Schedule
Open-Closed String Mirror Symmetry
Wolfgang Lerche
**
We compute certain one-loop corrections to $F^4$ couplings of the
heterotic string compactified on $T^2$, and show that they can be
characterized by holomorphic prepotentials $\GG$. We then discuss how
some of these couplings can be obtained in $F$-theory, or more
precisely from 7--brane geometry in type IIB language. We in
particular study theories with $E_8\times E_8$ and $SO(8)^4$ gauge
symmetry, on certain one-dimensional sub-spaces of the moduli space
that correspond to constant IIB coupling. For these theories, the
relevant geometry can be mapped to Riemann surfaces. Physically, the
computations amount to non-trivial tests of the basic $F$-theory --
heterotic duality in eight dimensions. Mathematically, they mean to
associate holomorphic 5-point couplings of the form ${\del_t}^5\GG\sim
\sum g_\ell \ell^5 {q^\ell\over 1-q^\ell}$ to $K3$ surfaces. This can
be seen as a novel manifestation of the mirror map, acting here between
open and closed string sectors.
**

**hep-th/9804176**
**
**
Audio for this talk requires sound hardware, and RealPlayer or RealAudio
by RealNetworks.

Begin continuous audio for the whole
talk. (Or, right-click to download the whole audio file.)

To begin viewing slides, click on the first slide below.

Author entry (protected)