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Flux compactification

D7!branesD7!branes

Figure 1: A schematic picture of the Calabi-Yau manifold is presented here. The large
circle given by dashed line represent the 3-cycle where NS-NS three form H3 is turned
on. The smaller circle in the throat stands for the 3-cycle where the R-R three form F3

is turned on. Also shown are D7-branes wraping 4-cycles. There may exists a number of
throats like the one shown here. There is a mirror image of the entire picture due to the
IIB/Z2 orientifold operation.

From the zero mode we obtain the usual relation between the gravity strength

in four dimensions and the fundamental mass scale of the higher dimensional theory

M2
P = MD−2

s

∫
dD−4y

√
|gmn| e2AΨ2

(0) . (2.21)

One may choose Ψ(0) = 1 as a convention, but in order to compare its magnitude to

the excited modes magnitude we keep it as Ψ(0) which is of course a constant. For

the excited mode we impose the following normalization condition

MD−2
s

∫
dD−4y

√
|gab| e2A Ψ(m)(y) Ψ(m′)(y) = M2

P δmm′ (2.22)

After this general discussions we would like to find the KK spectrum of the

gravitons and other closed string modes in the KS background. We postpone the

spectrum analysis until section 6 after some introduction of the KS background.

3. A Throat in the Calabi-Yau Manifold

A KKLT vacuum involves a Calabi-Yau (CY) manifold with fluxes [1]. Consider F-

theory compactified on an elliptic CY 4-fold X. The F-theory 4-fold is a useful way
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warped throat

Giddings, Kachru, Polchinski
Kachru, Kallosh, Linde, Trivedi

and many others 

where all moduli of the 6-dim. manifold are stabilized

KKLT vacuum
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Why brane inflation is so robust ?

throat, with v = 27/16 for the Klebanov-Strassler throat. With some warping,

the attractive Coulombic potential VC(φ) is quite weak. The quadratic term VK(φ)

receives contributions from a number of sources and is rather model-dependent [5, 26].

However m2 is expected to be comparable to H2
0 = V0/3M2

P , where MP is the reduced

Planck mass. This sets the canonical value for the inflaton mass m0 = H0.

For a generic value of m, slow-roll inflation will not yield enough e-folds of

inflation. Ref[6] shows that m ! m0/3 will be needed. Näıvely, a substantially larger

m will be disastrous, since the inflaton will roll fast, resulting in very few e-folds

in this case. However, for a fast roll inflaton, string theory dictates that we must

include higher powers of the time derivative of φ, in the form of the Dirac-Born-Infeld

(DBI) action

S = −
∫

d4x a3(t)

[
T

√
1− φ̇2/T + V (φ)− T

]
(1.2)

where T (φ) = T3h(φ)4 is the warped D3-brane tension at φ. It is quite amazing that

the DBI action now allows enough e-folds even when the inflaton potential is quite

steep, as shown by Silverstein and Tong et. al. [16, 17]. It is easy to see why this

happens. The Lorentz factor γ from the DBI action includes the warped tension,

γ =
1√

1− φ̇2/T
→ φ̇2 < T (φ) (1.3)

where T (φ) = T3h(φ)4. As the D3-brane approaches D̄3-brane, φ and T (φ) decrease,

so h(φ) → h(φA). Although φ̇ may increase, it is bounded by Eq.(1.3), and this

bound gets tighter as T (φ) decreases. This happens even if the potential is steep,

for example, when m > H0. As a result, it can take many e-folds for φ to reach the

bottom of the throat. When γ >> 1, the kinetic energy is enhanced by a Lorentz

factor of γ. We call this relativistic case the high-roll regime. Note that the inflaton

is actually moving slowly even in the high-roll limit. However, its property is very

different from the usual slow-roll limit, where γ # 1. This implies that the brane

inflationary scenario is very robust. The inflaton rolls slowly either because the

potential is relatively flat (so γ # 1), or because the warp tension T (φ) is small (so

1 << γ < ∞). In this paper, we like to extend the analysis to the intermediate

region (γ > 1), i.e., intermediate values of m. Not surprisingly, the analysis of

the intermediate region is somewhat more involved than either the slow-roll or the

high-roll limits.

The predictions of the inflationary properties are quite different as we vary m.

We find it useful to consider the following regions : m << H0 (the KKLMMT

scenario [5] for slow-roll inflation [6]), m >> H0, and the intermediate region. For

m >> H0, the small m region reduces to the well-known chaotic inflation with slow-

roll [?]. Otherwise, it is in the high-roll region[16, 17]. In this paper, we consider

the whole range of m by extending the analysis to the region where m ∼ H0. For
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Dirac-Born-Infeld action yields Lorentz factor :

T (φ) ∼ φ4
→ exponentially small
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Production of cosmic strings 
towards the end of brane inflation 

from the D3-anti-D3 annihilation
Brane inflation, 2003 Tye

T

Sen, Gibbons Yi, Hori, Strominger, .....

U(1)xU(1) gauge group:
T couples to U(1)_

confining U(1)

A. Sen, P. Yi, . . .

+



Production of cosmic strings not 
guaranteed

•  there are scenarios where no cosmic 
strings are produced

• or strings produced are not stable while 
stable strings are not produced

• parametric resonance production of pairs of 
closed strings (Gubser): ρloop > µ/l2



Well-known cosmological properties

• Monopoles  :   density ~                Disastrous

• Domain walls  :  density ~  1/a       Disastrous  

• cosmic strings   :  density ~                                                    
interaction cuts it down to         during radiation

                  

N. Jones, H. Stoica, H.T.,  hep-th/0203163
                 S. Sarangi , H.T., hep-th/0204074

a
−3

a
−2

a
−4

Gµ < 10
−6



Cosmic strings

• Cosmic string interactions



Cosmic String Network Evolution
Allen, Martins & Shellard
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for structure formation; as an alternative to inflation;                                       
Kibble, Zeldovich, Vilenkin, Turok, Shellard, . . . . . .

• In 1985, Witten attempted to identify the cosmic strings as 
fundamental strings in superstring (heterotic) theory. He 
pointed out a number of problems with this picture: tension too 
big, no production and the stability issue. 

• In early 1990s, COBE data disfavors cosmic strings.

• By late 1990s, CMB data supports inflation and ruled out cosmic 
string as an explanation to the density perturbation.

• In 1995, Polchinski and others pointed out the presence of D-
branes in string theory. 

• Brane world/brane inflation leads to a revival of cosmic strings. 
Realistic realization of brane world/inflation are known : KKLT 
and KKLMMT and other scenarios.



Uncertainties in the amount of 
sub-horizon loops

Ωcs = Ω∞ + Ωloop = 50Gµ + χ
√

α
√

Gµ

χ ∼ 100

The typical size of the loops is parameterized as αt

α ∼ 0.25, 0.1, 10−4, 50Gµ, (50Gµ)5/2

V.  Vanchurin, K. Olum and A. Vilenkin, gr-qc/0501040, 0511159
C. Ringeval, M. Sakellariadou and F. Bouchet, astro-ph/0511646

C. Martin and E.P. Shellard, astro-ph/0511792
J. Polchinski and J. Rocha, hep-ph/0606205



(p,q) Superstrings
• In contrast to vortices in Abelian Higgs model, 

cosmic strings from brane inflation should have a 
spectrum in tension.

• This is the (p,q) strings, where p and q are 
coprime. (1,0) strings are fundamental strings 
while (0,1) strings are D1-strings.

• The spectrum depends on the particular brane 
inflationary scenario.

E. Copeland, R. Myers and J. Polchinski, hep-th/0312067
G. Dvali and A. Vilenkin, hep-th/0312004  

Gµp,q =
√

p2g2
s

+ q2Gµ

They have non-trivial interactions.

1
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Scaling of the Cosmic Superstring Network

independent of 
initial conditions

Insensitive to the 
details of the 
interactions

H.T., I. Wasserman, M. Wyman, astro-ph/0503506
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M. Jackson, N. Jones and J. Polchinski, hep-th/0405229



Relative density of (p,q) strings 

np,q ∼ µ
−8

p,q

2 4 6
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Cosmic string tension spectrum in a 
warped deformed conifold

S. Gubser, C. Herzog, I. Klebanov, hep-th/0405282,
H. Firouzjahi, L. Leblond, H.T., hep-th/0603161.

One may view the strings as D3-branes wrapping a 
2-cycle inside the S3 at the bottom of the throat.to have a simple (expected) form:

Tp,q !
h2

A

2πα′

√
q2

g2
s

+ (
bM

π
)2 sin2(

πp

M
), (1.3)

but the way it comes about is interesting. Indeed, the tension is obtained by min-

imizing the Hamiltonian of the D3-brane world volume action after integrating out

the extra dimensions. Care must be taken with the Hamiltonian when one has an

electric field on a D-brane. For example the Chern-Simons terms which do not con-

tribute to the stress energy tensor due to their topological nature nevertheless affect

the Hamiltonian (hence the tension and energy) by coming into play via the con-

jugate momentum. This contribution turns out to be crucial here and leads to the

above simple formula (1.3).

This formula has the right limits. Setting either p = 0 or q = 0 reproduces

Eq.(1.2). For M → ∞ and b = hA = 1, it reduces to Eq.(1.1). Because p is

ZM -charged with non-zero binding energy, binding can take place even if (p, q) are

not coprime. Also, M fundamental strings can terminate to a point-like baryon,

irrespective of the number of D-strings around.

The paper is divided as follows. Sec. 2 reviews the properties of the KS throat

we need. Sec. 3 contains the calculation and the main result. Sec. 4 includes general

discussions and some comments on the issues remaining.

2. A Throat in the Calabi-Yau Manifold

2.1 The Conifold

A cone is defined by the following equation in C4

4∑

i=1

w2
i = 0 (2.1)

Here Eq.(2.1) describes a smooth surface apart from the point wi = 0. The geometry

around the conifold is studied in [30]. The base of the cone is a manifold X given

by the intersection of the space of solutions of Eq.(2.1) with a sphere of radius r in

C4 = R8, ∑

i

|wi|2 = r2

We are interested in Ricci-flat metrics on the cone which in turn imply that

the base of the conifold is a Sasaki-Einstein manifold. The simplest five dimensional

Sasaki-Einstein manifold for N = 1 supersymmetry is T 1,1 and it is the only manifold

for which the deformation is explicitly known [12].

4

(Klebanov-Strassler)

b = 0.93266

M is the RR flux wrapping  S3.



(p,0)

(M-p,0)

Example :
M=5

A baryon with mass

ifold the D-string should become valued in ZK . One can see this from the gauge

theory side. Once the KS solution is embedded in a compactification, the U(1)

baryon symmetry is gauge and it is broken down to ZK . The axionic string com-

ing from this symmetry breaking should be ZK charged. This is analogous to the

picture in Ref. [39] where it is shown how a global D1-string becomes local after

compactification in the presence of a D3-brane. It is expected that, as local strings,

the D-strings could break on monopoles [40]. On the gravity side, we have a dual

B-cycle in the compactified theory with K units of H3 on it. This is exactly what

we expect to get ZK but because this cycle has a varying warp factor along it, all

the D-strings are attracted to the bottom of the throat and they cannot get out. We

speculate that subleading corrections to the warp factor might provide the key to

get the ZK expected from the gauge theory side.

In the context of brane inflation, cosmic defects and especially cosmic super-

strings appear quite naturally [6–9]. In Type IIB theory, both the warp factor and

the Dirac-Born-Infeld action enhance the number of e-folds of inflation needed to ex-

plain the flatness and the horizon problems. Heating after brane inflation is also quite

feasible when the D3-anti-D3-brane annihilation takes place in one throat, while the

standard model branes are somewhere else [41, 42]. This annihilation releases the

energy to heat up the universe to start the hot big bang epoch and to produce all

defects that are permitted; in particular, F- and D-strings are expected to be copi-

ously produced. Some of these superstrings will appear with cosmic sizes, as cosmic

strings that are expected to evolve into a scaling cosmic string network. We note

that M F-strings will bind into a point; that is, they can bind into a “baryon” like

point-like defect, with a mass ∼ MhA/
√

α′. The cosmological evolution of such a

cosmic string network will be interesting to study. The evolution is probably highly

non-trivial. Not only are the string breaking on baryons but their charge depends on

where they are in the throat. At each step in the cascade the flux F3 changes by one

unit and so as a cosmic string moves randomly in the throat it could change from

being ZM to being ZM−1 charged for example.

A generic flux compactification will have a number of axions. One expects a new

type of strings charged under each axion field. So it is likely that there are a variety

of other strings besides the F- and the D-strings. The resulting stringy bound states

can be very rich. The (p, q) string tension spectrum discussed in this note gives us a

glimpse of what is possible.
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Search for Cosmic Strings

• Lensing

• Cosmic Microwave Background Radiation

• Gravitational Wave Burst

• ∆T/T (Doppler effect)

• Pulsar Timing

• Stochastic Gravitation Radiation Background



Possible CMB B-mode detection
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log(Gµ)

5 × 10
−7 > Gµ ≥ 4 × 10

−10 H. Firouzjahi, H.T.

Observational bound from WMAP :

L. Pogosian, I. Wasserman, M. Wyman
Jeong, Smoot

5 × 10
−7 > Gµ

Cosmic string tension in the KKLMMT scenario
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cosmic string lensing
cosmic string introduces a deficit angle



CSL-1     Sazhin etc. astro-ph/0302547 

1.9 arc sec
⇓

Gµ~ 4 x 10
-7

z=0.46 ± 0.008 identical spectra with confidence level 
above 99.9%



Unfortunately not (higher resolution Hubble pictures):

January 2006 If it is cosmic string lensing

Joe P.
L. Motl



Radio telescope ?

National Radio Astronomy 
Observatory

Recall Cowen and Hu. 



Shami Chatterjee, Jim Cordes, H.T., Ira Wasserman



log(Gµ)

Bound on cosmic string tension 

WMAP

0 ≤ β ≤ 0.05

ns ∼ 0.98 + β

log r ∼ −8.8 + 60β

log Gµ ∼ −9.4 + 30β

U. Seljak and A. Slosar, 
astro-ph/0604143

→ ns ≤ 1.03

ns = 0.95

Gµ < 10
−8

S. Shandera and H.T.,  0601099



cusps and kinks
  are quite common in string evolution

CUSP

h(t) ~ |t|1/3

KINK

h(t) ~ |t| 2/3

Damour and Vilenkin

gravitational wave bursts
wave form of



A cusp

Blanco-Padillo and Olum



gravitational wave radiation from cusps
                                                 Damour and Vilenkin

←      prediction      → 

Log



More recent analysis
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FIG. 1: Plot of the rate of gravitational wave bursts, γ
(top panel), and the probability η of having at least least
one event in our data set with amplitude larger than A50%

in a year of observation (bottom panel), as a function of Gµ.
For all curves we have set α = ΓGµ, Γ = 50, f∗ = 75 Hz,
c = p = 1, and the ignorance constants g1 = g2 = 1. The
dash-dot and dashed curves show γ and η computed with
the Damour-Vilenkin cosmological functions Eqs. (62), (63)
and (64), with A50% = 10−21 s−1/3, and A50% = 10−20 s−1/3

respectively. The thick and thin solid curves show γ and η
computed in a universe with a cosmological constant with
amplitudes A50% = 10−20 s−1/3, and A50% = 10−21 s−1/3

respectively.

of events in our data set with amplitudes greater than
A50%. In an observation time T the probability of not
having such an event is exp(−γT ). Hence, the odds of
having at least least one event in our data set with am-
plitude larger than our minimum detectable amplitude
is,

η = 1 − e−γT . (65)

Figure 1 shows the rate of burst events, γ, as well
as the probability η of having at least least one event
in our data set with amplitude larger than A50% for a
year of observation, as a function of Gµ for two different
models. For all curves we have set α = ΓGµ, Γ = 50,
f∗ = 75 Hz, c = p = 1, and the ignorance constants
g1 = g2 = 1. We will refer to string models with these pa-
rameters as “classic”, which is appropriate for field theo-
retic strings with loops of size l = ΓGµt. The dashed-dot

and dashed curves of Fig. 1 show γ and η computed us-
ing the Damour-Vilenkin cosmological functions namely,
Eqs. (62), (63) and (64). For the dashed-dot curves we
have used an amplitude estimate of A50% = 10−21 s−1/3.
This amplitude estimate can be obtained using the Ini-
tial LIGO sensitivity curve, setting the SNR threshold to
1, and assuming all cusp events are optimally oriented
(as used for the dashed horizontal lines of Fig. 1 in [13]).
This is also our estimate for the amplitude in the case of
Advanced LIGO. The dashed curves show γ and η com-
puted with the amplitude A50% = 10−20 s−1/3, which we
feel is more appropriate for Initial LIGO. The thick and
thin solid curves show γ and η computed by evaluating
the cosmological functions (Eqs. (A4), (A6) and (A8))
numerically for the Λ universe (see Appendix A). The
thick solid curves correspond to our amplitude estimate
for Initial LIGO, and the thin solid curves to our estimate
for Advanced LIGO.

The functional dependence of the rate of gravitational
wave bursts on Gµ is discussed in detail in Appendix B.
Here we summarise those findings. From left to right,
the first steep rise in the rates as a function of Gµ of
the dashed and dashed-dot curves of Fig. 1 comes from
events produced at small redshifts (z " 1). The peak and
subsequent decrease in the rate starting around Gµ ∼
10−9 comes from events produced at larger redshifts but
still in the matter era (1 " z " zeq). The final rise comes
from events produced in the radiation era (z $ zeq).

For “classic” cosmic strings (p = ε = n = 1), the mat-
ter era maximum in our estimate for the rate of events
at Initial LIGO sensitivity is about 7 × 10−4 events per
year, which is substantially lower than the rate ∼ 1 per
year suggested by the results of Damour and Vilenkin
[11, 12, 13]. The bulk of the difference arises from our
estimate of a detectable amplitude. This is illustrated by
the dashed-dot and dashed curves of Fig. 1, which use the
same cosmological functions, and two estimates for the
amplitude, A50% = 10−21 s−1/3 and A50% = 10−20 s−1/3

respectively. Our amplitude estimate results in a de-
crease in the burst rate by about a factor of 100 at the
matter era peak. A more detailed discussion of the effect
of the amplitude on the rate can be found in Appendix B.
The remaining discrepancy arises from differences in the
cosmology, as well as factors of O(1) that were dropped
in the previous estimates, which account for a further
decrease by factor of about 10. This is illustrated by
the difference between the dashed-dot and thin solid
curves of Fig. 1, which use the same amplitude estimate
A50% = 10−21 s−1/3, and the Damour-Vilenkin cosmo-
logical interpolating functions (Eqs. (62), (63) and (64))
and the Λ universe functions (Eqs. (A4), (A6) and (A8))
respectively. When z << 1, the effects of a cosmological
constant are un-important and differences arise from fac-
tors of O(1) that were dropped in the previous estimates.
For z ! 1, the differences arise from a combination of
the effects of a cosmological constant as well as factors
of O(1). The net effect is that the chances of seeing an
event from “classic” strings using Initial LIGO data have
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FIG. 2: Comparison of γ (top panel) and η with a year of
observation (bottom panel), as a function of Gµ for several
string models. For all three curves an Initial LIGO ampli-
tude estimate of A50% = 10−20 s−1/3 has been used, and the
cosmological functions have been evaluated in the Λ universe.
The model parameters are identical to those of Fig. 1 except
where indicated. The solid curves show γ and η computed
with a reconnection probability of p = 10−3. The dashed
curves show γ and η computed with a size of loops given by
Eq. (57) with ε = 1, and n = 3/2. The dashed-dot curves
show the combined effect of a low reconnection probability,
p = 10−3, as well as a size of loops given by Eq. (57) with
ε = 1, and n = 3/2.

dropped from order unity to about 10−3 at the matter
era peak. This is illustrated by the difference between the
dashed-dot and thick solid curves of Fig. 1. The dashed-
dot curves were computed using the amplitude estimate
A50% = 10−21 s−1/3 and the Damour-Vilenkin inter-
polating cosmological functions, whereas the thick solid
curves use an amplitude estimate of A50% = 10−20 s−1/3

in the Λ universe.
Cosmic superstrings, however, may still be detectable

by Initial LIGO. Furthermore, if the size of the small-
scale structure is given by gravitational back-reaction,
reasonable estimates for what the size of loops might
be also lead to an enhanced rate of bursts. Figure 2
illustrates this point. All curves use the Initial LIGO
amplitude estimate of A50% = 10−20 s−1/3, and the cos-
mological functions Eqs. (A4), (A6) and (A8) computed
in the Λ universe. The solid curves show γ and η com-
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FIG. 3: Same as Fig. 2 but with the Advanced LIGO ampli-
tude estimate of A50% = 10−21 s−1/3.

puted with a reconnection probability of p = 10−3. The
dashed curves show γ and η computed for loops with a
size given by Eq. (57) with ε = 1, and n = 3/2. This
is the value of n we expect when the spectrum of per-
turbations on long strings is inversely proportional to
the mode number, and the result we expect if the spec-
trum of perturbations on long strings is dominated by the
largest kink [32]. The dashed-dot curves show the com-
bined effect of a low reconnection probability, p = 10−3,
as well as a size of loops given by Eq. (57) with ε = 1,
and n = 3/2. The remaining parameters for all three
curves are identical to those of Fig. 1. Advanced LIGO
has a considerably larger chance of making a detection of
cosmic superstrings or field-theoretic strings if loops are
small. This is illustrated in Fig. 3 which shows the same
string models shown in Fig. 2, with our Advanced LIGO
amplitude estimate of A50% = 10−21 s−1/3.

To summarise, we find the chances of detecting “clas-
sic” strings to be significantly smaller than previous es-
timates suggest. Even Advanced LIGO only has a few
percent chance of detecting “classic” strings at the mat-
ter era peak (see the thin solid line around Gµ ∼ 10−9 in
Fig. 1), though it has a good chance of detecting cosmic
superstrings and cosmic strings with small loops as show
in Fig. 3. Initial LIGO requires the small reconnection
probability of cosmic superstrings and/or small loops to
attain a reasonable chance of detection. It should be

X. Siemens,  J. Creighton, I. Maor, S. Majumder, 
K. Cannon and J. Reed, gr-qc/0603115



FIG. 1: Predicted gravitational wave backgrounds from strings, and noise sources. Broad band

energy density is shown in units of the critical density for h0 = 1, as a function of frequency, for

α = 0.1. Noise levels are shown for current millisecond pulsar data (MSP), and projected LISA

sensitivity in maximum resolution and Sagnac modes. Confusion noise is shown for massive black

hole binaries (MBHB), the summed Galactic binary population including binary white dwarfs

(UB+WUMa+GCWDB+CV), and extragalactic populations of white dwarfs (XGCWDB) and

neutron stars (XGNSB). Radiation from loop populations at high redshift (H) and present-day (P)

is shown, labled by the value of Gµ. Dotted curves show the contributions of z > 1 loops where

they are subdominant to the P contributions. Current (MSP) sensitivity is at about Gµ ≈ 10−10,

and LISA will reach to around Gµ ≈ 10−15.

population. The fraction of horizon-size loops that needs to stabilize in order for radiation-

era loops to dominate near fpeak is only ≈ (Gµ)1/2(ΩM/
√

30ΩR) ≈ 600(Gµ)1/2 (times some

numerical factors), which is a small number for the light strings we are contemplating. Unless

α is relatively large, accurate estimates of the radiation background will require estimates

of loop spectra with very large dynamic range.

9
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Search for Cosmic Strings

• Lensing

• Cosmic Microwave Background Radiation

• Gravitational Wave Burst

• ∆T/T (Doppler effect)

• Pulsar Timing

• Stochastic Gravitation Radiation Background

• Micro-lensing

• Cusp Doppler effect ?

X
X
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Micro-lensing

David Chernoff, to appear

the observer-source line of sight. The characteristic Einstein angle is

ΘE = 8πGµ

= 1.04× 10−3

(
Gµ

2× 10−10

)
. (3.1)

The characteristic angular size of a stellar source at distance R is Θ" = R"/R. The

relative size is
Θ"
ΘE

= 4.6× 10−5

(
2× 10−10

Gµ

) (
100kpc

R

)
(3.2)

which implies that the stellar source will generally be well described as a point source.

The relativistically moving and oscillating string will create brightness fluctuations in

the background star that can be searched for in a microlensing experiment.

The actual situation is somewhat more complicated. For a loop, as opposed to a

straight string, one expects lensing like that of a point mass for photons with impact

parameter large compared to the size of the loop and lensing like that of a straight string

for paths that pass close to a segment of the string. We will eschew the full complications

and concentrate on photons that pass near a segment of the string making up the loop.

The characteristic scale of the smallest loops today is

lg = ΓRGµttoday = 40pc

(
ΓRGµ

10−8

) (
ttoday

13.5Gyr

)
. (3.3)

Such loops are much smaller than the scale of the Galaxy. Both the external and internal

velocities associated with loops are expected to be relativisitic. For comparison, the

characteristic scale of the loops formed at equiparition are

lmax,eq = αU teq = αU14kpc

(
teq

4.7× 104yrs

)
. (3.4)

Galactic microlensing suggests R ∼ 10−100 kpc, probing the full range of loops generated

during the radiative error plus the small end of the loops generated during the matter

era. All this assumes αU order unity.

We want to answer two questions: what is the probability for lensing a single source

at distance R by a distribution of loops at a given instant? How does the probability

grow with time?

Consider a small loop of size l at distance r. It lenses an angular area ΩL ∼ (θEr)l/r2.

The probability that a single background source at distance R is lensed is the ratio of

the lensed angular area to the observed angular area in the direction of the source. We

find

PL =
dΩL

dΩ
=

∫
r2dr

∫
dN

dV dl

θEl

r
dl (3.5)

NB Depending upon the application one should take some care about the limits for the

integration over l. One concern is cosmic variance in the estimate of PL: are there many
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was a numerical error of 1/32 in the pc to cm conversion and finally the horizon size

changed from 3 to 4 Gpc or (3/4)2. All in all its a reduction of ∼ 10−4.

We have estimated the rate RL assuming that the loops are constantly traversing

new areas of the sky. That assumption should be fine as long as the total observing

time is less than the characteristic period of motion of the loop (i.e. if its oscillating

and begins to lense the same parts of the background more than once). The shortest

timescale is for the shortest string to move across its own loop size:

tosc ∼
lg
c
∼ 135yrs

(
ΓRGµ

10−8

)
(3.11)

This means that any experiment with duration ∆T < tosc will be in a linear regime. The

expected number of transient lensed sources from a background population of size NS

observed in an experiment of duration ∆T is NL = RL∆TNS.

The characteristic duration of lensing event will be

δt =
RθE

c

=
R8πGµ

c

= 6.3× 103sec

(
R

100kpc

) (
Gµ

2× 10−10

)
(3.12)

Whats the best that can be done? The Gaia mission will look at about 109 stars for

10 yrs. I don’t know many details but we could estimate that NL ∼ 0.03 for the typical

parameters. It would appear difficult to get very large values of NL even by pushing

down µ to increase RL. Probably we should do the estimate with a full radiation-

matter-lambda cosmology to get a more secure number though I’m not very optimistic.

4. Lensing of string cusps

It is well known that cusps appear generically somewhere along the string during the

evolution of a typical string loop. Damour and Vilenkin have proposed that these cusps

can radiate gravitational wave bursts. Such gravitational wave beams may be observed.

Here we like to consider the effect of such cusps on the CMBR. One key difference is

already clear. Cusps over a large patch of sky will significantly red/blue shift the CMBR

arriving at any observer. That is, this is not a beam effect.

The probability of detectable lensing on a single line of sight by a population of loops

depends on 3 characteristic quantities:

(1) change in the CMB temperature T by the gravitational scattering,

(2) angular area of the sky subject to the temperature shift, and

(3) number of loops out to z-recombination.

– 14 –

was a numerical error of 1/32 in the pc to cm conversion and finally the horizon size

changed from 3 to 4 Gpc or (3/4)2. All in all its a reduction of ∼ 10−4.

We have estimated the rate RL assuming that the loops are constantly traversing

new areas of the sky. That assumption should be fine as long as the total observing

time is less than the characteristic period of motion of the loop (i.e. if its oscillating

and begins to lense the same parts of the background more than once). The shortest

timescale is for the shortest string to move across its own loop size:

tosc ∼
lg
c
∼ 135yrs

(
ΓRGµ

10−8

)
(3.11)

This means that any experiment with duration ∆T < tosc will be in a linear regime. The

expected number of transient lensed sources from a background population of size NS

observed in an experiment of duration ∆T is NL = RL∆TNS.

The characteristic duration of lensing event will be

δt =
RθE

c

=
R8πGµ

c

= 6.3× 103sec

(
R

100kpc

) (
Gµ

2× 10−10

)
(3.12)

Whats the best that can be done? The Gaia mission will look at about 109 stars for

10 yrs. I don’t know many details but we could estimate that NL ∼ 0.03 for the typical

parameters. It would appear difficult to get very large values of NL even by pushing

down µ to increase RL. Probably we should do the estimate with a full radiation-

matter-lambda cosmology to get a more secure number though I’m not very optimistic.

4. Lensing of string cusps

It is well known that cusps appear generically somewhere along the string during the

evolution of a typical string loop. Damour and Vilenkin have proposed that these cusps

can radiate gravitational wave bursts. Such gravitational wave beams may be observed.

Here we like to consider the effect of such cusps on the CMBR. One key difference is

already clear. Cusps over a large patch of sky will significantly red/blue shift the CMBR

arriving at any observer. That is, this is not a beam effect.

The probability of detectable lensing on a single line of sight by a population of loops

depends on 3 characteristic quantities:

(1) change in the CMB temperature T by the gravitational scattering,

(2) angular area of the sky subject to the temperature shift, and

(3) number of loops out to z-recombination.

– 14 –

was a numerical error of 1/32 in the pc to cm conversion and finally the horizon size

changed from 3 to 4 Gpc or (3/4)2. All in all its a reduction of ∼ 10−4.

We have estimated the rate RL assuming that the loops are constantly traversing

new areas of the sky. That assumption should be fine as long as the total observing

time is less than the characteristic period of motion of the loop (i.e. if its oscillating

and begins to lense the same parts of the background more than once). The shortest

timescale is for the shortest string to move across its own loop size:

tosc ∼
lg
c
∼ 135yrs

(
ΓRGµ

10−8

)
(3.11)

This means that any experiment with duration ∆T < tosc will be in a linear regime. The

expected number of transient lensed sources from a background population of size NS

observed in an experiment of duration ∆T is NL = RL∆TNS.

The characteristic duration of lensing event will be

δt =
RθE

c

=
R8πGµ

c

= 6.3× 103sec

(
R

100kpc

) (
Gµ

2× 10−10

)
(3.12)

Whats the best that can be done? The Gaia mission will look at about 109 stars for

10 yrs. I don’t know many details but we could estimate that NL ∼ 0.03 for the typical

parameters. It would appear difficult to get very large values of NL even by pushing

down µ to increase RL. Probably we should do the estimate with a full radiation-

matter-lambda cosmology to get a more secure number though I’m not very optimistic.

4. Lensing of string cusps

It is well known that cusps appear generically somewhere along the string during the

evolution of a typical string loop. Damour and Vilenkin have proposed that these cusps

can radiate gravitational wave bursts. Such gravitational wave beams may be observed.

Here we like to consider the effect of such cusps on the CMBR. One key difference is

already clear. Cusps over a large patch of sky will significantly red/blue shift the CMBR

arriving at any observer. That is, this is not a beam effect.

The probability of detectable lensing on a single line of sight by a population of loops

depends on 3 characteristic quantities:

(1) change in the CMB temperature T by the gravitational scattering,

(2) angular area of the sky subject to the temperature shift, and

(3) number of loops out to z-recombination.

– 14 –

GAIA :

was a numerical error of 1/32 in the pc to cm conversion and finally the horizon size

changed from 3 to 4 Gpc or (3/4)2. All in all its a reduction of ∼ 10−4.

We have estimated the rate RL assuming that the loops are constantly traversing

new areas of the sky. That assumption should be fine as long as the total observing

time is less than the characteristic period of motion of the loop (i.e. if its oscillating

and begins to lense the same parts of the background more than once). The shortest

timescale is for the shortest string to move across its own loop size:

tosc ∼
lg
c
∼ 135yrs

(
ΓRGµ

10−8

)
(3.11)

This means that any experiment with duration ∆T < tosc will be in a linear regime. The

expected number of transient lensed sources from a background population of size NS

observed in an experiment of duration ∆T is NL = RL∆TNS.

The characteristic duration of lensing event will be

δt =
RθE

c

=
R8πGµ

c

= 6.3× 103sec

(
R

100kpc

) (
Gµ

2× 10−10

)
(3.12)

Whats the best that can be done? The Gaia mission will look at about 109 stars for

10 yrs. I don’t know many details but we could estimate that NL ∼ 0.03 for the typical

parameters. It would appear difficult to get very large values of NL even by pushing

down µ to increase RL. Probably we should do the estimate with a full radiation-

matter-lambda cosmology to get a more secure number though I’m not very optimistic.

4. Lensing of string cusps

It is well known that cusps appear generically somewhere along the string during the

evolution of a typical string loop. Damour and Vilenkin have proposed that these cusps

can radiate gravitational wave bursts. Such gravitational wave beams may be observed.

Here we like to consider the effect of such cusps on the CMBR. One key difference is

already clear. Cusps over a large patch of sky will significantly red/blue shift the CMBR

arriving at any observer. That is, this is not a beam effect.

The probability of detectable lensing on a single line of sight by a population of loops

depends on 3 characteristic quantities:

(1) change in the CMB temperature T by the gravitational scattering,

(2) angular area of the sky subject to the temperature shift, and

(3) number of loops out to z-recombination.

– 14 –



Lensing+Doppler by a cusp

A moving string produces a differential redshift
~8π Gµ v/(c2-v2)1/2 (lensing+Doppler)

∆T

∆T in 10-3 oK or better ?
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Superstring theory may be tested

• Instead of searching for tiny particles or 
signatures in accelerators, such superstrings may 
stretch across the universe.

• The string tensions have the right values so they 
are compatible with all present day observational 
bounds and yet can be detected in the near 
future.

• Their (p,q) properties give them quite distinct 
signatures.

• More work is needed on this and other brane 
inflationary and cosmic string scenarios.  A 
typical stringy vacuum has a number of axions 
and corresponding strings.


