Generalized Hodge structures and Mirror Symmetry

The Hodge theory of D-branes

Tony Pantev

University of Pennsylvania
Overview

Joint work with L. Katzarkov and M. Kontsevich.
Overview

- Joint work with L.Katzarkov and M.Kontsevich.
- Will describe (following Kontsevich) how to extract Hodge theoretic invariants from D-brane categories.

$$H_{dR}^\bullet(D^b_{\text{sing}}(Y, f))$$
Overview

- Joint work with L. Katzarkov and M. Kontsevich.
- Will describe (following Kontsevich) how to extract Hodge theoretic invariants from D-brane categories.
- Will explain how these invariants transform under mirror symmetry.
Overview

Joint work with L. Katzarkov and M. Kontsevich.

Will describe (following Kontsevich) how to extract Hodge theoretic invariants from D-brane categories.

Will explain how these invariants transform under mirror symmetry.

Will discuss the structure of the invariants and methods for computation.
Kontsevich’s program

Recall:

Kähler space \(X \)
Kontsevich’s program

Recall:

Kähler space X
Kontsevich’s program

Recall:

Kähler space X \rightarrow Hodge structure on the de Rham cohomology of X
Recall:

\[H^dR(X, \mathbb{C}) \]

Kontsevich’s program
Kontsevich’s program

Recall:

Kähler space \(X \) \(\implies \) Hodge structure:

\[
H_B^\bullet(X, \mathbb{C}) \cong H_{dR}^\bullet(X, \mathbb{C}) \cong H_{Dol}^\bullet(X, \mathbb{C})
\]
Kontsevich’s program

Recall:

Kähler space X \quad \rightarrow \quad \text{Hodge structure:}

$$H^\bullet_B(X, \mathbb{C}) \cong H^\bullet_{dR}(X, \mathbb{C}) \cong H^\bullet_{Dol}(X, \mathbb{C})$$

de Rham’s theorem
Kontsevich’s program

Recall:

Kähler space X \leadsto Hodge structure:

$$H^\bullet_B(X, \mathbb{C}) \cong H^\bullet_{dR}(X, \mathbb{C}) \cong H^\bullet_{Dol}(X, \mathbb{C})$$

- de Rham’s theorem
- Hodge’s theorem
- the Kähler condition
Recall:

Kähler space X \[\implies\]

Hodge structure:

$H^\bullet_B(X, \mathbb{C}) \cong H^\bullet_{dR}(X, \mathbb{C}) \cong H^\bullet_{Dol}(X, \mathbb{C})$

$H^\bullet_B(X, \mathbb{Z})$
Kontsevich’s program

Recall:

Kähler space X

Hodge structure:

$H^\bullet_B(X, \mathbb{C}) \cong H^\bullet_{dR}(X, \mathbb{C}) \cong H^\bullet_{Dol}(X, \mathbb{C})$

$H^\bullet_B(X, \mathbb{Z}) \oplus H^{p,q}$
Kontsevich’s program

Recall:

Kähler space X

$H^B \otimes (X, \mathbb{C}) \cong H_{dR}^\bullet (X, \mathbb{C}) \cong H_{Dol}^\bullet (X, \mathbb{C})$

Want:

generalized (nc) Kähler space X

$H^\bullet_B (X, \mathbb{Z}) \oplus H^{p, q}$
Kontsevich’s program

Recall:

Kähler space \mathcal{X}

Hodge structure:

$$H^*_B(X,\mathbb{C}) \cong H^*_{dR}(X,\mathbb{C}) \cong H^*_{Dol}(X,\mathbb{C})$$

$$H^*_B(X,\mathbb{Z}) \oplus H^{p,q}$$

Want:

generalized (nc) Kähler space \mathcal{X}
Kontsevich’s program

Recall:

\[\text{Kähler space } X \]

\[H^\bullet_B(X, \mathbb{C}) \cong H^\bullet_{dR}(X, \mathbb{C}) \cong H^\bullet_{Dol}(X, \mathbb{C}) \]

\[H^\bullet_B(X, \mathbb{Z}) \oplus H^{p,q} \]

Want:

\[\text{generalized (nc) Kähler space } X \]

\[\text{generalized (nc) Hodge structure on the de Rham cohomology of } X \]
nc spaces

Definition: (math) [Bondal’90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C}-linear category C_X which is:
nc spaces

Definition: (math) [Bondal’90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C}-linear category C_X which is:

- Karoubi closed ($\iff \forall$ projector splits);
nc spaces

Definition: (math) [Bondal’90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C}-linear category C_X which is:

- Karoubi closed ($\iff \forall$ projector splits);
- enriched over complexes of \mathbb{C}-vector spaces.
nc spaces

Definition: (math) [Bondal’90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C}-linear category C_X which is:

- Karoubi closed ($\iff \forall$ projector splits);
- enriched over complexes of \mathbb{C}-vector spaces.

\[\forall E, F \in C_X \rightsquigarrow \text{Hom}_{C_X}(E, F) \in (\text{Compl}/\mathbb{C}) \]

so that $\text{Hom}_{C_X}(E, F[i]) = H^i(\text{Hom}_{C_X}(E, F))$
Definition: (math) [Bondal’90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C}-linear category C_X which is:

- Karoubi closed ($\iff \forall$ projector splits);
- enriched over complexes of \mathbb{C}-vector spaces.

Definition: (physics) A nc space X/\mathbb{C} is a 2d TQFT with $N = 2$ susy.
nc spaces

Definition: (math) [Bondal’90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C}-linear category C_X which is:

- Karoubi closed ($\iff\forall$ projector splits);
- enriched over complexes of \mathbb{C}-vector spaces.

Definition: (physics) A nc space X/\mathbb{C} is a 2d TQFT with $N = 2$ susy.

Intuition:
nc spaces

Definition: (math) [Bondal’90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C}-linear category C_X which is:

- Karoubi closed ($\iff \forall$ projector splits);
- enriched over complexes of \mathbb{C}-vector spaces.

Definition: (physics) A nc space X/\mathbb{C} is a 2d TQFT with $N = 2$ susy.

Intuition:

(math) C_X is the category of sheaves on X.
nc spaces

Definition: (math) [Bondal’90] A nc space X/\mathbb{C} is a small triangulated \mathbb{C}-linear category C_X which is:
- Karoubi closed ($\iff \forall$ projector splits);
- enriched over complexes of \mathbb{C}-vector spaces.

Definition: (physics) A nc space X/\mathbb{C} is a 2d TQFT with $N = 2$ susy.

Intuition:
- (math) C_X is the category of sheaves on X.
- (physics) C_X is the category of D-branes in the TQFT X.
Examples

(math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a nc space with $C_X := \text{Perf}(X)$ - perfect complexes of quasi-coherent sheaves on X.
Examples

(math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a \textbf{nc} space with $C_X := \text{Perf}(X)$ - perfect complexes of quasi-coherent sheaves on X. If X - smooth and quasi-projective, then C_X is quasi-equivalent to $D^b_{\text{qcoh}}(X)$.
Examples

(math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a nc space with $C_X := \text{Perf}(X)$ - perfect complexes of quasi-coherent sheaves on X.

(math) If X/\mathbb{C} is a compact complex manifold, then X/\mathbb{C} is also a nc space with $C_X := D_{\text{qcoh}}^b(X)$ - the derived category of quasi-coherent sheaves on X.
Examples

(math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a nc space with $C_X := \operatorname{Perf}(X)$ - perfect complexes of quasi-coherent sheaves on X.

(math) If X/\mathbb{C} is a compact complex manifold, then X/\mathbb{C} is also a nc space with $C_X := D^b_{\text{qcoh}}(X)$ - the derived category of quasi-coherent sheaves on X.

Enhancement: The twisted complexes of Toledo-Tong and Bondal-Kapranov.
Examples

- **(math)** If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a nc space with $C_X := \text{Perf}(X)$ - perfect complexes of quasi-coherent sheaves on X.

- **(math)** If X/\mathbb{C} is a compact complex manifold, then X/\mathbb{C} is also a nc space with $C_X := D_{\text{qcoh}}^b(X)$ - the derived category of quasi-coherent sheaves on X.

- **(physics)** If X is a topological twist of a $(2, 2)$ sigma model, then X is also a nc space.
Examples

- **(math)** If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a **nc** space with $C_X := \text{Perf}(X)$ - perfect complexes of quasi-coherent sheaves on X.

- **(math)** If X/\mathbb{C} is a compact complex manifold, then X/\mathbb{C} is also a **nc** space with $C_X := D^b_{\text{qcoh}}(X)$ - the derived category of quasi-coherent sheaves on X.

- **(physics)** If X is a topological twist of a $(2, 2)$ sigma model, then X is also a **nc** space.

$$X = (M, \mathcal{J}) - \text{gc manifold in the sense of Hitchin, which fits in a generalized Kähler structure } (X, \mathcal{J}_1 = \mathcal{J}, \mathcal{J}_2).$$
Examples

(math) If X/\mathbb{C} is a scheme of finite type, then X/\mathbb{C} is also a nc space with $C_X := \text{Perf}(X)$ - perfect complexes of quasi-coherent sheaves on X.

(math) If X/\mathbb{C} is a compact complex manifold, then X/\mathbb{C} is also a nc space with $C_X := D^b_{\text{qcoh}}(X)$ - the derived category of quasi-coherent sheaves on X.

(physics) If X is a topological twist of a $(2,2)$ sigma model, then X is also a nc space. C_X - the category of topological generalized complex branes of Kapustin-Li.
Any holomorphic Landau-Ginzburg model \(X := (Y, f) \) is also a nc space.
Any holomorphic Landau-Ginzburg model $X := (Y, f)$ is also a nc space.

Here
Landau-Ginzburg model

Any holomorphic Landau-Ginzburg model \(X := (Y, f) \) is also a nc space.

Here

- \(Y/\mathbb{C} \) is a quasi-projective manifold;
Any holomorphic Landau-Ginzburg model \(X := (Y, f) \) is also a nc space.

Here

- \(Y / \mathbb{C} \) is a quasi-projective manifold;
- \(f : Y \to \mathbb{C} \) is a holomorphic map with a single critical value at \(0 \in \mathbb{C} \).
Landau-Ginzburg model

Any holomorphic Landau-Ginzburg model \(X := (Y, f) \) is also a nc space.

Here

- \(Y / \mathbb{C} \) is a quasi-projective manifold;
- \(f : Y \to \mathbb{C} \) is a holomorphic map with a single critical value at \(0 \in \mathbb{C} \).

\[C(Y, f) = \]
Any holomorphic Landau-Ginzburg model $X := (Y, f)$ is also a nc space.

Here

- Y/\mathbb{C} is a quasi-projective manifold;
- $f : Y \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.

$C_{(Y,f)} =$

(locally) Matrix factorizations (Kontsevich):
Any holomorphic Landau-Ginzburg model $X := (Y, f)$ is also a nc space.

Here

- Y / \mathbb{C} is a quasi-projective manifold;
- $f : Y \rightarrow \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.

$C_{(Y,f)} =$

(locally) Matrix factorizations (Kontsevich):

$(E = E^0 \oplus E^1, d_E \in \text{End}(E)^{\text{odd}}), d_E^2 = f \cdot \text{id}$.

Landau-Ginzburg model
Any holomorphic Landau-Ginzburg model $X := (Y, f)$ is also a nc space.

Here

- Y/\mathbb{C} is a quasi-projective manifold;
- $f : Y \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.

$C_{(Y,f)} =$

(locally) Matrix factorizations (Kontsevich):

- $(E = E^0 \oplus E^1, d_E \in \text{End}(E)^{\text{odd}}), d_E^2 = f \cdot \text{id}$.
- $\text{Hom}((E, d_E), (F, d_F)) := (\text{Hom}(E, F), d)$,
 $d\varphi = \varphi \circ d_E - d_F \circ \varphi$ (Note: $d^2 = 0$).
Any holomorphic Landau-Ginzburg model $X := (Y, f)$ is also a nc space.

Here

- Y/\mathbb{C} is a quasi-projective manifold;
- $f : Y \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.

$C(Y, f) = \text{(locally) Matrix factorizations (Kontsevich)}$:

- $(E = E^0 \oplus E^1, d_E \in \text{End}(E)^{\text{odd}}), d_E^2 = f \cdot \text{id}$.
- $\text{Hom}((E, d_E), (F, d_F)) := (\text{Hom}(E, F), d), d\varphi = \varphi \circ d_E - d_F \circ \varphi$ (Note: $d^2 = 0$).

$\text{(globally) Categories of singularities (Orlov)}$: $D^b(Y_0)/\text{Perf}(Y_0)$.
Landau-Ginzburg model

- Any holomorphic Landau-Ginzburg model $X := (Y, f)$ is also a nc space. **Note:** $\mathbb{Z}/2$ graded nc space: $[0] \cong [2]$.

- Here
 - Y/\mathbb{C} is a quasi-projective manifold;
 - $f : Y \to \mathbb{C}$ is a holomorphic map with a single critical value at $0 \in \mathbb{C}$.

- $C(Y, f) =$

 (locally) Matrix factorizations (**Kontsevich**):
 - $(E = E^0 \oplus E^1, d_E \in \text{End}(E)^{\text{odd}}), \ d_E^2 = f \cdot \text{id}$.
 - $\text{Hom}((E, d_E), (F, d_F)) := (\text{Hom}(E, F), d), \ d\varphi = \varphi \circ d_E - d_F \circ \varphi$ (**Note:** $d^2 = 0$).

 (globally) Categories of singularities (**Orlov**):
 - $D^b(Y_0)/\text{Perf}(Y_0)$.
Definition: If X/\mathbb{C} is a nc space, then:

- X is **algebraic** if \exists a dg algebra A/\mathbb{C}, so that $C_X \cong \text{Perf}(A - \text{mod})$.
Definition: If X/\mathbb{C} is a nc space, then:

- X is **algebraic** if \exists a dg algebra A/\mathbb{C}, so that $C_X \cong \text{Perf}(A - \text{mod})$.
- X is **proper** if $\sum_{i \in \mathbb{Z}} \dim H^i(A, d) < \infty$.

Definition: If X/\mathbb{C} is a nc space, then:

- X is **algebraic** if \exists a dg algebra A/\mathbb{C}, so that $C_X \cong \text{Perf}(A - \text{mod})$.

- X is **proper** if $\sum_{i \in \mathbb{Z}} \dim H^i(A, d) < \infty$.

- X is **smooth** if $A \in \text{Perf}(A \otimes A^{\text{op}} - \text{mod})$.
Algebraic, proper, smooth (I)

Definition: If X/\mathbb{C} is a nc space, then:

- X is **algebraic** if \exists a dg algebra A/\mathbb{C}, so that $C_X \cong \text{Perf}(A - \text{mod})$.
- X is **proper** if $\sum_{i \in \mathbb{Z}} \dim H^i(A, d) < \infty$.
- X is **smooth** if $A \in \text{Perf}(A \otimes A^{\text{op}} - \text{mod})$.

Any scheme X/\mathbb{C} is algebraic when viewed as a nc space:
Algebraic, proper, smooth (I)

Definition: If X/\mathbb{C} is a nc space, then:

- X is **algebraic** if \exists a dg algebra A/\mathbb{C}, so that $C_X \cong \text{Perf}(A - \text{mod})$.
- X is **proper** if $\sum_{i \in \mathbb{Z}} \dim H^i(A, d) < \infty$.
- X is **smooth** if $A \in \text{Perf}(A \otimes A^{\text{op}} - \text{mod})$.

Any scheme X/\mathbb{C} is algebraic when viewed as a nc space:

Theorem [Bondal-Van den Bergh’02] $C_X = \text{Perf}(X)$ has a strong split generator: $E \in C_X$, with $\text{Perf}(X) \cong \text{Perf}(\text{RHom}(E, E)^{\text{op}} - \text{mod})$.

[Generalized Hodge structures and Mirror Symmetry] – p.7/24
Algebraic, proper, smooth (I)

Definition: If X/\mathbb{C} is a nc space, then:

- X is **algebraic** if \exists a dg algebra A/\mathbb{C}, so that $C_X \cong \text{Perf}(A - \text{mod})$.
- X is **proper** if $\sum_{i \in \mathbb{Z}} \dim H^i(A, d) < \infty$.
- X is **smooth** if $A \in \text{Perf}(A \otimes A^{\text{op}} - \text{mod})$.

Theorem [Bondal-Van den Bergh’02] $C_X = \text{Perf}(X)$ has a strong split generator: $E \in C_X$, with $\text{Perf}(X) \cong \text{Perf}(\text{RHom}(E, E)^{\text{op}} - \text{mod})$.

Example: [Beilinson’78] $X = \mathbb{P}^n$, $A = \text{End}(\mathcal{O} \oplus \ldots \oplus \mathcal{O}(n))^{\text{op}}$.
If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.
If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.

For X/\mathbb{C} a scheme of finite type, proper/smooth in the nc sense coincide with the usual notions of proper/smooth.
If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.

For X/\mathbb{C} a scheme of finite type, proper/smooth in the nc sense coincide with the usual notions of proper/smooth.

If X/\mathbb{C} is a proper/smooth nc space, then (Bondal-Kapranov): \exists ! Serre functor
If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.

For X/\mathbb{C} a scheme of finite type, proper/smooth in the nc sense coincide with the usual notions of proper/smooth.

If X/\mathbb{C} is a proper/smooth nc space, then (Bondal-Kapranov): $\exists !$ Serre functor $S_X : C_X \rightarrow C_X$;
If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.

For X/\mathbb{C} a scheme of finite type, proper/smooth in the nc sense coincide with the usual notions of proper/smooth.

If X/\mathbb{C} is a proper/smooth nc space, then (Bondal-Kapranov): $\exists !$ Serre functor

$S_X : \mathcal{C}_X \to \mathcal{C}_X$;

$\text{Hom}(E, F)^\vee \cong \text{Hom}(F, S_X E)$
If X is an algebraic nc space, then proper/smooth do not depend on the choice of A.

For X/\mathbb{C} a scheme of finite type, proper/smooth in the nc sense coincide with the usual notions of proper/smooth.

If X/\mathbb{C} is a proper/smooth nc space, then (Bondal-Kapranov): $\exists !$ Serre functor

- $S_X : C_X \to C_X$;
- $\text{Hom}(E, F)^\vee \cong \text{Hom}(F, S_X E)$

If X - scheme, then $S_X(\bullet) = (\bullet) \otimes K_X[\text{dim } X]$.

Any proper and smooth:
proper/smooth nc spaces (I)

Any proper and smooth:
- scheme, algebraic space, Deligne-Mumford stack;
Any proper and smooth:
- scheme, algebraic space, Deligne-Mumford stack;
- \(X = (Y, \alpha)\), where \(Y/\mathbb{C}\) - scheme, \(\alpha \in \text{Br}(Y)\),
- \(C_X = D^b(Y, \alpha)\).
Any proper and smooth:

- scheme, algebraic space, Deligne-Mumford stack;
- $X = (Y, \alpha)$, where Y/\mathbb{C} - scheme, $\alpha \in \text{Br}(Y)$,

 $C_X = D^b(Y, \alpha)$.

A deformation quantization X_γ of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$).
proper/smooth nc spaces (I)

Any proper and smooth:
- scheme, algebraic space, Deligne-Mumford stack;
- $X = (Y, \alpha)$, where Y/\mathbb{C} - scheme, $\alpha \in \text{Br}(Y)$, $C_X = D^b(Y, \alpha)$.

A deformation quantization X_γ of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$).

[Kontsevich’01]: Fix $L \in \text{Pic}(X)$ - ample, and $\gamma \in \Gamma(\text{tot}(L^\times), \wedge^2 T)^{\mathbb{C}^\times}$ - Poisson structure. Get quantized space $X_\gamma/\mathbb{C}((\hbar))$ with a new homogeneous coordinate ring: $f \star g = fg + \hbar \langle \gamma, df \wedge dg \rangle + \ldots$.

- Generalized Hodge structures and Mirror Symmetry – p.9/24
Any proper and smooth:
- scheme, algebraic space, Deligne-Mumford stack;
- \(X = (Y, \alpha) \), where \(Y/\mathbb{C} \)-scheme, \(\alpha \in \text{Br}(Y) \),
 \(C_X = D^b(Y, \alpha) \).

A deformation quantization \(X_\gamma \) of a smooth projective \(X/\mathbb{C} \) (assuming \(H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0 \)). e.g.
Any proper and smooth:
- scheme, algebraic space, Deligne-Mumford stack;
- \(X = (Y, \alpha) \), where \(Y/\mathbb{C} \) - scheme, \(\alpha \in \text{Br}(Y) \),
 \(C_X = D^b(Y, \alpha) \).

A deformation quantization \(X_\gamma \) of a smooth projective \(X/\mathbb{C} \) (assuming \(H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0 \)). e.g.
- the non-commutative \(\mathbb{P}^2 \)'s of
 [Artin-Tate-Van den Bergh’90];
proper/smooth nc spaces (I)

Any proper and smooth:
- scheme, algebraic space, Deligne-Mumford stack;
- $X = (Y, \alpha)$, where Y/\mathbb{C} - scheme, $\alpha \in \text{Br}(Y)$,
 $C_X = D^b(Y, \alpha)$.

A deformation quantization X_γ of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$). e.g.
- the non-commutative \mathbb{P}^2's of [Artin-Tate-Van den Bergh’90];
- the non-commutative projective schemes of [Artin-Zhang’94];
Any proper and smooth:
- scheme, algebraic space, Deligne-Mumford stack;
- $X = (Y, \alpha)$, where Y/\mathbb{C} - scheme, $\alpha \in \text{Br}(Y)$, $C_X = D^b(Y, \alpha)$.

A deformation quantization X_γ of a smooth projective X/\mathbb{C} (assuming $H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0$). e.g.
- the non-commutative \mathbb{P}^2’s of [Artin-Tate-Van den Bergh’90];
- the non-commutative projective schemes of [Artin-Zhang’94];
- the elliptic projective spaces of [Odesskij-Feigin’98];
proper/smooth nc spaces (I)

Any proper and smooth:
- scheme, algebraic space, Deligne-Mumford stack;
- \(X = (Y, \alpha) \), where \(Y/\mathbb{C} \) - scheme, \(\alpha \in \text{Br}(Y) \),
 \(C_X = D^b(Y, \alpha) \).

A deformation quantization \(X_\gamma \) of a smooth projective \(X/\mathbb{C} \) (assuming \(H^1(\mathcal{O}_X) = H^2(\mathcal{O}_X) = 0 \)). e.g.
- the non-commutative \(\mathbb{P}^2 \)'s of [Artin-Tate-Van den Bergh’90];
- the non-commutative projective schemes of [Artin-Zhang’94];
- the elliptic projective spaces of [Odesskij-Feigin’98];
- the quantized del Pezzo surfaces of [Artin’96]
proper/smooth nc spaces (II)

Expect: If X/\mathbb{C} is a topological twist of a $(2, 2)$ sigma model, corresponding to a compact gc manifold (M, \mathcal{J}), then X is a proper and smooth nc space.
proper/smooth nc spaces (II)

- **Expect:** If X/\mathbb{C} is a topological twist of a $(2, 2)$ sigma model, corresponding to a compact gc manifold (M, \mathcal{J}), then X is a proper and smooth nc space.

- The notions of **algebraic/proper/smooth** extend to $\mathbb{Z}/2$-graded nc spaces
proper/smooth nc spaces (II)

- **Expect:** If X/\mathbb{C} is a topological twist of a $(2,2)$ sigma model, corresponding to a compact gc manifold (M, \mathcal{J}), then X is a proper and smooth nc space.

- The notions of **algebraic/proper/smooth** extend to $\mathbb{Z}/2$-graded nc spaces.

Conjecture [Kontsevich’04] Suppose $X = (Y, f)$ is a Landau-Ginzburg model with a proper critical locus. Then (Y, f) is a proper and smooth nc space.
proper/smooth nc spaces (II)

Expect: If X/\mathbb{C} is a topological twist of a $(2, 2)$ sigma model, corresponding to a compact gc manifold (M, \mathscr{J}), then X is a proper and smooth nc space.

Conjecture [Kontsevich’04] Suppose $X = (Y, f)$ is a Landau-Ginzburg model with a proper critical locus. Then (Y, f) is a proper and smooth nc space.

Known when
Proper/smooth nc spaces (II)

Expect: If X/\mathbb{C} is a topological twist of a $(2, 2)$ sigma model, corresponding to a compact gc manifold (M, \mathcal{J}), then X is a proper and smooth nc space.

Conjecture [Kontsevich’04] Suppose $X = (Y, f)$ is a Landau-Ginzburg model with a proper critical locus. Then (Y, f) is a proper and smooth nc space.

Known when

- (Y, f) is the germ of an isolated quasi-homogeneous hypersurface singularity [K.Saito’98].
Expect: If X/\mathbb{C} is a topological twist of a $(2, 2)$ sigma model, corresponding to a compact gc manifold (M, \mathcal{J}), then X is a proper and smooth nc space.

Conjecture [Kontsevich’04] Suppose $X = (Y, f)$ is a Landau-Ginzburg model with a proper critical locus. Then (Y, f) is a proper and smooth nc space.

Known when
- (Y, f) is the germ of an isolated quasi-homogeneous hypersurface singularity [K.Saito’98].
- Y_0 has at most rational singularities [Orlov’04].
proper/smooth nc spaces (II)

Expect: If X/\mathbb{C} is a topological twist of a $(2, 2)$ sigma model, corresponding to a compact gc manifold (M, \mathcal{J}), then X is a proper and smooth nc space.

Conjecture [Kontsevich’04] Suppose $X = (Y, f)$ is a Landau-Ginzburg model with a proper critical locus. Then (Y, f) is a proper and smooth nc space.

Known when

- (Y, f) is the germ of an isolated quasi-homogeneous hypersurface singularity [K.Saito’98].
- Y_0 has at most rational singularities [Orlov’04].
- (Y, f) is the Hori-Vafa mirror of a (quantized) del Pezzo surface or a weighted projective space [Auroux-Katzarkov-Orlov’04].
Cohomology (I)

Consider

- An algebraic nc space X/\mathbb{C};
Consider

- An algebraic nc space X/\mathbb{C};
- A - a unital dg algebra computing X;
Consider

- An algebraic nc space X/\mathbb{C};
- A - a unital dg algebra computing X;
- $(C_\bullet(A, A), \partial)$ - the reduced homological Hochschild complex of A;
Consider

- An algebraic nc space X/\mathbb{C};
- A - a unital dg algebra computing X;
- $(C_\bullet(A, A), \partial)$ - the reduced homological Hochschild complex of A;
- $B : C_\bullet(A, A) \to C_\bullet(A, A)[-1]$ - the Connes differential.
Consider

- An algebraic nc space X/\mathbb{C};
- A - a unital dg algebra computing X;
- $\left(C_\bullet(A, A), \partial\right)$ - the reduced homological Hochschild complex of A;
- $B : C_\bullet(A, A) \to C_\bullet(A, A)[-1]$ - the Connes differential.
- $HH_k(A) = H^k((C_\bullet(A, A), \partial))$
 the Hochschild homology of A.
Consider

- An algebraic nc space X/\mathbb{C};
- A - a unital dg algebra computing X;
- $(C_\bullet(A, A), \partial)$ - the reduced homological Hochschild complex of A;
- $B : C_\bullet(A, A) \to C_\bullet(A, A)[-1]$ - the Connes differential.

$HH_k(A) = H^k((C_\bullet(A, A), \partial))$
the Hochschild homology of A.

$HP_k(A) = H^k((C_\bullet(A, A)((u)), \partial + u \cdot B))$
the periodic cyclic homology of A.
Cohomology (I)

Consider

- An algebraic nc space X/\mathbb{C};
- A - a unital dg algebra computing X;
- $\{(C_\bullet(A, A), \partial)\}$ - the reduced homological Hochschild complex of A;
- $B : C_\bullet(A, A) \to C_\bullet(A, A)[-1]$ - the Connes differential.

$HH_k(A) = H^k((C_\bullet(A, A), \partial))$
the Hochschild homology of A.

$HP_k(A) = H^k((C_\bullet(A, A)((u)), \partial + u \cdot B))$
the periodic cyclic homology of A.

$\deg u = +2$
Consider

- An algebraic *nc* space X/\mathbb{C};
- A - a unital dg algebra computing X;
- $\left(C_\bullet(A, A), \partial \right)$ - the reduced homological Hochschild complex of A;
- $B : C_\bullet(A, A) \rightarrow C_\bullet(A, A)[-1]$ - the Connes differential.

$HH_k(A) = H^k\left(\left(C_\bullet(A, A), \partial \right) \right)$
the Hochschild homology of A.

$HP_k(A) = H^k\left(\left(C_\bullet(A, A)((u)), \partial + u \cdot B \right) \right)$
the periodic cyclic homology of A.

$\mathbb{C}(\langle u \rangle)$-module

Cohomology (I)
Consider

- An algebraic nc space X/\mathbb{C};
- A - a unital dg algebra computing X;
- $(C_\bullet(A, A), \partial)$ - the reduced homological Hochschild complex of A;
- $B : C_\bullet(A, A) \to C_\bullet(A, A)[-1]$ - the Connes differential.
- $\text{HH}_k(A) = H_k((C_\bullet(A, A), \partial))$
 - the Hochschild homology of A.
- $\text{HP}_k(A) = H^k((C_\bullet(A, A)((u)), \partial + u \cdot B))$
 - the periodic cyclic homology of A.
Cohomology (II)

Facts:

- X/\mathbb{C} - smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential B is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg’62].
Cohomology (II)

Facts:

- X/\mathbb{C} - smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then
 $\text{HH}_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential B is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg’62].

- X/\mathbb{C} - smooth scheme, then
 $\text{HH}_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel’96].
Cohomology (II)

Facts:

- X/\mathbb{C} - smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential B is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg’62].

- X/\mathbb{C} - smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel’96].

- $HP_{k+2}(A) = HP_k(A)$ for all A. Get a super vector space $HP_{even}(A) \oplus HP_{odd}(A)$. [Weibel’96]:
Cohomology (II)

Facts:

- X/\mathbb{C} - smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega_X^k)$. The differential B is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg’62].

- X/\mathbb{C} - smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega_X^q)$ [Weibel’96].

- $HP_{k+2}(A) = HP_k(A)$ for all A. Get a super vector space $HP_{even}(A) \oplus HP_{odd}(A)$. [Weibel’96]:

 $HP_{even}(A) = \bigoplus H^{2i}_{dR}(X, \mathbb{C})$;
Cohomology (II)

Facts:

- X/\mathbb{C} - smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega^k_X)$. The differential B is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg’62].

- X/\mathbb{C} - smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega^q_X)$ [Weibel’96].

- $HP_{k+2}(A) = HP_k(A)$ for all A. Get a super vector space $HP_{\text{even}}(A) \oplus HP_{\text{odd}}(A)$. [Weibel’96]:
 - $HP_{\text{even}}(A) = \bigoplus H^{2i}_{dR}(X, \mathbb{C})$;
 - $HP_{\text{odd}}(A) = \bigoplus H^{2i+1}_{dR}(X, \mathbb{C})$
Cohomology (II)

Facts:

-\(X/\mathbb{C} \) - smooth affine variety, \(A = \Gamma(X, \mathcal{O}) \), then
 \(HH_{-k}(A) = \Gamma(X, \Omega^k_X) \). The differential \(B \) is the algebraic
de Rham differential
 [Hochschild-Kostant-Rosenberg’62].

-\(X/\mathbb{C} \) - smooth scheme, then
 \(HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega^q_X) \) [Weibel’96].

- \(HP_{k+2}(A) = HP_k(A) \) for all \(A \). Get a super vector space
 \(HP_{\text{even}}(A) \oplus HP_{\text{odd}}(A) \). [Weibel’96]:
 - \(HP_{\text{even}}(A) = \bigoplus H^{2i}_{dR}(X, \mathbb{C}) \);
 - \(HP_{\text{odd}}(A) = \bigoplus H^{2i+1}_{dR}(X, \mathbb{C}) \)

for a smooth scheme \(X/\mathbb{C} \)
Cohomology (II)

Facts:

- X/\mathbb{C} - smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega^k_X)$. The differential B is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg’62].

- X/\mathbb{C} - smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega^q_X)$ [Weibel’96].

- $HP_{k+2}(A) = HP_k(A)$ for all A. Get a super vector space $HP_{\text{even}}(A) \oplus HP_{\text{odd}}(A)$. [Weibel’96]:
 - $HP_{\text{even}}(A) = \bigoplus H^{2i}_{dR}(X, \mathbb{C})$;
 - $HP_{\text{odd}}(A) = \bigoplus H^{2i+1}_{dR}(X, \mathbb{C})$

for a smooth scheme X/\mathbb{C}.
Cohomology (II)

Facts:

1. X/\mathbb{C} - smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega^n_X)$. The differential B is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg’62].

2. X/\mathbb{C} - smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega^q_X)$ [Weibel’96].

3. $HP_{k+2}(A) = HP_k(A)$ for all A. Get a super vector space $HP_{even}(A) \oplus HP_{odd}(A)$. [Weibel’96]:
 - $HP_{even}(A) = \bigoplus H^{2i}_{dR}(X, \mathbb{C})$;
 - $HP_{odd}(A) = \bigoplus H^{2i+1}_{dR}(X, \mathbb{C})$

for a smooth scheme X/\mathbb{C}.
Cohomology (II)

Facts:

- X/\mathbb{C} - smooth affine variety, $A = \Gamma(X, \mathcal{O})$, then $HH_{-k}(A) = \Gamma(X, \Omega^k_X)$. The differential B is the algebraic de Rham differential [Hochschild-Kostant-Rosenberg’62].

- X/\mathbb{C} - smooth scheme, then $HH_k(A) = \bigoplus_{p-q=k} H^p(X, \Omega^q_X)$ [Weibel’96].

- $HP_{k+2}(A) = HP_k(A)$ for all A. Get a super vector space $HP_{\text{even}}(A) \oplus HP_{\text{odd}}(A)$. [Weibel’96]:
 - $HP_{\text{even}}(A) = \bigoplus H^{2i}_{dR}(X, \mathbb{C})$;
 - $HP_{\text{odd}}(A) = \bigoplus H^{2i+1}_{dR}(X, \mathbb{C})$

for a smooth scheme X/\mathbb{C}.
For an algebraic nc space X/\mathbb{C}:

- $H_{Dol}^\bullet(X) := HH^\bullet(A)$ is a nc analogue of Dolbeault cohomology;

\[H_{Dol}^\bullet(X) := HH^\bullet(A) \]
Cohomology (III)

For an algebraic nc space X/\mathbb{C}:

- $H^\bullet_{Dol}(X) := HH^\bullet(A)$ is a nc analogue of Dolbeault cohomology;

- $H^\bullet_{dR}(X) := HP^\bullet(A)$ is a nc analogue of de Rham cohomology.
Cohomology (III)

For an algebraic nc space X/\mathbb{C}:

- $H_{Dol}^\bullet(X) := HH_\bullet(A)$ is a nc analogue of Dolbeault cohomology;
- $H_{dR}^\bullet(X) := HP_\bullet(A)$ is a nc analogue of de Rham cohomology.

Properties:

- $H_{Dol}^\bullet(X)$ and $H_{dR}^\bullet(X)$ are well defined [Keller’99].
Cohomology (III)

For an algebraic nc space X/\mathbb{C}:

- $H^\bullet_{Dol}(X) := HH^\bullet(A)$ is a nc analogue of Dolbeault cohomology;
- $H^\bullet_{dR}(X) := HP^\bullet(A)$ is a nc analogue of de Rham cohomology.

Properties:

- $H^\bullet_{Dol}(X)$ and $H^\bullet_{dR}(X)$ are well defined [Keller’99].
- For X/\mathbb{C} proper and smooth nc space
Cohomology (III)

For an algebraic nc space X/\mathbb{C}:

- $H_{Dol}^\bullet(X) := HH_\bullet(A)$ is a nc analogue of Dolbeault cohomology;
- $H_{dR}^\bullet(X) := HP_\bullet(A)$ is a nc analogue of de Rham cohomology.

Properties:

- $H_{Dol}^\bullet(X)$ and $H_{dR}^\bullet(X)$ are well defined [Keller’99].
- For X/\mathbb{C} proper and smooth nc space
 - $H_{Dol}^\bullet(X) = R^\bullet \text{Hom}_{\text{End}(\mathcal{O}_X)}(I_X, S_X)$.

Generalized Hodge structures and Mirror Symmetry -- p.13/24
Cohomology (III)

For an algebraic nc space X/\mathbb{C}:

- $H_{Dol}^\bullet(X) := HH^\bullet(A)$ is a nc analogue of Dolbeault cohomology;
- $H_{dR}^\bullet(X) := HP^\bullet(A)$ is a nc analogue of de Rham cohomology.

Properties:

- $H_{Dol}^\bullet(X)$ and $H_{dR}^\bullet(X)$ are well defined [Keller’99].
- For X/\mathbb{C} proper and smooth nc space
 - $H_{Dol}^\bullet(X) = R^\bullet \text{Hom}_{\text{End}(C_X)}(I_X, S_X)$.
 - $\dim_{\mathbb{C}}((u)) H_{dR}^\bullet(X) \leq \dim_{\mathbb{C}} H_{Dol}^\bullet(X) < +\infty$.

Cohomology (III)

For an algebraic \(\text{nc} \) space \(X/\mathbb{C} \):

- \(H^\bullet_{Dol}(X) := HH^\bullet(A) \) is a \(\text{nc} \) analogue of Dolbeault cohomology;
- \(H^\bullet_{dR}(X) := HP^\bullet(A) \) is a \(\text{nc} \) analogue of de Rham cohomology.

Properties:

- \(H^\bullet_{Dol}(X) \) and \(H^\bullet_{dR}(X) \) are well defined [Keller’99].
- For \(X/\mathbb{C} \) proper and smooth \(\text{nc} \) space
 - \(H^\bullet_{Dol}(X) = R^\bullet \text{Hom}_{\text{End}(C_X)}(I_X, S_X) \).
 - \(\dim_{\mathbb{C}}((u)) H^\bullet_{dR}(X) \leq \dim_{\mathbb{C}} H^\bullet_{Dol}(X) < +\infty \).
Cohomology (III)

For an algebraic nc space X/\mathbb{C}:

- $H^\bullet_{Dol}(X) := HH^\bullet(A)$ is a nc analogue of Dolbeault cohomology;
- $H^\bullet_{dR}(X) := HP^\bullet(A)$ is a nc analogue of de Rham cohomology.

Properties:

- $H^\bullet_{Dol}(X)$ and $H^\bullet_{dR}(X)$ are well defined [Keller’99].
- For X/\mathbb{C} proper and smooth nc space
 - $H^\bullet_{Dol}(X) = R^\bullet \text{Hom}_{\text{End}(C_X)}(I_X, S_X)$.
 - $\dim_{\mathbb{C}}(u) H^\bullet_{dR}(X) \leq \dim_{\mathbb{C}} H^\bullet_{Dol}(X) < +\infty$.
nc Kähler spaces

Definition: For a proper and smooth nc space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if

$$\dim_{\mathbb{C}}((u)) \left(H_{dR}^{\text{even}}(X) \oplus H_{dR}^{\text{odd}}(X) \right) = \dim_{\mathbb{C}} \left(\oplus_k H_{Dol}^k(X) \right).$$
Definition: For a proper and smooth nc space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if
\[
\dim\mathbb{C}((u)) \left(H_{dR}^{\text{even}}(X) \oplus H_{dR}^{\text{odd}}(X) \right) = \dim\mathbb{C} \left(\bigoplus_k H_{Dol}^k(X) \right).
\]

A proper and smooth nc space X/\mathbb{C} with a collapsing Hodge-to-de Rham spectral sequence \leftrightarrow substitute for nc Kähler space.
nc Kähler spaces

Definition: For a proper and smooth nc space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if
\[
\dim_{\mathbb{C}}((u)) \left(H^\text{even}_{dR}(X) \oplus H^\text{odd}_{dR}(X) \right) = \dim_{\mathbb{C}} \left(\bigoplus_k H^k_{Dol}(X) \right).
\]

Conjecture [Kontsevich’04]: Every proper and smooth nc space X/\mathbb{C} has a collapsing Hodge-to-de Rham spectral sequence.
nc Kähler spaces

Definition: For a proper and smooth nc space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if
\[
\dim_{\mathbb{C}}((u)) \left(H_{dR}^{\text{even}}(X) \oplus H_{dR}^{\text{odd}}(X) \right) = \dim_{\mathbb{C}} \left(\oplus_k H^k_{Dol}(X) \right).
\]

Conjecture [Kontsevich’04]: Every proper and smooth nc space X/\mathbb{C} has a collapsing Hodge-to-de Rham spectral sequence.

True for:
nc Kähler spaces

Definition: For a proper and smooth nc space \(X/\mathbb{C} \) the Hodge-to-de Rham spectral sequence collapses at \(E_1 \) if
\[
\dim_{\mathbb{C}}((u)) \left(H^\text{even}_{dR}(X) \oplus H^\text{odd}_{dR}(X) \right) = \dim_{\mathbb{C}} \left(\oplus_k H^k_{Dol}(X) \right).
\]

Conjecture [Kontsevich’04]: Every proper and smooth nc space \(X/\mathbb{C} \) has a collapsing Hodge-to-de Rham spectral sequence.
True for:
- schemes, DM stacks, \(\mathcal{O}^\times \)-gerbes, quantum defos;
nc Kähler spaces

Definition: For a proper and smooth nc space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if
\[
\dim_{\mathbb{C}}\left(\left(\bigoplus_{k} H_k^{\text{Dol}}(X)\right) \oplus H_{dR}^{\text{odd}}(X)\right) = \dim_{\mathbb{C}}\left(\bigoplus_{k} H_k^{\text{Dol}}(X)\right).
\]

Conjecture [Kontsevich’04]: Every proper and smooth nc space X/\mathbb{C} has a collapsing Hodge-to-de Rham spectral sequence.
True for:
- schemes, DM stacks, \mathcal{O}^\times-gerbes, quantum defos;
- LG models (Y, f) with $\text{crit}(f)$ proper,
 [Barannikov-Kontsevich’97].
nc Kähler spaces

Definition: For a proper and smooth nc space X/\mathbb{C} the Hodge-to-de Rham spectral sequence collapses at E_1 if
\[
\dim_{\mathbb{C}}((u)) \left(H_{dR}^{even}(X) \oplus H_{dR}^{odd}(X) \right) = \dim_{\mathbb{C}} \left(\oplus_k H^k_{Dol}(X) \right).
\]

Conjecture [Kontsevich’04]: Every proper and smooth nc space X/\mathbb{C} has a collapsing Hodge-to-de Rham spectral sequence.
True for:

- schemes, DM stacks, \mathcal{O}^\times-gerbes, quantum defos;
- LG models (Y, f) with $\text{crit}(f)$ proper, [Barannikov-Kontsevich’97].
- X for which C_X is computed by an associative algebra A, [Kaledin’05].
Residual structures

Suppose X/\mathbb{C} is proper, smooth with degenerating Hodge-to-de Rham ss.
Residual structures

Suppose X/\mathbb{C} is proper, smooth with degenerating Hodge-to-de Rham ss. The cohomology of X inherits extra structures which combine into:

[Barannikov-Kontsevich'00]
Suppose X/\mathbb{C} is proper, smooth with degenerating Hodge-to-de Rham ss. The cohomology of X inherits extra structures which combine into:

- a vector bundle H on the formal disc: sections $= H^\bullet((C \cdot (A, A)[[u]], +u \cdot B))$.
Residual structures

Suppose X/\mathbb{C} is proper, smooth with degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich’00] extra structures which combine into:

- a vector bundle H on the formal disc: sections $= H^\bullet((C, (A, A)[[u]], +u \cdot B))$.
- a canonical connection ∇ on H for $u \neq 0$.
Residual structures

Suppose X/\mathbb{C} is proper, smooth with degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich’00] extra structures which combine into:

- a vector bundle H on the formal disc: sections $= H^\bullet((C \cdot (A, A)[[u]], + u \cdot B))$.
- a canonical connection ∇ on H for $u \neq 0$.
- a ∇-horizontal pairing $\langle \ , \ \rangle : H_u \otimes H_{-u} \times \mathbb{C}$
Residual structures

Suppose X/\mathbb{C} is proper, smooth with degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich’00] extra structures which combine into:

- a vector bundle H on the formal disc: sections $= H^\bullet((C\bullet(A,A)[[u]], +u \cdot B))$.
- a canonical connection ∇ on H for $u \neq 0$.
- a ∇-horizontal pairing $\langle , \rangle : H_u \otimes H_{-u} \times \mathbb{C}$

Note: The connection ∇ has a quasi-unipotent monodromy and a regular singularity at 0, and
Suppose X/\mathbb{C} is proper, smooth with degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich'00] extra structures which combine into:

- a vector bundle H on the formal disc: sections $= H^\bullet((C \cdot (A, A)[[u]], +u \cdot B))$.
- a canonical connection ∇ on H for $u \neq 0$.
- a ∇-horizontal pairing $\langle \ , \ \rangle : H_u \otimes H_{-u} \times \mathbb{C}$

Note: The connection ∇ has a quasi-unipotent monodromy and a regular singularity at 0, and

- a pole of order ≤ 1 at zero in the \mathbb{Z}-graded case;
Residual structures

Suppose X/\mathbb{C} is proper, smooth with degenerating Hodge-to-de Rham ss. The cohomology of X inherits [Barannikov-Kontsevich’00] extra structures which combine into:

- A vector bundle H on the formal disc:
 sections $= H^\bullet((\mathcal{C} \cdot (A, A)[[u]], +u \cdot B))$.

- A canonical connection ∇ on H for $u \neq 0$.

- A ∇-horizontal pairing $\langle , \rangle : H_u \otimes H_{-u} \times \mathbb{C}$

Note: The connection ∇ has a quasi-unipotent monodromy and a regular singularity at 0, and

- A pole of order ≤ 1 at zero in the \mathbb{Z}-graded case;

- A pole of order ≤ 2 at zero in the $\mathbb{Z}/2$-graded case;
Definition: A pure generalized (nc) Hodge structure is a triple $(H, \nabla, K^{\text{top}})$, where:
Definition: A pure generalized (nc) Hodge structure is a triple \((H, \nabla, K^{\text{top}})\), where:

- \(H\) is a holomorphic super vector bundle over \(\{u \in \mathbb{C} | |u| \ll 1\}\).
Definition: A pure generalized (nc) Hodge structure is a triple $(H, \nabla, K^{\text{top}})$, where:

- H is a holomorphic super vector bundle over $\{u \in \mathbb{C} | |u| \ll 1\}$.

- ∇ is a flat connection on H, defined for $u \neq 0$, with a regular singularity, quasi-unipotent monodromy and a 2nd order pole at 0.
Generalized Hodge structures

Definition: A pure generalized (nc) Hodge structure is a triple \((H, \nabla, K^{\text{top}})\), where:

- \(H\) is a holomorphic super vector bundle over
 \(\{u \in \mathbb{C} | |u| \ll 1\}\).
- \(\nabla\) is a flat connection on \(H\), defined for \(u \neq 0\), with a regular singularity, quasi-unipotent monodromy and a 2nd order pole at \(0\).
- \(K^{\text{top}} \subset H|_{\{u \neq 0\}}\) - local subsystem of \(\mathbb{Z}/2\)-graded abelian groups, with \(K^{\text{top}} \otimes \mathbb{C} = H|_{\{u \neq 0\}}\).
Definition: A pure generalized (nc) Hodge structure is a triple \((H, \nabla, K^{\text{top}})\), where:

- \(H\) is a holomorphic super vector bundle over \(\{u \in \mathbb{C} | |u| \ll 1\}\).
- \(\nabla\) is a flat connection on \(H\), defined for \(u \neq 0\), with a regular singularity, quasi-unipotent monodromy and a 2nd order pole at 0.
- \(K^{\text{top}} \subset H|\{u \neq 0\}\) - local subsystem of \(\mathbb{Z}/2\)-graded abelian groups, with \(K^{\text{top}} \otimes \mathbb{C} = H|\{u \neq 0\}\).

Problem: How can we define the lattice \(K^{\text{top}}\)?
Definition: A pure generalized (nc) Hodge structure is a triple $(H, \nabla, K^{\text{top}})$, where:

- H is a holomorphic super vector bundle over $\{u \in \mathbb{C} | |u| \ll 1\}$.
- ∇ is a flat connection on H, defined for $u \neq 0$, with a regular singularity, quasi-unipotent monodromy and a 2nd order pole at 0.
- $K^{\text{top}} \subset H_{\{u \neq 0\}}$ - local subsystem of $\mathbb{Z}/2$-graded abelian groups, with $K^{\text{top}} \otimes \mathbb{C} = H_{\{u \neq 0\}}$.

Problem: How can we define the lattice K^{top}? Answer is clear in the almost commutative examples, e.g. for schemes, stacks, gerbes, LG models.
Definition: A pure generalized (nc) Hodge structure is a triple \((H, \nabla, K^{\text{top}})\), where:

- \(H\) is a holomorphic super vector bundle over \(\{u \in \mathbb{C} | |u| \ll 1\}\).
- \(\nabla\) is a flat connection on \(H\), defined for \(u \neq 0\), with a regular singularity, quasi-unipotent monodromy and a 2nd order pole at 0.
- \(K^{\text{top}} \subset H_{\{u \neq 0\}}\) - local subsystem of \(\mathbb{Z}/2\)-graded abelian groups, with \(K^{\text{top}} \otimes \mathbb{C} = H_{\{u \neq 0\}}\).

Problem: How can we define the lattice \(K^{\text{top}}\)? Can \(K^{\text{top}}\) be defined entirely in terms of the nc data?
nc Hodge conjecture: If X/\mathbb{C} is a proper and smooth nc space, then

$$\text{im} \left[K_0(C_X) \xrightarrow{\text{ch}} \Gamma(K^\text{top}) \right] \otimes \mathbb{Q} = \text{Hom}_{\text{ncHS}}(1, H^\bullet_{dR}(X)) \otimes \mathbb{Q}.$$
Definition: A polarization on a nc Hodge structure $(H, \nabla, K^{\text{top}})$ at radius $r \in \mathbb{R}_{>0}$ is the data $(\mathcal{H}, \nabla, K, \psi)$, where:
Polarizations (I)

Definition: A polarization on a nc Hodge structure $(H, \nabla, K^{\text{top}})$ at radius $r \in \mathbb{R}_{>0}$ is the data $(\mathcal{H}, \nabla, K, \psi)$, where:

$$(\mathcal{H}, \nabla, K)_{\{|u|<r\}} = (H, \nabla, K^{\text{top}});$$
Polarizations (I)

Definition: A *polarization* on a nc Hodge structure $(H, \nabla, K^{\text{top}})$ at radius $r \in \mathbb{R}_{>0}$ is the data $(\mathcal{H}, \nabla, K, \psi)$, where:

- $(\mathcal{H}, \nabla, K)_{|\{u<r\}} = (H, \nabla, K^{\text{top}})$;
- \mathcal{H} is holomorphically trivial on \mathbb{P}^1;
Polarizations (I)

Definition: A **polarization** on a nc Hodge structure \((H, \nabla, K^{\text{top}})\) at radius \(r \in \mathbb{R}_{>0}\) is the data \((\mathcal{H}, \nabla, K, \psi)\), where:

- \((\mathcal{H}, \nabla, K)_{\{|u|<r\}} = (H, \nabla, K^{\text{top}})\);
- \(\mathcal{H}\) is holomorphically trivial on \(\mathbb{P}^1\);
- \(\psi\) is a collection of bilinear pairings
 \[\psi_u : \mathcal{H}_u \otimes \overline{\mathcal{H}}_{\sigma(u)} \to \mathbb{C}, \sigma(u) = -r^2/\bar{u},\]
satisfying:
Polarizations (I)

Definition: A *polarization* on a nc Hodge structure \((H, \nabla, K^{\text{top}})\) at radius \(r \in \mathbb{R}_{>0}\) is the data \((\mathcal{H}, \nabla, K, \psi)\), where:

- \((\mathcal{H}, \nabla, K)\)\(|\{\|u\|<r\}\) = \((H, \nabla, K^{\text{top}})\);
- \(\mathcal{H}\) is holomorphically trivial on \(\mathbb{P}^1\);
- \(\psi\) is a collection of bilinear pairings \(\psi_u : \mathcal{H}_u \otimes \overline{\mathcal{H}}_{\sigma(u)} \to \mathbb{C}, \sigma(u) = -r^2/\bar{u}\), satisfying:
 - \(\psi_u\) is non-degenerate and Hermitian symmetric;
Polarizations (I)

Definition: A **polarization** on a **nc** Hodge structure \((H, \nabla, K^{\text{top}})\) at radius \(r \in \mathbb{R}_{>0}\) is the data \((\mathcal{H}, \nabla, K, \psi)\), where:

- \((\mathcal{H}, \nabla, K)|_{\{|u|<r\}} = (H, \nabla, K^{\text{top}})\);
- \(\mathcal{H}\) is holomorphically trivial on \(\mathbb{P}^1\);
- \(\psi\) is a collection of bilinear pairings \(\psi_u : \mathcal{H}_u \otimes \overline{\mathcal{H}}_{\sigma(u)} \rightarrow \mathbb{C}, \ \sigma(u) = -r^2/\bar{u}\), satisfying:
 - \(\psi_u\) is non-degenerate and Hermitian symmetric;
 - \(\psi_u\) depends holomorphically on \(u\) and is \(\nabla\)-horizontal;
Polarizations (I)

Definition: A *polarization* on a nc Hodge structure
\((H, \nabla, K^{\text{top}})\) at radius \(r \in \mathbb{R}_{>0}\) is the data \((\mathcal{H}, \nabla, K, \psi)\), where:

- \((\mathcal{H}, \nabla, K)|_{\{|u|<r\}} = (H, \nabla, K^{\text{top}})\);
- \(\mathcal{H}\) is holomorphically trivial on \(\mathbb{P}^1\);
- \(\psi\) is a collection of bilinear pairings \(\psi_u : \mathcal{H}_u \otimes \overline{\mathcal{H}}_{\sigma(u)} \rightarrow \mathbb{C}, \ \sigma(u) = -r^2/\bar{u}\), satisfying:
 - \(\psi_u\) is non-degenerate and Hermitian symmetric;
 - \(\psi_u\) depends holomorphically on \(u\) and is \(\nabla\)-horizontal;
 - \(\psi\) induces a positive definite Hermitian pairing on \(\Gamma(\mathbb{P}^1, \mathcal{H})\).
Polarizations (I)

Definition: A *polarization* on a **nc** Hodge structure \((H, \nabla, K^{\text{top}})\) at radius \(r \in \mathbb{R}_{>0}\) is the data \((\mathcal{H}, \nabla, K, \psi)\), where:

- \((\mathcal{H}, \nabla, K)|_{\{|u|<r\}} = (H, \nabla, K^{\text{top}})\);
- \(\mathcal{H}\) is holomorphically trivial on \(\mathbb{P}^1\);
- \(\psi\) is a collection of bilinear pairings \(\psi_u : \mathcal{H}_u \otimes \overline{\mathcal{H}}_{\sigma(u)} \to \mathbb{C}, \sigma(u) = -r^2/\bar{u}\), satisfying:
 - \(\psi_u\) is non-degenerate and Hermitian symmetric;
 - \(\psi_u\) depends holomorphically on \(u\) and is \(\nabla\)-horizontal;
 - \(\psi\) induces a positive definite Hermitian pairing on \(\Gamma(\mathbb{P}^1, \mathcal{H})\).
Polarizations (I)

Definition: A polarization on a nc Hodge structure $(H, \nabla, K^{\text{top}})$ at radius $r \in \mathbb{R}_{>0}$ is the data $(\mathcal{H}, \nabla, K, \psi)$, where:

- $(\mathcal{H}, \nabla, K)|_{\{|u|<r\}} = (H, \nabla, K^{\text{top}})$;
- \mathcal{H} is holomorphically trivial on \mathbb{P}^1;
- ψ is a collection of bilinear pairings $\psi_u : \mathcal{H}_u \otimes \overline{\mathcal{H}}_{\sigma(u)} \rightarrow \mathbb{C}$, $\sigma(u) = -r^2/\bar{u}$, satisfying:
 - ψ_u is non-degenerate and Hermitian symmetric;
 - ψ_u depends holomorphically on u and is ∇-horizontal;
 - ψ induces a positive definite Hermitian pairing on $\Gamma(\mathbb{P}^1, \mathcal{H})$.
Polarizations (II)

Remark: If \((H, \nabla, K^{\text{top}})\) is a nc Hodge structure, then it suffices to specify \(\psi\) on \(H_{\{\mid u \mid <1\}}\).
Remark: If \((H, \nabla, K^{\text{top}})\) is a nc Hodge structure, then it suffices to specify \(\psi\) on \(H_{\{\|u\|<1\}}\). The extension \((\mathcal{H}, \nabla, K, \psi)\) is completely determined.
Remark: If \((H, \nabla, K^{\text{top}})\) is a nc Hodge structure, then it suffices to specify \(\psi\) on \(H_{\{|u|<1\}}\). The extension \((\mathcal{H}, \nabla, K, \psi)\) is completely determined.

Remark: Polarizations appear under different names in the works of Hertling and Sabbah: trTERP structure [Hertling], integrable polarized twistor structure [Sabbah].
Polarizations (II)

Remark: If \((H, \nabla, K^{\text{top}})\) is a nc Hodge structure, then it suffices to specify \(\psi\) on \(H_{\{|u|<1\}}\). The extension \((\mathcal{H}, \nabla, K, \psi)\) is completely determined.

Conjecture [Kontsevich’03] For any proper+smooth nc space \(X/\mathbb{C}\) the nc Hodge structure on \(H_{dR}^\bullet(X)\) is polarizable.
Remark: If $(H, \nabla, K^{\text{top}})$ is a nc Hodge structure, then it suffices to specify ψ on $H_{\{|u|<1\}}$. The extension $(\mathcal{H}, \nabla, K, \psi)$ is completely determined.

Conjecture [Kontsevich’03] For any proper+smooth nc space X/\mathbb{C} the nc Hodge structure on $H_{dR}^\bullet(X)$ is polarizable.

True for:
Polarizations (II)

Remark: If \((H, \nabla, K^{top})\) is a nc Hodge structure, then it suffices to specify \(\psi\) on \(H_{\{|u|<1\}}\). The extension \((\mathcal{H}, \nabla, K, \psi)\) is completely determined.

Conjecture [Kontsevich’03] For any proper+smooth nc space \(X/\mathbb{C}\) the nc Hodge structure on \(H_{dR}^\bullet(X)\) is polarizable.

True for:

- schemes, DM stacks, quantizations [Barannikov’01]
Remark: If \((H, \nabla, K^\text{top})\) is a \textbf{nc} Hodge structure, then it suffices to specify \(\psi\) on \(H_{\{|u|<1\}}\). The extension \((\mathcal{H}, \nabla, K, \psi)\) is completely determined.

Conjecture [Kontsevich'03] For any proper+smooth \textbf{nc} space \(X/\mathbb{C}\) the \textbf{nc} Hodge structure on \(H^\bullet_{dR}(X)\) is polarizable.

True for:

- schemes, DM stacks, quantizations [Barannikov'01];
- topological twists of \((2, 2)\) sigma models [Katzarkov-Kontsevich-P’05];
Remark: If \((H, \nabla, K^{\text{top}})\) is a nc Hodge structure, then it suffices to specify \(\psi\) on \(H_{\{|u|<1\}}\). The extension \((\mathcal{H}, \nabla, K, \psi)\) is completely determined.

Conjecture [Kontsevich’03] For any proper+smooth nc space \(X/\mathbb{C}\) the nc Hodge structure on \(H^{dR}_{\bullet}(X)\) is polarizable.

True for:

- schemes, DM stacks, quantizations [Barannikov’01];
- topological twists of (2, 2) sigma models [Katzarkov-Kontsevich-P’05];
- LG models [Sabbah’05].
Structure results

Theorem [Katzarkov-Kontsevich-P’05] The category of pure nc Hodge structures is semisimple (as a rigid category).
Theorem [Katzarkov-Kontsevich-P’05] The category of pure nc Hodge structures is semisimple (as a rigid category).

Corollary [Katzarkov-Kontsevich-P’05] For Landau-Ginzburg models $X = (Y, f)$ the topological lattice $K^\text{top} \subset H_{dR}^\bullet(X)$ is an invariant of the category C_X. In particular the nc Hodge structure on $H_{dR}^\bullet(X)$ depends only on X.
Structure results

Theorem [Katzarkov-Kontsevich-P’05] The category of pure nc Hodge structures is semisimple (as a rigid \(\otimes \) category).

Corollary [Katzarkov-Kontsevich-P’05] For Landau-Ginzburg models \(X = (Y, f) \) the topological lattice \(K^{\text{top}} \subset H^\bullet_{dR}(X) \) is an invariant of the category \(C_X \). In particular the nc Hodge structure on \(H^\bullet_{dR}(X) \) depends only on \(X \).

Theorem [Katzarkov-Kontsevich’05] For Landau-Ginzburg models \(X = (Y, f) \) the nc Hodge conjecture follows from the commutative Hodge conjecture.
Fix $X = (Y, f)$ - LG with a proper $\text{crit}(f)$,

$C_X = D^b(Y_0) / \text{Perf}(Y_0)$.
Hodge invariants of LG models

Fix $X = (Y, f)$ - LG with a proper $\text{crit}(f)$,

$C_X = D^b(Y_0)/\text{Perf}(Y_0)$. $X = (Y, f)$ has geometrically defined Betti, de Rham and Dolbeault cohomologies:
Hodge invariants of LG models

Fix $X = (Y, f)$ - LG with a proper $\text{crit}(f)$, $C_X = D^b(Y_0)/\text{Perf}(Y_0)$. $X = (Y, f)$ has geometrically defined Betti, de Rham and Dolbeault cohomologies:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Betti</td>
<td>$H^\bullet(Y, Y_t; \mathbb{C})$</td>
</tr>
<tr>
<td>de Rham</td>
<td>$H^\bullet((\Omega^\bullet_Y, u \cdot d + df \land \bullet))$</td>
</tr>
<tr>
<td>Dolbeault</td>
<td>$H^\bullet((\Omega^\bullet_Y, df \land \bullet))$</td>
</tr>
</tbody>
</table>
Hodge invariants of LG models

Fix $X = (Y, f)$ - LG with a proper $\text{crit}(f)$,

$C_X = D^b(Y_0) / \text{Perf}(Y_0)$. $X = (Y, f)$ has geometrically defined Betti, de Rham and Dolbeault cohomologies:

<table>
<thead>
<tr>
<th></th>
<th>(H^\bullet(Y, Y_t; \mathbb{C}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betti</td>
<td>(\mathbb{H}^\bullet((\Omega^\bullet_Y, u \cdot d + df \wedge \bullet)))</td>
</tr>
<tr>
<td>de Rham</td>
<td>(\mathbb{H}^\bullet((\Omega^\bullet_Y, df \wedge \bullet)))</td>
</tr>
<tr>
<td>Dolbeault</td>
<td>(\mathbb{H}^\bullet((\Omega^\bullet_Y, df \wedge \bullet)))</td>
</tr>
</tbody>
</table>

Note:
Hodge invariants of LG models

Fix $X = (Y, f) - \text{LG with a proper } \text{crit}(f)$, $C_X = D^b(Y_0)/\text{Perf}(Y_0)$. $X = (Y, f)$ has geometrically defined Betti, de Rham and Dolbeault cohomologies:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Betti</td>
<td>$H^\bullet(Y, Y_t; \mathbb{C})$</td>
</tr>
<tr>
<td>de Rham</td>
<td>$\mathbb{H}^\bullet((\Omega^\bullet_Y, u \cdot d + df \wedge \bullet))$</td>
</tr>
<tr>
<td>Dolbeault</td>
<td>$\mathbb{H}^\bullet((\Omega^\bullet_Y, df \wedge \bullet))$</td>
</tr>
</tbody>
</table>

Note:
The geometric de Rham and Dolbeault cohomology of (Y, f) coincide with the periodic cyclic and Hochschild homology of $C_{(Y,f)}$, [Katzarkov-Kontsevich-P’05].
Hodge invariants of LG models

Fix $X = (Y, f)$ - LG with a proper $\text{crit}(f)$, $C_X = D^b(Y_0)/\text{Perf}(Y_0)$. $X = (Y, f)$ has geometrically defined Betti, de Rham and Dolbeault cohomologies:

<table>
<thead>
<tr>
<th>Betti</th>
<th>$H^\bullet(Y, Y_t; \mathbb{C})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Rham</td>
<td>$\mathbb{H}^\bullet((\Omega^\bullet_Y, u \cdot d + df \wedge \bullet))$</td>
</tr>
<tr>
<td>Dolbeault</td>
<td>$\mathbb{H}^\bullet((\Omega^\bullet_Y, df \wedge \bullet))$</td>
</tr>
</tbody>
</table>

Note:
The geometric definition can be used to show that the Hodge-to-de Rham spectrals sequence degenerates, [Barannikov-Kontsevich’97].
Question: How can we compute the nc Hodge structure on $H^\bullet_{dR}(Y, f)$?
Vanishing cocycles

Question: How can we compute the nc Hodge structure on $H_{dR}^\bullet((Y, f))$?

Idea: Relate to commutative Hodge theory.
Vanishing cocycles

Question: How can we compute the nc Hodge structure on $H^\bullet_{dR}((Y,f))$?

Y has the homotopy type of Y_0:
Question: How can we compute the \textbf{nc} Hodge structure on $H^\bullet_{dR}(\mathcal{Y}, f)$?

\mathcal{Y} has the homotopy type of \mathcal{Y}_0: If $i_0 : \mathcal{Y}_0 \hookrightarrow \mathcal{Y}$, then there exists $r : \mathcal{Y} \to \mathcal{Y}_0$ - a strict deformation retraction ($r \circ i \simeq id_{\mathcal{Y}_0}$). Specialization to 0 map: $r_t := r|_{\mathcal{Y}_t} : \mathcal{Y}_t \to \mathcal{Y}_0$.
Question: How can we compute the nc Hodge structure on $H^{\bullet}_{dR}((Y, f))$?

Y has the homotopy type of Y_0: If $i_0: Y_0 \hookrightarrow Y$, then $\exists r: Y \rightarrow Y_0$ - a strict deformation retraction ($r \circ i \cong \text{id}_{Y_0}$).

Specialization to 0 map: $r_t := r|_{Y_t}: Y_t \rightarrow Y_0$.

[Deligne’73] Nearby and vanishing cocycles functors:

$$\psi_f, \phi_f: D^{-}(Y, \mathbb{Z}) \rightarrow D^{-}(Y_0, \mathbb{Z})$$
Vanishing cocycles

Question: How can we compute the nc Hodge structure on $H_{dR}^\bullet((Y, f))$?

Y has the homotopy type of Y_0: If $i_0: Y_0 \hookrightarrow Y$, then $\exists r: Y \to Y_0$ - a strict deformation retraction ($r \circ i \cong \text{id}_{Y_0}$). Specialization to 0 map: $r_t := r|_{Y_t}: Y_t \to Y_0$.

[Deligne’73] Nearby and vanishing cocycles functors:

$\psi_f, \phi_f: D^-(Y, \mathbb{Z}) \to D^-(Y_0, \mathbb{Z})$

$\psi_f K^\bullet = Rr_t^* i^*_t K^\bullet$, $\phi_f K^\bullet = \text{cone}(i^* K^\bullet \to \psi_f K^\bullet)$.

Generalized Hodge structures and Mirror Symmetry – p.22/24
Vanishing cocycles

Question: How can we compute the nc Hodge structure on $H_{dR}^\bullet((Y, f))$?

Y has the homotopy type of Y_0: If $i_0 : Y_0 \hookrightarrow Y$, then

\[\exists r : Y \to Y_0 \text{ - a strict deformation retraction (} r \circ i \cong \text{id}_{Y_0} \text{)} \].

Specialization to 0 map: $r_t := r|_{Y_t} : Y_t \to Y_0$.

[Deligne’73] Nearby and vanishing cocycles functors:

\[\psi_f, \phi_f : D^- (Y, \mathbb{Z}) \to D^- (Y_0, \mathbb{Z}) \]

Apply to \mathbb{C}_Y:

\[\ldots \to H^i(Y_0) \to H^i(Y_t) \to H^i(\phi_f \mathbb{C}) \to H^{i+1}(Y_0) \to \ldots \]
Vanishing cocycles

Question: How can we compute the nc Hodge structure on $H_{dR}^\bullet((Y, f))$?

Y has the homotopy type of Y_0: If $i_0 : Y_0 \hookrightarrow Y$, then
$\exists r : Y \to Y_0$ - a strict deformation retraction ($r \circ i \cong \text{id}_{Y_0}$).

Specialization to 0 map: $r_t := r|_{Y_t} : Y_t \to Y_0$.

[Deligne'73] Nearby and vanishing cocycles functors:

$\psi_f, \phi_f : D^-(Y, \mathbb{Z}) \to D^-(Y_0, \mathbb{Z})$

Apply to \mathbb{C}_Y:

$\ldots \to H^i(Y_0) \to H^i(Y_t) \to H^i(\phi_f \mathbb{C}) \to H^{i+1}(Y_0) \to \ldots$

Hence $H^i_B((Y, f); \mathbb{C}) = H^{i-1}(\phi_f \mathbb{C})$.
Vanishing cocycles

Question: How can we compute the nc Hodge structure on $H^\bullet_{dR}((Y, f))$?

Y has the homotopy type of Y_0: If $i_0 : Y_0 \hookrightarrow Y$, then $\exists r : Y \to Y_0$ - a strict deformation retraction ($r \circ i \cong \text{id}_{Y_0}$).

Specialization to 0 map: $r_t := r|_{Y_t} : Y_t \to Y_0$.

[Deligne’73] Nearby and vanishing cocycles functors:

$\psi_f, \phi_f : D^-(Y, \mathbb{Z}) \to D^-(Y_0, \mathbb{Z})$

Apply to C_Y:

$\ldots \to H^i(Y_0) \to H^i(Y_t) \to H^i(\phi_f C) \to H^{i+1}(Y_0) \to \ldots$

Hence $H_B^i((Y, f); C) = H^{i-1}(\phi_f C)$.

In fact $H^i_{dR}((Y, f); C) = H^{i-1}(\phi_f(\Omega_Y, d + df \wedge \bullet))$ and $H^i_{Dol}((Y, f); C) = H^{i-1}(\phi_f(\Omega_Y, df \wedge \bullet))$, [Sabbah’00].
Limiting Hodge structures

The family $V_\tau = H^\bullet_{dR}((Y, \tau \cdot f))$, $\tau \in \mathbb{C}$ is a variation of nc pure Hodge structures and by the work of Sabbah induces a limiting mixed twistor structure on $H^\bullet_{dR}((Y, f))$ for $\tau \to \infty$.
Limiting Hodge structures

The family $V_\tau = H^\bullet_{dR}((Y, \tau \cdot f))$, $\tau \in \mathbb{C}$ is a variation of nc pure Hodge structures and by the work of Sabbah induces a limiting mixed twistor structure on $H^\bullet_{dR}((Y, f))$ for $\tau \to \infty$.

[Sabbah’05, Szabo’05]: the limiting mixed twistor structure on $H^\bullet_{dR}((Y, f))$ for $\tau \to \infty$ is an ordinary MHS which is isomorphic to Steenbrink’s MHS on the vanishing cohomology $H^{\bullet-1}(\phi_f \mathbb{C})$.
The family $V_\tau = H_{dR}^\bullet((Y, \tau \cdot f))$, $\tau \in \mathbb{C}$ is a variation of nc pure Hodge structures and by the work of Sabbah induces a limiting mixed twistor structure on $H_{dR}^\bullet((Y, f))$ for $\tau \to \infty$.

[Sabbah’05, Szabo’05]: the limiting mixed twistor structure on $H_{dR}^\bullet((Y, f))$ for $\tau \to \infty$ is an ordinary MHS which is isomorphic to Steenbrink’s MHS on the vanishing cohomology $H^{\bullet-1}(\phi_f \mathbb{C})$.

Corollary [Katzarkov-Kontsevich-P’05] For Landau-Ginzburg models $X = (Y, f)$ the MHS on the vanishing cohomology is an invariant of the category C_X.
Corollary [Katzarkov-Kontsevich-P’05] Suppose \((Z, \omega)\) is a symplectic manifold and suppose \(X = (Y, f)\) is the Hori-Vafa mirror. Then the MHS on the vanishing cohomology of \(f\) is a symplectic invariant of \((Z, \omega)\).
Corollary [Katzarkov-Kontsevich-P’05] Suppose \((Z, \omega)\) is a symplectic manifold and suppose \(X = (Y, f)\) is the Hori-Vafa mirror. Then the MHS on the vanishing cohomology of \(f\) is a symplectic invariant of \((Z, \omega)\).

Expect: Mirror symmetry exchanges the nc Hodge structures on cohomology. In the case of varieties this can be tested since the nc pure Hodge structure can be reconstructed from the MHS on the vanishing cohomology.
Corollary [Katzarkov-Kontsevich-P’05] Suppose \((Z, \omega)\) is a symplectic manifold and suppose \(X = (Y, f)\) is the Hori-Vafa mirror. Then the MHS on the vanishing cohomology of \(f\) is a symplectic invariant of \((Z, \omega)\).

Theorem [Gross-Katzarkov’05] Suppose \((Z, \omega)\) is a symplectic manifold underlying a c.i. variety \(M\), \(\dim M \leq 3\) which is either Fano, CY or of general type. Suppose \(X = (Y, f)\) is the Hori-Vafa mirror. Then the \(90^\circ\) rotation of the MHS on the vanishing cohomology of \(f\) reconstructs the pure Hodge structure on \(M\).