

Genetic architecture and evolution of emerging artemisinin resistance in Plasmodium falciparum

Roberto Amato

University of Oxford

Thanks and credits to....

Olivo Miotto Jacob Almagro-Garcia Chris Spencer Gil McVean Dominic Kwiatkowski

All Kwiat Group!

Bronwyn MacInnis Magnus Manske Jim Stalker Daniel Mead Sam Oyola Eleanor Drury Susana Campino Nick Day Nick White Arjen Dondorp Charlie Woodrow Liz Ashley

Mahidol Oxford

All Team 112!

All Community Project Investigators

In the previous episodes...

Drug Resistance History

Visit the MalariaGEN website for the complete animation

And today...artemisinin

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Artemisinin Resistance in Plasmodium falciparum Malaria

Arjen M. Dondorp, M.D., François Nosten, M.D., Poravuth Yi, M.D., Debashish Das, M.D., Aung Phae Phyo, M.D., Joel Tarning, Ph.D.,

Khin Maung Lwi Sue J. Lee, I Mallika Imwo Trent H Pratap Singhasiva Duc

BACKGROUND Artemisinin-based (of falciparum mala

cerns that the effi border, historically METHODS

Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study

2009

Aung Pyae Phyo, Standwell Nkhoma, Kasia Stepniewska, Elizabeth A Ashley, Shalini Nair, Rose McGready, Carit Ier Moo, Salma Al-Saai, Arjen M Dondorp, Khin Maung Lwin, Pratap Singhasivanon, Nicholas PJ Day, Nicholas J White, Tim J C Anderson, François Nosten

What about artemisinin resistance?

- "Delayed parasite clearance observed after treatment with an artesunate monotherapy, or after treatment with an artemisinin-based combination therapy (ACT)" [WHO]
- Declining efficiency observed in Southeast Asia
 - From 2.5h to >5h
 - Complete treatment failure observed in western Cambodia due to resistance to partner drug
- Urgent priority for global health
 - Hard to measure clinical phenotype
 - Genetic marker would enable large-scale surveillance
 - Hopefully marker leads to causal mutations

The kelch13 gene

- A molecular marker of artemisinin resistance has been identified in vitro [Ariey et al. Dec 2013].
- Different mutations in the kelch13 propeller domain were shown to be associated with delayed parasite clearance.

Open questions

- How many genes are involved?
- Are all parasites equally likely to acquire a resistance-causing mutation?
- What is the geographical distribution of the mutations that cause resistance and of the genetic predisposing factors?
- Is it spreading due to migration of resistant parasites, or does it have multiple origins in different locations?

TRAC/NIH GWAS

1,612 clinical samples

- Full genome sequence
- □ 1,063 with phenotypes
- **15 locations** (+2 in Africa)
 - Cambodia, Vietnam, Laos, Thailand, Myanmar and Bangladesh

High genetic and geographical resolution

GWAS result

Chromosome

- 18K SNPs with MAF>0.01
- Resistance phenotype expressed as parasite clearance half-life
 - number of hours taken for artemisinin to reduce parasite density by half during the steady-state clearance phase of the treatment
- Linear mixed model (Fast-LMM) to account for population structure

kelch13 C580Y p=10⁻²⁶

At least 7 distinct loci with p<10⁻⁷

Extreme allelic heterogeneity

Miotto, Amato et al., under review

Observations

- C580Y mutations in kelch13 has a p-value of 1E-26
 - Why the other mutations are not there or why is this mutations there?
- Other loci have significant p-values
- At least 20 non-synonymous mutations in the propeller domain of kelch13 have a phenotypic effect
 - How does this compare to the rest of the world?
 - How does this compare to the rest of the genome?
 - Are the mutations in *kelch13* all born equal?

Emergence vs spreading

Resistance is emerging

Miotto, Amato et al., under review

Resistance is emerging

C580Y

Miotto, Amato et al., under review

Compelling evidences of different origins

Miotto, Amato et al., under review

Haplotype homozygosity

Predisposing genetic background

3,500 samples

Different topologies

Africa

Cambodia

(E)SEA has low endemicity

N

Population structure: Principal Component Analysis

Miotto et al., Nat Gen 2013

Evidence for multiple founder effects

Miotto et al., Nat Gen 2013

Surface-associated interspersed genes

Region	Samples	Haplotypes (Hs)	Unique Hs	Hs shared by < 5	Hs shared by >= 5
WAF	247	234	224	10	0
EAF	65	62	59	3	0
SAM	26	22	20	2	0
SAS	13	13	13	0	0
WSEA	129	113	102	11	0
ESEA	443	270	213	46	11
PNG	34	31	28	3	0

Extremely rapid clonal expansion

Subpopulations are ART-R

ARTICLES

"Founder drift"

7 founder populations strongly associated with artemisinin resistance

- Each artemisinin-resistant founder populations strongly associated with a specific kelch13 resistance allele
- But the non-kelch13 significant SNPs (background mutations) are all in there!

kelch13 and the background alleles have similar geographical distributions

The genetic background is extremely differentiated even on a short geographic distance

Miotto, Amato et al., under review

Contextualizing kelch13

Within the genome and across countries

Geographical distribution of the samples

Region	Sample counts	Country	Sample counts
		Burkina Faso	56
		Cameroon	134
		Ghana	478
West Africa	957	Gambia, The	73
		Guinea	124
		Mali	87
		Nigeria	5
		Kenya	52
		Madagascar	18
East Africa	410	Malawi	260
		Tanzania	68
		Uganda	12
Central Africa	279	D. R. Congo	279
South America	27	Colombia	16
	27	Peru	11
South Asia	75	Bangladesh	75
West Southeast Asia	191	Myanmar	109
	4/4	Thailand	385
		Cambodia	815
East Southeast Asia	1154	Laos	120
		Vietnam	219
	130	Indonesia (Papua)	17
	137	Papua New Guinea	122

Density of the variants in AFR and SEA

Distribution of the mutations within kelch13

Excess of frequent NS mutations in SEA

N/S vs conservation

