
driven to loss, because they are overtaken in fitness by other competing
clades. Individual beneficial alleles are lost if they arise in a low-fitness
clade or if they are outcompeted by subsequent beneficial mutations in
disjoint clades. These observations provide direct evidence of clonal
interference in the evolution of influenza

9
with pervasive effects of
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Figure 2 | Year-to-year predictions of HA evolution. a, Wrightian fitness: the
predicted frequency ratio Ŵn~X̂n tz1ð Þ

#
Xn tð Þ is plotted against the posterior

ratio Wn~Xn tz1ð Þ=Xn tð Þ for 188 influenza HA clades with initial frequency
Xn(t) . 0.15 observed since 1993 (error bars due to tree reconstruction and
sampling are given in Extended Data Fig. 1). The predicted frequency X̂ tz1ð Þ
is indicated by colour; clades destined for fixation are shown in red. Clade
growth (Wn . 1) is correctly predicted in 113 of 121 cases, clade decline in 51 of

67 cases. b, Yearly numbers of HA nucleotide fixations: predicted numbers
are compared to posterior numbers. c, Dynamics on the influenza strain
tree: for each clade originating between 1993 and 2010, the ancestor node
is coloured according to the maximum of the predicted frequency changes,
maxt X̂n tz1ð Þ{Xn tð Þ

$ %
. Our model correctly predicts expansion along the

trunk (thick line) and loss of branches off trunk.
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To test our method on a related system, we obtain clade fitness pre-
dictions for seasonal influenza A/H1N1. This lineage has re-entered
the human population in 1977 and evolved in a way broadly similar to
H3N2 until 2009, when the pandemic H1N1 lineage emerged. Compared
to the H3N2 data set, the H1N1 strain sample1,25 has larger regional and
seasonal biases, potentially weaker antigenic selection8, and larger uncer-
tainty about the exact epitope positions26 (Methods). Our predictions
for H1N1 are comparable to H3N2 but somewhat more noisy, as expected
from their less informative strain sample (Extended Data Fig. 2). This
establishes a proof of principle for the applicability of our model to
other influenza strains.

Vaccine strain selection
Our model provides a principled method to select strains for influenza
vaccines. By equation (2), vaccination based on a strain v reduces the
fitness of each circulating strain i proportionally to the cross-immunity
amplitude C ai,avð Þ. This causes a reduction in the total number of infec-
tions that is proportional to the average cross-immunity between the
vaccine strain and the circulating strains in a given season, Cv tð Þ~P

i:t xiC ai,avð Þ (Methods). The optimal vaccine maximizes this reduc-
tion, which defines the cross-immunity centre of mass of the circulating
strains. Equation (1) predicts next-year cross-immunity amplitudes
Ĉv tz1ð Þ~

P
i:t xi exp fið ÞC ai,avð Þ, which can be compared a posteriori

with the observed amplitudes Cv tz1ð Þ.
In particular, we can compare the optimal vaccine strains predicted by

our model and actual vaccine strains used in the Northern Hemisphere27

to the posterior centre-of-mass strains observed in the following year
(the established procedure of vaccine strain selection is described in
Methods). Figure 3 shows this comparison for influenza A/H3N2 in
the winter seasons from 1994 to 2012. In all years, the model-selected
vaccine strains have a smaller amino acid distance from the cross-
immunity centre of mass of the same season than the actual vaccine
strains (insert of Fig. 3). This can be explained in part by differences
between our sequence-based cross-immunity measureC ai,aj

! "
and the

haemagglutination-inhibition-based antigenic distances currently used
for vaccine selection. The latter are known to evolve in a more punc-
tuated way12, but we observe distance differences even in years when
vaccine strains have been updated. These results suggest that a fitness-
model-based prediction of influenza evolution can contribute to vaccine

strain selection; however, we caution against premature conclusions
before our prediction scheme is carefully tested with haemagglutina-
tion inhibition data. Our model can also be used to estimate how vac-
cination affects the course of influenza evolution (Methods).

Mapping the adaptive process
The fitness effects underlying our predictions can be displayed in a
quantitative map of influenza’s adaptive history. As key quantity we
use the cumulative fitness flux28,29, which measures the total amount
of adaptation up to a given clade; this quantity is defined in Methods
and illustrated in Extended Data Fig. 3. The map of Fig. 4 shows the
fitness flux for 234 influenza A/H3N2 clades on a tree between 2003
and 2008 (see Extended Data Fig. 3 for fitness flux over a longer period).
It displays clades with multiple different values of fitness and fitness flux
in each year. The evolution of this distribution generates a travelling
fitness flux wave, which links influenza to recent theoretical models
of asexual evolution30–34. The advance of the wave is measured by the
population mean fitness flux, which is shown as a black dashed line in
Fig. 4. This quantity measures correlations between fitness and actual
frequency changes of clades. It can be used to compare the predictive
power of different fitness models. The best epitope-only fitness model
captures about 63%, and the best model with uniform selective effects
about 57% of the cumulative fitness flux given by the full model (Extended
Data Table 1). An information-theoretic comparison of fitness models
shows the same ranking (Methods, Extended Data Table 1). These results
indicate that non-epitope changes and nonlinear selective effects have
an important role in the adaptive process of influenza and its successful
prediction.

The underlying mode of evolution is revealed by individual flux
genealogies shown in Fig. 4. We observe that high-fitness clades seed
future high-fitness clades by beneficial mutations. In particular, the
clades on the trunk of the tree have consistently high predicted fitness
values and are driven to fixation by multiple beneficial mutations during
their expansion. At the same time, many high-fitness clades are eventually
driven to loss, because they are overtaken in fitness by other competing
clades. Individual beneficial alleles are lost if they arise in a low-fitness
clade or if they are outcompeted by subsequent beneficial mutations in
disjoint clades. These observations provide direct evidence of clonal
interference in the evolution of influenza9 with pervasive effects of
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Figure 2 | Year-to-year predictions of HA evolution. a, Wrightian fitness: the
predicted frequency ratio Ŵn~X̂n tz1ð Þ
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Xn tð Þ is plotted against the posterior

ratio Wn~Xn tz1ð Þ=Xn tð Þ for 188 influenza HA clades with initial frequency
Xn(t) . 0.15 observed since 1993 (error bars due to tree reconstruction and
sampling are given in Extended Data Fig. 1). The predicted frequency X̂ tz1ð Þ
is indicated by colour; clades destined for fixation are shown in red. Clade
growth (Wn . 1) is correctly predicted in 113 of 121 cases, clade decline in 51 of

67 cases. b, Yearly numbers of HA nucleotide fixations: predicted numbers
are compared to posterior numbers. c, Dynamics on the influenza strain
tree: for each clade originating between 1993 and 2010, the ancestor node
is coloured according to the maximum of the predicted frequency changes,
maxt X̂n tz1ð Þ{Xn tð Þ
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. Our model correctly predicts expansion along the
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Prediction

for loss (Fig. 1). The evolution of these clades is what we want to predict
from one year to the next. A successful clade diversifies from its ancestor
strain through subsequent mutations during its expansion in the popu-
lation. At the same time, the same mutation often originates indepen-
dently in different clades. It is specific combinations of mutations that
distinguish each clade from the other coexisting clades. We make pre-
dictions for these clades by averaging over the ensemble of equiprobable
trees, which minimizes the effects of tree reconstruction ambiguities3

(Methods).
Our prediction is based on frequency and fitness data that depend

only on information actually available at a given point in time. Consider
a clade n containing a set of strains i with frequencies xi in a given season
t. The observed frequency of that clade in season t, which is denoted as
Xn(t), is simply the sum of these strain frequencies, Xn tð Þ~

P
i:n,t xi.

This sum is defined as an average over strain trees, as detailed in Methods.
Each strain has a Malthusian fitness or growth rate fi (measured in
units of 1/year), which is to be specified by our model. Given these
initial data, we predict the frequency of that clade in the season 1 year
later,

X̂n tz1ð Þ~
X

i:n,t

xi exp fið Þ ð1Þ

as illustrated in Fig. 1 (for details, see Methods). Equation (1) describes
the large-scale population dynamics averaged over many transmission
cycles and over the yearly epidemic cycle. We restrict predictions to
clades with frequencies Xn(t) . 0.15, which are large enough for reli-
able estimation. These clades are geographically well-mixed17,18 (93%
of them cover two or more continents), whereas smaller clades are domi-
nated by sampling noise and geographical bias (94% are observed on
a single continent only). We can check the quality of our method a
posteriori by comparing predicted and actual clade evolution, using the
observed frequencies Xn(tz1).

Fitness model
Our fitness model has two components, which describe the selection
on epitope and non-epitope HA genotypes, respectively. Epitope changes
are predominantly under positive selection7–11, because they affect the
antigenic characteristics of a strain. Antigenic selection is contained
in multi-strain epidemiological models, which describe a susceptible–
infected–recovered (SIR) dynamics19–23. In this type of model, host
individuals acquire partial immunity against infections with all strains
of similar antigenic characteristics. Therefore, the strain growth rates fi
depend on the population history of previously circulating strains. We
use an SIR model to derive our minimal epitope fitness model (Methods):
a given strain i incurs a cross-immunity load generated by all previous
strains j, each of which generates a fitness cost proportional to its fre-
quency xj and to the cross-immunity amplitude C ai,aj

! "
. These ampli-

tudes depend on the antigenic similarity of the strains i and j, which is
encoded in the epitope segments of their HA sequences ai and aj. We
neglect higher-order antigenic interactions involving more than two
strains19 and the birth–death turnover of the host population, which
can be argued to produce only subleading effects in the epidemiology of
influenza A/H3N2.

Non-epitope mutations are predominantly under negative selection9,
because they affect protein stability and other conserved molecular
functions13,14. Here we describe these effects by a simple mutational-
load model: each strain incurs a fitness costL aið Þ that is the cumulative
effect of recent non-epitope amino acid changes, which occur in its
ancestral lineage in the current season (Methods).

Together we obtain a strain fitness of the form

fi~f0{L aið Þ{
X

j: tjvti

xj C ai,aj
! "

ð2Þ

with a constant f0 ensuring the correct normalization of strain frequen-
cies (Methods). Importantly, this strain-based model goes beyond a fit-
ness model for individual mutations: it counts each new beneficial or

deleterious mutation together with the previous changes in its ancestral
lineage.

The simplest fitness model of this form has uniform selective effects:
each non-epitope mutation generates a fitness cost sne, and each epi-
tope mutation reduces the cross-immunity amplitude by an amount
sep. However, the biology of cross-immunity and protein stability
deviates from this model. Both phenotypes are non-uniform and non-
linear functions of genetic distance4,12–14,24; that is, the effect of a muta-
tion depends on its sequence position, on the amino acids involved,
and on its background of previous mutations. Our full fitness model
uses nonlinear cross-immunity amplitudes C ai,aj

! "
, and it includes

position-specific effects and nonlinear fitness terms that are inferred
from observed clade histories (Methods; see also a related allele-based
inference scheme10). Importantly, this model has only four fit para-
meters, which can be inferred from our data set without compromising
predictive power.

Frequency predictions for clades
The winter-to-winter prediction for the Northern Hemisphere obtained
from our full, clade-based fitness model is shown in Fig. 2. To deter-
mine the accuracy of this model, we compare the predicted frequency
ratio, or Wrightian fitness, Ŵn~X̂n tz1ð Þ

#
Xn tð Þ with the posterior

observed ratio Wn~Xn tz1ð Þ=Xn tð Þ for all clades with frequencies
Xn(t) . 0.15 in a given season. The data points (Wn, Ŵn) in Fig. 2a
are distributed around the diagonal of correct prediction; some scatter
can be explained by statistical errors in frequency estimation due to
tree reconstruction and sampling (Extended Data Fig. 1). As discussed
below, these predictions can be improved further by broadening the
data basis of our model. The direction of frequency evolution is pre-
dicted with remarkable accuracy. There are 121 clades with observed
growth (Wn . 1), which we predict correctly in 93% of the cases
(Ŵnw1). For the 67 clades with observed decline (Wn , 1), we cor-
rectly predict decline in 76% of the cases. Importantly, the fitness
amplitude Wn is predicted accurately for the clades destined for fixa-
tion, which have X̂n tz1ð Þ<1 and appear close to the diagonal in
Fig. 2a.

The fixation of a clade implies the fixation of all mutations that
appear in its ancestor strain. As shown in Fig. 2b, the yearly numbers
of nucleotide fixations between 1994 and 2012 are also well predicted
by our model. This pattern is well known to be clustered (80% of
the nucleotide fixations occur in a subset of 11 years), which reflects
recurrent selective sweeps in the evolution of influenza HA4–7,9.

Figure 2c maps our prediction onto the strain tree. Each clade, repre-
sented by its ancestor strain, is coloured according to the maximum of
the predicted frequency changes X̂n tz1ð Þ{Xn tð Þ over its history. We
find clade expansion predominantly close to the trunk and decline far
away from the trunk, which is consistent with the observed shape of the
influenza tree.

Tagging clades by their point of origination (Methods), allows us to
analyse correlations between fitness and geographical location. For clades
originating in east and southeast Asia, we predict growth (Ŵnw1) in
77% of the cases, compared to 54% of the cases for clades originating
elsewhere; the corresponding fractions with observed growth (Wn . 1)
are 77% and 49%. This is consistent with the particular role of east and
southeast Asia in seeding antigenic variants, which has been established
previously18. Thus, our analysis captures broad spatial patterns in the
evolution of influenza A/H3N2, although the underlying fitness model
is geographically neutral (this point will be discussed further below).

We can quantify the statistical information gain due to our predic-
tion by comparing distributions of predicted and posterior next-year
frequencies (Methods). We find the observed frequency evolution to
be more likely by a factor .10250 under our fitness model compared to
a null model with constant frequencies (that is, zero fitness) for all strains.
We emphasize that our prediction works only from one year to the next,
because it cannot predict the new mutations that arise after its base year
and shape the course of evolution over longer periods.
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for loss (Fig. 1). The evolution of these clades is what we want to predict
from one year to the next. A successful clade diversifies from its ancestor
strain through subsequent mutations during its expansion in the popu-
lation. At the same time, the same mutation often originates indepen-
dently in different clades. It is specific combinations of mutations that
distinguish each clade from the other coexisting clades. We make pre-
dictions for these clades by averaging over the ensemble of equiprobable
trees, which minimizes the effects of tree reconstruction ambiguities3

(Methods).
Our prediction is based on frequency and fitness data that depend

only on information actually available at a given point in time. Consider
a clade n containing a set of strains i with frequencies xi in a given season
t. The observed frequency of that clade in season t, which is denoted as
Xn(t), is simply the sum of these strain frequencies, Xn tð Þ~

P
i:n,t xi.

This sum is defined as an average over strain trees, as detailed in Methods.
Each strain has a Malthusian fitness or growth rate fi (measured in
units of 1/year), which is to be specified by our model. Given these
initial data, we predict the frequency of that clade in the season 1 year
later,

X̂n tz1ð Þ~
X

i:n,t

xi exp fið Þ ð1Þ

as illustrated in Fig. 1 (for details, see Methods). Equation (1) describes
the large-scale population dynamics averaged over many transmission
cycles and over the yearly epidemic cycle. We restrict predictions to
clades with frequencies Xn(t) . 0.15, which are large enough for reli-
able estimation. These clades are geographically well-mixed17,18 (93%
of them cover two or more continents), whereas smaller clades are domi-
nated by sampling noise and geographical bias (94% are observed on
a single continent only). We can check the quality of our method a
posteriori by comparing predicted and actual clade evolution, using the
observed frequencies Xn(tz1).

Fitness model
Our fitness model has two components, which describe the selection
on epitope and non-epitope HA genotypes, respectively. Epitope changes
are predominantly under positive selection7–11, because they affect the
antigenic characteristics of a strain. Antigenic selection is contained
in multi-strain epidemiological models, which describe a susceptible–
infected–recovered (SIR) dynamics19–23. In this type of model, host
individuals acquire partial immunity against infections with all strains
of similar antigenic characteristics. Therefore, the strain growth rates fi
depend on the population history of previously circulating strains. We
use an SIR model to derive our minimal epitope fitness model (Methods):
a given strain i incurs a cross-immunity load generated by all previous
strains j, each of which generates a fitness cost proportional to its fre-
quency xj and to the cross-immunity amplitude C ai,aj

! "
. These ampli-

tudes depend on the antigenic similarity of the strains i and j, which is
encoded in the epitope segments of their HA sequences ai and aj. We
neglect higher-order antigenic interactions involving more than two
strains19 and the birth–death turnover of the host population, which
can be argued to produce only subleading effects in the epidemiology of
influenza A/H3N2.

Non-epitope mutations are predominantly under negative selection9,
because they affect protein stability and other conserved molecular
functions13,14. Here we describe these effects by a simple mutational-
load model: each strain incurs a fitness costL aið Þ that is the cumulative
effect of recent non-epitope amino acid changes, which occur in its
ancestral lineage in the current season (Methods).

Together we obtain a strain fitness of the form

fi~f0{L aið Þ{
X

j: tjvti

xj C ai,aj
! "

ð2Þ

with a constant f0 ensuring the correct normalization of strain frequen-
cies (Methods). Importantly, this strain-based model goes beyond a fit-
ness model for individual mutations: it counts each new beneficial or

deleterious mutation together with the previous changes in its ancestral
lineage.

The simplest fitness model of this form has uniform selective effects:
each non-epitope mutation generates a fitness cost sne, and each epi-
tope mutation reduces the cross-immunity amplitude by an amount
sep. However, the biology of cross-immunity and protein stability
deviates from this model. Both phenotypes are non-uniform and non-
linear functions of genetic distance4,12–14,24; that is, the effect of a muta-
tion depends on its sequence position, on the amino acids involved,
and on its background of previous mutations. Our full fitness model
uses nonlinear cross-immunity amplitudes C ai,aj

! "
, and it includes

position-specific effects and nonlinear fitness terms that are inferred
from observed clade histories (Methods; see also a related allele-based
inference scheme10). Importantly, this model has only four fit para-
meters, which can be inferred from our data set without compromising
predictive power.

Frequency predictions for clades
The winter-to-winter prediction for the Northern Hemisphere obtained
from our full, clade-based fitness model is shown in Fig. 2. To deter-
mine the accuracy of this model, we compare the predicted frequency
ratio, or Wrightian fitness, Ŵn~X̂n tz1ð Þ

#
Xn tð Þ with the posterior

observed ratio Wn~Xn tz1ð Þ=Xn tð Þ for all clades with frequencies
Xn(t) . 0.15 in a given season. The data points (Wn, Ŵn) in Fig. 2a
are distributed around the diagonal of correct prediction; some scatter
can be explained by statistical errors in frequency estimation due to
tree reconstruction and sampling (Extended Data Fig. 1). As discussed
below, these predictions can be improved further by broadening the
data basis of our model. The direction of frequency evolution is pre-
dicted with remarkable accuracy. There are 121 clades with observed
growth (Wn . 1), which we predict correctly in 93% of the cases
(Ŵnw1). For the 67 clades with observed decline (Wn , 1), we cor-
rectly predict decline in 76% of the cases. Importantly, the fitness
amplitude Wn is predicted accurately for the clades destined for fixa-
tion, which have X̂n tz1ð Þ<1 and appear close to the diagonal in
Fig. 2a.

The fixation of a clade implies the fixation of all mutations that
appear in its ancestor strain. As shown in Fig. 2b, the yearly numbers
of nucleotide fixations between 1994 and 2012 are also well predicted
by our model. This pattern is well known to be clustered (80% of
the nucleotide fixations occur in a subset of 11 years), which reflects
recurrent selective sweeps in the evolution of influenza HA4–7,9.

Figure 2c maps our prediction onto the strain tree. Each clade, repre-
sented by its ancestor strain, is coloured according to the maximum of
the predicted frequency changes X̂n tz1ð Þ{Xn tð Þ over its history. We
find clade expansion predominantly close to the trunk and decline far
away from the trunk, which is consistent with the observed shape of the
influenza tree.

Tagging clades by their point of origination (Methods), allows us to
analyse correlations between fitness and geographical location. For clades
originating in east and southeast Asia, we predict growth (Ŵnw1) in
77% of the cases, compared to 54% of the cases for clades originating
elsewhere; the corresponding fractions with observed growth (Wn . 1)
are 77% and 49%. This is consistent with the particular role of east and
southeast Asia in seeding antigenic variants, which has been established
previously18. Thus, our analysis captures broad spatial patterns in the
evolution of influenza A/H3N2, although the underlying fitness model
is geographically neutral (this point will be discussed further below).

We can quantify the statistical information gain due to our predic-
tion by comparing distributions of predicted and posterior next-year
frequencies (Methods). We find the observed frequency evolution to
be more likely by a factor .10250 under our fitness model compared to
a null model with constant frequencies (that is, zero fitness) for all strains.
We emphasize that our prediction works only from one year to the next,
because it cannot predict the new mutations that arise after its base year
and shape the course of evolution over longer periods.
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Strain fitness

Frequency of strain i

X⌫ Frequency of clade ν

L(ai)

ai Sequence of strain i

Fitness load of del. mutants

C(ai,aj) Cross-immunity between i and j
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FIG. 2 Inferring fitness from genealogical trees. A) The inference algorithm is based on branch propagators associated with each branch of
the reconstructed tree (middle). Branch propagators characterize the fitness distribution of descending nodes given the fitness of the ancestral
node (left). Over short time periods, this distribution is peaked around the ancestor’s fitness (left), but broadens over time to the population
distribution. Conversely, the ancestral fitness estimate is pushed upwards by each descending branch. The inferred probability distributions of
the fitness of individual nodes are illustrated on the right. Internal node 2 would have higher fitness estimate than node 1, as node 2 has more
children. The inferred distribution of the fitness of the external node 3 has broadened from that of node 2. B-D) Analysis of simulated data. B)
shows the mean inferred fitness vs the true fitness for a set of simulated data, demonstrating a strong correlation (a sample of 200 individuals,
µ = 0.0001 per nucleotide per generation). C) Spearman’s correlation coefficients between inferred and true fitness increases with increasing
mutation rate (boxes cover the interquartile distance, red lines indicate the median). D) The distance between the node with the highest inferred
fitness (y-axis) to the future population vs. the closest possible post-hoc pick (both normalized to a random pick) for 100 simulated data sets
with 200 sequences each.

main sequences used for our analysis came from the public
domain and are available from Influenza Research Database
(www.fludb.org (Squires et al., 2012)). For each year, we sub-
sampled the data to achieve approximately equal representa-
tion of North American and Asian sequences in the prediction
set. Next, we built maximum likelihood trees using fasttree
(Price et al., 2009), converted branch length to time by rescal-
ing the lengths with the nucleotide diversity of the sample (set-
ting � = 5), and ranked external and internal nodes using our
algorithm. Details of the data sets used for making predictions
and discussion of potential biases are given in Materials and
Methods. Fig. 3A&B show example trees of the prediction
and test sets for 2007.

Fig. 3C shows the nucleotide distance of our prediction to
the A/H3N2 virus population of the next season comparing
methods of prediction utilizing different aspects of the data.
To quantify prediction quality, we normalize the nucleotide
distance d such that the optimal extant sequence has d = 0
and a random pick has d = 1 and average d over all years. Us-
ing the highest ranked external node (Fig. 3C, black squares,
d ⇡ 0.48) is largely similar to using the highest ranked inter-
nal node (Fig. 3C, red triangles d ⇡ 0.45). Both methods pre-

dict years 1996-9, 2003-4, 2006-9, reasonably well. Notably,
they fail in 1995, 2001, and 2002, while being of intermedi-
ate accuracy in the remaining years. A closer comparison of
predictions based on internal and external nodes is given in
Fig. S1.

Next, we explored whether the failures were associated
with large effect mutations that violate our model assump-
tions. While influenza A/H3N2 viruses do accumulate mu-
tations in a gradual manner (Bhatt et al., 2011), substitutions
at seven amino acid positions in the influenza virus hemagglu-
tinin (HA1) have been shown to be responsible for the major
antigenic changes to A/H3N2 viruses over the last 40 years
(Koel et al., 2013). In 1996-7, 2002, 2004-5, and 2010-11 at
least one substitution at one of these seven positions (“Koel
positions” in the following) defines the clade of the following
season. Hence, we modified the model by increasing fitness
along a branch whenever an amino acid at one of the seven
Koel positions changed. Indeed, this improved the predictions
in 1996 and 1997 (Fig. 3C, blue diamonds). Further improve-
ment could be achieved by combining the fitness estimate for
internal nodes (including rewards for Koel mutation) with an
estimate of the growth rates of the clades downstream of these

3

1

2

fitness

population 
distribution

3

�7 �6 �5 �4 �3 �2 �1 0 1

true fitness (rel. to max)

�1.0

�0.8

�0.6

�0.4

�0.2

0.0

in
fe

rr
ed

fit
ne

ss
(r

el
.

to
m

ax
)

B

� = 0.61

1e-05 3e-05 0.0001
mutation rate

�0.2

0.0

0.2

0.4

0.6

0.8

ra
nk

co
rr

el
at

io
n

co
e�

ci
en

t
�

C

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
post-hoc optimal pick

0.2

0.4

0.6

0.8

1.0

1.2

1.4

pr
ed

ic
ti
on

(r
el

.
to

ra
nd

om
pi

ck
)

D

FIG. 2 Inferring fitness from genealogical trees. A) The inference algorithm is based on branch propagators associated with each branch of
the reconstructed tree (middle). Branch propagators characterize the fitness distribution of descending nodes given the fitness of the ancestral
node (left). Over short time periods, this distribution is peaked around the ancestor’s fitness (left), but broadens over time to the population
distribution. Conversely, the ancestral fitness estimate is pushed upwards by each descending branch. The inferred probability distributions of
the fitness of individual nodes are illustrated on the right. Internal node 2 would have higher fitness estimate than node 1, as node 2 has more
children. The inferred distribution of the fitness of the external node 3 has broadened from that of node 2. B-D) Analysis of simulated data. B)
shows the mean inferred fitness vs the true fitness for a set of simulated data, demonstrating a strong correlation (a sample of 200 individuals,
µ = 0.0001 per nucleotide per generation). C) Spearman’s correlation coefficients between inferred and true fitness increases with increasing
mutation rate (boxes cover the interquartile distance, red lines indicate the median). D) The distance between the node with the highest inferred
fitness (y-axis) to the future population vs. the closest possible post-hoc pick (both normalized to a random pick) for 100 simulated data sets
with 200 sequences each.

main sequences used for our analysis came from the public
domain and are available from Influenza Research Database
(www.fludb.org (Squires et al., 2012)). For each year, we sub-
sampled the data to achieve approximately equal representa-
tion of North American and Asian sequences in the prediction
set. Next, we built maximum likelihood trees using fasttree
(Price et al., 2009), converted branch length to time by rescal-
ing the lengths with the nucleotide diversity of the sample (set-
ting � = 5), and ranked external and internal nodes using our
algorithm. Details of the data sets used for making predictions
and discussion of potential biases are given in Materials and
Methods. Fig. 3A&B show example trees of the prediction
and test sets for 2007.

Fig. 3C shows the nucleotide distance of our prediction to
the A/H3N2 virus population of the next season comparing
methods of prediction utilizing different aspects of the data.
To quantify prediction quality, we normalize the nucleotide
distance d such that the optimal extant sequence has d = 0
and a random pick has d = 1 and average d over all years. Us-
ing the highest ranked external node (Fig. 3C, black squares,
d ⇡ 0.48) is largely similar to using the highest ranked inter-
nal node (Fig. 3C, red triangles d ⇡ 0.45). Both methods pre-

dict years 1996-9, 2003-4, 2006-9, reasonably well. Notably,
they fail in 1995, 2001, and 2002, while being of intermedi-
ate accuracy in the remaining years. A closer comparison of
predictions based on internal and external nodes is given in
Fig. S1.

Next, we explored whether the failures were associated
with large effect mutations that violate our model assump-
tions. While influenza A/H3N2 viruses do accumulate mu-
tations in a gradual manner (Bhatt et al., 2011), substitutions
at seven amino acid positions in the influenza virus hemagglu-
tinin (HA1) have been shown to be responsible for the major
antigenic changes to A/H3N2 viruses over the last 40 years
(Koel et al., 2013). In 1996-7, 2002, 2004-5, and 2010-11 at
least one substitution at one of these seven positions (“Koel
positions” in the following) defines the clade of the following
season. Hence, we modified the model by increasing fitness
along a branch whenever an amino acid at one of the seven
Koel positions changed. Indeed, this improved the predictions
in 1996 and 1997 (Fig. 3C, blue diamonds). Further improve-
ment could be achieved by combining the fitness estimate for
internal nodes (including rewards for Koel mutation) with an
estimate of the growth rates of the clades downstream of these

Predicting clade fitness from tree shape



5

1995 1997 1999 2001 2003 2005 2007 2009 2011
year

0.5

1.0

1.5

di
st

an
ce

re
la

ti
ve

to
ra

nd
om

pi
ck

C
predicted external node d = 0.48

predicted internal node d = 0.45

rewarding “Koel” mutations d = 0.43

adding temporal information d = 0.41

FIG. 3 Predicting the evolution of seasonal influenza A/H3N2 viruses. A) A genealogical tree of HA1 sequences from May 2006 to end of
February 2007. Nodes are colored according to our inferred fitness ranking. The highest ranked node is marked by a black arrow. B) A tree
of the same sequences from A) (colored) with sequences from October 2007 to end of March 2008 (in grey). Our algorithm successfully
predicts a sequence genetically close and directly ancestral to viruses circulating the following winter. C) comparison of model prediction
accuracies. For each year from 1995 to 2012 we predicted a HA1 sequence and calculated its nucleotide distance to the A/H3N2 population
of the following winter. The figure shows the average of 50 predictions using subsamples of the data compared to a random pick (indicated
by the solid line at 1.0), which would be the prediction of the neutral model. While using internal or external nodes to predict has comparable
accuracy, rewarding mutations identified by Koel et al.(Koel et al., 2013) and including temporal information improves the predictions in 1996
and 1997. Dashed lines indicate the optimal extant sequence. Note that internal nodes can be better predictors than the best extant sequence.

To predict the sequence closest to the future population in
a multiple sequence alignment, we build a maximum likeli-
hood tree using fasttree (Price et al., 2009) (the fasttree code
was modified slightly to resolve short branches better). The
reconstructed tree was passed to the fitness inference class.
Following fitness inference, internal or external nodes were
ranked by their expected fitness and we report the top ranked
node as our prediction.

The branch propagator depends on fitness diffusion con-
stant D and the standard deviation in fitness �, which are re-
lated through the coalescent properties of the population via
hT2i = �

2
/D(Neher and Hallatschek, 2013), where hT2i is

the average pair coalescence time. Internally, our algorithm
measures time in units of ��1 and uses D�

�3 = 0.5. Hence
we need to rescale all branch length such that D�

�2hT2i = 1.
In practice, we allow our algorithm more freedom and intro-
duce a parameter for rescaling branches �. Larger � effec-
tively shortens branches and hence results in fitness changing
more slowly across the tree. Thereby the fitness estimate for
a particular node depends on a larger fraction of the tree and

predictions become less susceptible to outliers.
To extend the model by including a “reward” for certain

specific mutations, we use an alternative branch propagator
defined as

g̃(x2, t2|x1, t1) = g(x2 � m�, t2|x1, t1) (2)

that shifts the fitness of the descendant node by m� whenever
m of the rewarded mutations fall onto the branch. We use � =
0.5, i.e., one standard deviation in fitness for each rewarded
mutation. When rewarding Koel mutations, most branches
carry no Koel mutations (m = 0) and only very few branches
have m > 1 Koel mutations.

In addition to estimating fitness from the tree, we also mea-
sure the frequency changes of clades over time. For influenza
A/H3N2 virus data, we partition sequences into three inter-
vals of equal length between May and February and calculate
the fraction of sequences that are below every internal nodes
in each of these intervals (using a pseudocount of 5). From
these two frequency values, we estimate the expansion rate by
fitting a line to the logarithm of the frequencies.
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Figure 5. The amino-acid preferences inferred using the combined data from the three biological replicates. The letters have heights proportional to the 
preference for that amino acid, and are colored by hydrophobicity. The first overlay bar shows the relative solvent accessibility (RSA) for residues in the HA 
crystal structure. The second overlay bar indicates Caton et al. antigenic sites or conserved receptor-binding residues. The sequence is numbered sequentially 
beginning with 1 at the N-terminal methionine—however, this first methionine is not shown as it was not mutagenized. Figure 5—figure supplement 1 shows 
Figure 5. Continued on next page

for loss (Fig. 1). The evolution of these clades is what we want to predict
from one year to the next. A successful clade diversifies from its ancestor
strain through subsequent mutations during its expansion in the popu-
lation. At the same time, the same mutation often originates indepen-
dently in different clades. It is specific combinations of mutations that
distinguish each clade from the other coexisting clades. We make pre-
dictions for these clades by averaging over the ensemble of equiprobable
trees, which minimizes the effects of tree reconstruction ambiguities3

(Methods).
Our prediction is based on frequency and fitness data that depend

only on information actually available at a given point in time. Consider
a clade n containing a set of strains i with frequencies xi in a given season
t. The observed frequency of that clade in season t, which is denoted as
Xn(t), is simply the sum of these strain frequencies, Xn tð Þ~

P
i:n,t xi.

This sum is defined as an average over strain trees, as detailed in Methods.
Each strain has a Malthusian fitness or growth rate fi (measured in
units of 1/year), which is to be specified by our model. Given these
initial data, we predict the frequency of that clade in the season 1 year
later,

X̂n tz1ð Þ~
X

i:n,t

xi exp fið Þ ð1Þ

as illustrated in Fig. 1 (for details, see Methods). Equation (1) describes
the large-scale population dynamics averaged over many transmission
cycles and over the yearly epidemic cycle. We restrict predictions to
clades with frequencies Xn(t) . 0.15, which are large enough for reli-
able estimation. These clades are geographically well-mixed17,18 (93%
of them cover two or more continents), whereas smaller clades are domi-
nated by sampling noise and geographical bias (94% are observed on
a single continent only). We can check the quality of our method a
posteriori by comparing predicted and actual clade evolution, using the
observed frequencies Xn(tz1).

Fitness model
Our fitness model has two components, which describe the selection
on epitope and non-epitope HA genotypes, respectively. Epitope changes
are predominantly under positive selection7–11, because they affect the
antigenic characteristics of a strain. Antigenic selection is contained
in multi-strain epidemiological models, which describe a susceptible–
infected–recovered (SIR) dynamics19–23. In this type of model, host
individuals acquire partial immunity against infections with all strains
of similar antigenic characteristics. Therefore, the strain growth rates fi
depend on the population history of previously circulating strains. We
use an SIR model to derive our minimal epitope fitness model (Methods):
a given strain i incurs a cross-immunity load generated by all previous
strains j, each of which generates a fitness cost proportional to its fre-
quency xj and to the cross-immunity amplitude C ai,aj

! "
. These ampli-

tudes depend on the antigenic similarity of the strains i and j, which is
encoded in the epitope segments of their HA sequences ai and aj. We
neglect higher-order antigenic interactions involving more than two
strains19 and the birth–death turnover of the host population, which
can be argued to produce only subleading effects in the epidemiology of
influenza A/H3N2.

Non-epitope mutations are predominantly under negative selection9,
because they affect protein stability and other conserved molecular
functions13,14. Here we describe these effects by a simple mutational-
load model: each strain incurs a fitness costL aið Þ that is the cumulative
effect of recent non-epitope amino acid changes, which occur in its
ancestral lineage in the current season (Methods).

Together we obtain a strain fitness of the form

fi~f0{L aið Þ{
X

j: tjvti

xj C ai,aj
! "

ð2Þ

with a constant f0 ensuring the correct normalization of strain frequen-
cies (Methods). Importantly, this strain-based model goes beyond a fit-
ness model for individual mutations: it counts each new beneficial or

deleterious mutation together with the previous changes in its ancestral
lineage.

The simplest fitness model of this form has uniform selective effects:
each non-epitope mutation generates a fitness cost sne, and each epi-
tope mutation reduces the cross-immunity amplitude by an amount
sep. However, the biology of cross-immunity and protein stability
deviates from this model. Both phenotypes are non-uniform and non-
linear functions of genetic distance4,12–14,24; that is, the effect of a muta-
tion depends on its sequence position, on the amino acids involved,
and on its background of previous mutations. Our full fitness model
uses nonlinear cross-immunity amplitudes C ai,aj

! "
, and it includes

position-specific effects and nonlinear fitness terms that are inferred
from observed clade histories (Methods; see also a related allele-based
inference scheme10). Importantly, this model has only four fit para-
meters, which can be inferred from our data set without compromising
predictive power.

Frequency predictions for clades
The winter-to-winter prediction for the Northern Hemisphere obtained
from our full, clade-based fitness model is shown in Fig. 2. To deter-
mine the accuracy of this model, we compare the predicted frequency
ratio, or Wrightian fitness, Ŵn~X̂n tz1ð Þ

#
Xn tð Þ with the posterior

observed ratio Wn~Xn tz1ð Þ=Xn tð Þ for all clades with frequencies
Xn(t) . 0.15 in a given season. The data points (Wn, Ŵn) in Fig. 2a
are distributed around the diagonal of correct prediction; some scatter
can be explained by statistical errors in frequency estimation due to
tree reconstruction and sampling (Extended Data Fig. 1). As discussed
below, these predictions can be improved further by broadening the
data basis of our model. The direction of frequency evolution is pre-
dicted with remarkable accuracy. There are 121 clades with observed
growth (Wn . 1), which we predict correctly in 93% of the cases
(Ŵnw1). For the 67 clades with observed decline (Wn , 1), we cor-
rectly predict decline in 76% of the cases. Importantly, the fitness
amplitude Wn is predicted accurately for the clades destined for fixa-
tion, which have X̂n tz1ð Þ<1 and appear close to the diagonal in
Fig. 2a.

The fixation of a clade implies the fixation of all mutations that
appear in its ancestor strain. As shown in Fig. 2b, the yearly numbers
of nucleotide fixations between 1994 and 2012 are also well predicted
by our model. This pattern is well known to be clustered (80% of
the nucleotide fixations occur in a subset of 11 years), which reflects
recurrent selective sweeps in the evolution of influenza HA4–7,9.

Figure 2c maps our prediction onto the strain tree. Each clade, repre-
sented by its ancestor strain, is coloured according to the maximum of
the predicted frequency changes X̂n tz1ð Þ{Xn tð Þ over its history. We
find clade expansion predominantly close to the trunk and decline far
away from the trunk, which is consistent with the observed shape of the
influenza tree.

Tagging clades by their point of origination (Methods), allows us to
analyse correlations between fitness and geographical location. For clades
originating in east and southeast Asia, we predict growth (Ŵnw1) in
77% of the cases, compared to 54% of the cases for clades originating
elsewhere; the corresponding fractions with observed growth (Wn . 1)
are 77% and 49%. This is consistent with the particular role of east and
southeast Asia in seeding antigenic variants, which has been established
previously18. Thus, our analysis captures broad spatial patterns in the
evolution of influenza A/H3N2, although the underlying fitness model
is geographically neutral (this point will be discussed further below).

We can quantify the statistical information gain due to our predic-
tion by comparing distributions of predicted and posterior next-year
frequencies (Methods). We find the observed frequency evolution to
be more likely by a factor .10250 under our fitness model compared to
a null model with constant frequencies (that is, zero fitness) for all strains.
We emphasize that our prediction works only from one year to the next,
because it cannot predict the new mutations that arise after its base year
and shape the course of evolution over longer periods.
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Uncovering antigenic mutations

for loss (Fig. 1). The evolution of these clades is what we want to predict
from one year to the next. A successful clade diversifies from its ancestor
strain through subsequent mutations during its expansion in the popu-
lation. At the same time, the same mutation often originates indepen-
dently in different clades. It is specific combinations of mutations that
distinguish each clade from the other coexisting clades. We make pre-
dictions for these clades by averaging over the ensemble of equiprobable
trees, which minimizes the effects of tree reconstruction ambiguities3

(Methods).
Our prediction is based on frequency and fitness data that depend

only on information actually available at a given point in time. Consider
a clade n containing a set of strains i with frequencies xi in a given season
t. The observed frequency of that clade in season t, which is denoted as
Xn(t), is simply the sum of these strain frequencies, Xn tð Þ~

P
i:n,t xi.

This sum is defined as an average over strain trees, as detailed in Methods.
Each strain has a Malthusian fitness or growth rate fi (measured in
units of 1/year), which is to be specified by our model. Given these
initial data, we predict the frequency of that clade in the season 1 year
later,

X̂n tz1ð Þ~
X

i:n,t

xi exp fið Þ ð1Þ

as illustrated in Fig. 1 (for details, see Methods). Equation (1) describes
the large-scale population dynamics averaged over many transmission
cycles and over the yearly epidemic cycle. We restrict predictions to
clades with frequencies Xn(t) . 0.15, which are large enough for reli-
able estimation. These clades are geographically well-mixed17,18 (93%
of them cover two or more continents), whereas smaller clades are domi-
nated by sampling noise and geographical bias (94% are observed on
a single continent only). We can check the quality of our method a
posteriori by comparing predicted and actual clade evolution, using the
observed frequencies Xn(tz1).

Fitness model
Our fitness model has two components, which describe the selection
on epitope and non-epitope HA genotypes, respectively. Epitope changes
are predominantly under positive selection7–11, because they affect the
antigenic characteristics of a strain. Antigenic selection is contained
in multi-strain epidemiological models, which describe a susceptible–
infected–recovered (SIR) dynamics19–23. In this type of model, host
individuals acquire partial immunity against infections with all strains
of similar antigenic characteristics. Therefore, the strain growth rates fi
depend on the population history of previously circulating strains. We
use an SIR model to derive our minimal epitope fitness model (Methods):
a given strain i incurs a cross-immunity load generated by all previous
strains j, each of which generates a fitness cost proportional to its fre-
quency xj and to the cross-immunity amplitude C ai,aj

! "
. These ampli-

tudes depend on the antigenic similarity of the strains i and j, which is
encoded in the epitope segments of their HA sequences ai and aj. We
neglect higher-order antigenic interactions involving more than two
strains19 and the birth–death turnover of the host population, which
can be argued to produce only subleading effects in the epidemiology of
influenza A/H3N2.

Non-epitope mutations are predominantly under negative selection9,
because they affect protein stability and other conserved molecular
functions13,14. Here we describe these effects by a simple mutational-
load model: each strain incurs a fitness costL aið Þ that is the cumulative
effect of recent non-epitope amino acid changes, which occur in its
ancestral lineage in the current season (Methods).

Together we obtain a strain fitness of the form

fi~f0{L aið Þ{
X

j: tjvti

xj C ai,aj
! "

ð2Þ

with a constant f0 ensuring the correct normalization of strain frequen-
cies (Methods). Importantly, this strain-based model goes beyond a fit-
ness model for individual mutations: it counts each new beneficial or

deleterious mutation together with the previous changes in its ancestral
lineage.

The simplest fitness model of this form has uniform selective effects:
each non-epitope mutation generates a fitness cost sne, and each epi-
tope mutation reduces the cross-immunity amplitude by an amount
sep. However, the biology of cross-immunity and protein stability
deviates from this model. Both phenotypes are non-uniform and non-
linear functions of genetic distance4,12–14,24; that is, the effect of a muta-
tion depends on its sequence position, on the amino acids involved,
and on its background of previous mutations. Our full fitness model
uses nonlinear cross-immunity amplitudes C ai,aj

! "
, and it includes

position-specific effects and nonlinear fitness terms that are inferred
from observed clade histories (Methods; see also a related allele-based
inference scheme10). Importantly, this model has only four fit para-
meters, which can be inferred from our data set without compromising
predictive power.

Frequency predictions for clades
The winter-to-winter prediction for the Northern Hemisphere obtained
from our full, clade-based fitness model is shown in Fig. 2. To deter-
mine the accuracy of this model, we compare the predicted frequency
ratio, or Wrightian fitness, Ŵn~X̂n tz1ð Þ

#
Xn tð Þ with the posterior

observed ratio Wn~Xn tz1ð Þ=Xn tð Þ for all clades with frequencies
Xn(t) . 0.15 in a given season. The data points (Wn, Ŵn) in Fig. 2a
are distributed around the diagonal of correct prediction; some scatter
can be explained by statistical errors in frequency estimation due to
tree reconstruction and sampling (Extended Data Fig. 1). As discussed
below, these predictions can be improved further by broadening the
data basis of our model. The direction of frequency evolution is pre-
dicted with remarkable accuracy. There are 121 clades with observed
growth (Wn . 1), which we predict correctly in 93% of the cases
(Ŵnw1). For the 67 clades with observed decline (Wn , 1), we cor-
rectly predict decline in 76% of the cases. Importantly, the fitness
amplitude Wn is predicted accurately for the clades destined for fixa-
tion, which have X̂n tz1ð Þ<1 and appear close to the diagonal in
Fig. 2a.

The fixation of a clade implies the fixation of all mutations that
appear in its ancestor strain. As shown in Fig. 2b, the yearly numbers
of nucleotide fixations between 1994 and 2012 are also well predicted
by our model. This pattern is well known to be clustered (80% of
the nucleotide fixations occur in a subset of 11 years), which reflects
recurrent selective sweeps in the evolution of influenza HA4–7,9.

Figure 2c maps our prediction onto the strain tree. Each clade, repre-
sented by its ancestor strain, is coloured according to the maximum of
the predicted frequency changes X̂n tz1ð Þ{Xn tð Þ over its history. We
find clade expansion predominantly close to the trunk and decline far
away from the trunk, which is consistent with the observed shape of the
influenza tree.

Tagging clades by their point of origination (Methods), allows us to
analyse correlations between fitness and geographical location. For clades
originating in east and southeast Asia, we predict growth (Ŵnw1) in
77% of the cases, compared to 54% of the cases for clades originating
elsewhere; the corresponding fractions with observed growth (Wn . 1)
are 77% and 49%. This is consistent with the particular role of east and
southeast Asia in seeding antigenic variants, which has been established
previously18. Thus, our analysis captures broad spatial patterns in the
evolution of influenza A/H3N2, although the underlying fitness model
is geographically neutral (this point will be discussed further below).

We can quantify the statistical information gain due to our predic-
tion by comparing distributions of predicted and posterior next-year
frequencies (Methods). We find the observed frequency evolution to
be more likely by a factor .10250 under our fitness model compared to
a null model with constant frequencies (that is, zero fitness) for all strains.
We emphasize that our prediction works only from one year to the next,
because it cannot predict the new mutations that arise after its base year
and shape the course of evolution over longer periods.
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